Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Lineal I: Problemas de transpuesta de matriz y matrices de bloque

Por Ayax Calderón

Introducción

En esta entrada ejercitaremos los conceptos de matriz transpuesta y matriz de bloque mediante ejercicios resueltos. Además, para los últimos tres problemas definiremos un concepto que aunque no se estudia a fondo en este curso, aparece en muchas áreas de las matemáticas y de la física: el de producto tensorial.

Problemas resueltos

Problema 1. Sea $A\in M_n(\mathbb{R}$) una matriz con una única entrada distinta de cero en cada renglón y columna, dicha entrada es igual a $1$ ó $-1$. Demuestra que $A$ es una matriz ortogonal.

Solución. Sea $A=[a_{ij}]$. Queremos ver que $A^{-1}=$ $^tA $. Sean $i,j\in \{1, 2, \dots , n\}$. Entonces la entrada $(i,j)$-ésima de $A \ ^t A$ es

\begin{align*}
(A\ {^tA})_{ij}=\displaystyle\sum_{k=1}^na_{ik}a_{jk}.
\end{align*}

Supongamos que $a_{ik}a_{jk}$ es distinto de cero para algún $k\in \{1,2,\dots n\}$, por tanto $a_{ik}$ y $a_{jk}$ son distintos de cero.
Si sucediera que $i\neq j$, entonces $A$ tiene al menos dos entradas distintas de cero en la columna $k$, pero esto es imposible. Así, si $i\neq j$, entonces $a_{ik}a_{jk}=0$ para todo $k\in\{1,2,\dots n\}$ y por consiguiente la $(i,j)-$ésima entrada de $A\ ^tA$ es 0.

Por otro lado, si $i=j$, entonces
\begin{align*}
(A\ ^tA)_{ij}=\displaystyle\sum_{k=1}^na_{ik}^2.
\end{align*}

Como por hipótesis se tiene que todas las entradas del $i$-ésimo renglón de $A$ son todas $0$ salvo una que es $1$ ó $-1$, entonces $\displaystyle\sum_{k=1}^na_{ik}^2=1$ y así $(A\ ^tA)_{ij}=1$ cuando $i=j$. Concluimos que $A\ ^tA=I_n$.
Mediante un argumento análogo se ve que $^tA A = I_n.$

$\square$

Problema 2. a) Sea $A\in M_n(\mathbb{R})$ una matriz tal que $^tA \cdot A =O_n$. Demuestra que $A=O_n$.
b) ¿El inciso a) seguirá siendo cierto si reemplazamos $\mathbb{R}$ por $\mathbb{C}$?

Solución. a) Sea $A=[A_{ij}]$. Por la regla del producto de matrices se tiene que la $(i,i)$-ésima entrada de $^tA\cdot A$ es

\begin{align*}
(^tA\cdot A )_{ii} &= \displaystyle\sum_{k=1}^n (^tA)_{ik}A_{ki} \\ &=
\displaystyle\sum_{k=1}^n A_{ki}^2.
\end{align*}

Como $^tA\cdot A=O_n$, concluimos que para toda $i\in\{1,2,\dots,n\}$ se tiene que

\begin{align*}
\displaystyle\sum_{k=1}^n A_{ki}^2=0.
\end{align*}

Como cada $A_{ki}$ es un número real, al elevarlo al cuadrado obtenemos números no negativos. De lo anterior se sigue que $A_{ki}=0$ para toda $k\in \{1,2\dots ,n\}$. Como la $i$ fue tomada de manera arbitraria, concluimos que $A=O_n.$
b) El resultado no necesariamente es cierto si cambiamos el campo de los reales por el campo de los complejos. Busquemos una matriz simétrica $A\in M_2(\mathbb{C})$ tal que $^tA\cdot A= O_2$, pero como $A$ es simétrica, lo anterior solamente es $A^2=O_2$ y además se puede escribir como

\begin{align*}
A=\begin{pmatrix}
a & b\\
b & d\end{pmatrix}
\end{align*}

para algunos números complejos $a,b$ y $d$. Ahora

\begin{align*}
A^2 &= \begin{pmatrix}
a & b\\
b & d\end{pmatrix} \cdot \begin{pmatrix}
a & b\\
b & d\end{pmatrix} \\
&=\begin{pmatrix}
a^2 +b^2 & b(a+d)\\
b(a+d) & b^2+ d^2\end{pmatrix}.
\end{align*}

Así que buscamos números complejos $a,b,d$ con al menos uno de ellos distinto de cero y tales que

\begin{align*}
a^2+b^2=0, \hspace{2mm} b(a+d)=0, \hspace{2mm} b^2+d^2=0.
\end{align*}

Basta con asegurar que $a+d=0$ y $a^2+b^2=0$, para lo cual tomamos $a=i, b=1, d=-i$ .

$\square$

Producto tensorial

A continuación definiremos el producto tensorial. Es importante mencionar que esto es meramente para ejemplificar la teoría que se ha visto hasta ahora, por lo que no se profundizará en este tema.

Si $A=[a_{ij}]\in M_{m_1,n_1}(F)$ y $B\in M_{m_2,n_2}(F)$ son matrices, entonces definimos el producto de Kronecker o producto tensorial de $A$ y $B$ como la matriz de bloque $A\otimes B\in M_{m_1m_2,n_1n_2}(F)$ definida por

\begin{align*}
A\otimes B = \begin{pmatrix}
a_{11}B & a_{12}B & \dots & a_{1,n_1}B\\
a_{21}B & a_{22}B & \dots & a_{2,n_1}B\\
\vdots & \vdots & \vdots & \vdots\\
a_{m_1,1}B & a_{m_1,2}B & \dots & a_{m_1,n_1}B \end{pmatrix}.
\end{align*}

Problema 1. Calcula el producto tensorial de las matrices

\begin{align*}
A=\begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}, \hspace{4mm} B=\begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix}.
\end{align*}

Solución. Usamos directamente la definición de producto tensorial

\begin{align*}
A\otimes B=\begin{pmatrix}
0 \cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 1 \cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 0 \cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix}\\
1\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 0 \cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 0\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix}\\
0\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 0\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 1\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix}
\end{pmatrix}
\end{align*}

\begin{align*}
= \begin{pmatrix}
0 & 0 & 2 & 1 & 0 & 0\\
0 & 0 & 1 & -1 & 0 & 0\\
2 & 1 & 0 & 0 & 0 & 0\\
1 & -1 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 2 & 1\\
0 & 0 & 0 & 0 & 1 & -1\end{pmatrix}
\end{align*}

$\triangle$

Problema 2. ¿El producto tensorial es conmutativo?

Solución. En general, el producto tensorial, no es conmutativo. Sean $A$ y $B$ como en el problema anterior. Entonces

\begin{align*}
B\otimes A = \begin{pmatrix}
2\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix} & 1\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}\\
1\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix} & -1\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}
\end{pmatrix}
\end{align*}

\begin{align*}
=\begin{pmatrix}
0 & 2 & 0 & 0 & 1 & 0\\
2 & 0 & 0 & 1 & 0 & 0\\
0 & 0 & 2 & 0 & 0 & 1\\
0 & 1 & 0 & 0 & -1 & 0\\
1 & 0 & 0 & -1 & 0 & 0\\
0 & 0 & 1 & 0 & 0 & -1\end{pmatrix}.
\end{align*}

Comparando con lo obtenido en el problema anterior, ser verifica que el producto tensorial no es conmutativo.

$\triangle$

Problema 3. Verifica que $I_m\otimes I_n = I_{mn}.$

Solución. Por definición sabemos que $I_m\otimes I_n\in M_{mn}(F)$. Ahora veamos que

\begin{align*}
\begin{pmatrix}
1\cdot I_n & 0\cdot I_n & \dots & 0\cdot I_n\\
0\cdot I_n & 1 \cdot I_n & \dots & 0\cdot I_n\\
\vdots & \vdots &\ddots & \vdots\\
0\cdot I_n & 0\cdot I_n & \dots & 1\cdot I_n\end{pmatrix}
= I_{mn}.
\end{align*}

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Sistemas de ecuaciones lineales y sistemas homogéneos asociados

Por Julio Sampietro

Introducción

En esta sección damos un primer acercamiento al concepto de sistemas de ecuaciones lineales. Este es un concepto de fundamental importancia en muchas áreas de las matemáticas, como las ecuaciones diferenciales o incluso la geometría algebraica.

Los sistemas de ecuaciones lineales nos son familiares. Desde la educación secundaria se aprende a resolver ecuaciones «de $2\times 2$», y más adelante «de $3\times 3$». Estos sistemas también aparecen en cursos de la licenciatura, como geometría analítica. Sin embargo, es en un curso de álgebra lineal que se estudian con toda generalidad. Las herramientas de esta área de las matemáticas permiten determinar si un sistema de ecuaciones lineales tiene solución y, en caso de que sí, ver cómo se ven todas las soluciones.

Como veremos a continuación, un sistema de ecuaciones lineales se puede ver en términos de matrices. Esta conexión es fundamental. La información acerca de una matriz nos permite obtener información acerca del sistema de ecuaciones lineales asociado. A la vez, la información sobre un espacio o matriz se puede determinar a partir de la resolución de sistemas de ecuaciones lineales.

Sistemas de ecuaciones lineales

Una ecuación lineal en variables $x_1, \dots, x_n$ es una ecuación de la forma

\begin{align*}
a_1 x_1 + \dots +a_n x_n =b,
\end{align*}

donde $a_1, \dots, a_n, b\in F$ son escalares dados y $n$ es un entero positivo. Las incógnitas $x_1,\dots, x_n$ suponen ser elementos de $F$.

Un sistema de ecuaciones lineales en las variables $x_1, \dots, x_n$ es una familia de ecuaciones lineales, usualmente escrito como

\begin{align*}
\begin{cases}
a_{11}x_1+a_{12} x_2+\dots +a_{1n} x_n = b_1\\
a_{21} x_1 +a_{22} x_2 + \dots + a_{2n} x_n = b_2\\
\quad \vdots\\
a_{m1} x_1+a_{m2} x_2+\dots + a_{mn}x_n = b_m
\end{cases}.
\end{align*}

Aquí de nuevo los $a_{ij}$ y los $b_i$ son escalares dados. Resolver un sistema de ecuaciones lineales consiste en describir todos los posibles valores que pueden tener $x_1,\ldots,x_n$ de modo que todas las ecuaciones anteriores se satisfagan simultáneamente.

La notación que usamos no es mera coincidencia y nos permite describir de manera mucho más concisa el sistema: Si $X$ es un vector columna con entradas $x_1, \dots, x_n$, $A$ es la matriz en $M_{m,n}(F)$ con entradas $[a_{ij}]$ y $b$ es un vector columna en $F^m$ con entradas $b_1, \dots, b_m$ entonces el sistema se reescribe como

\begin{align*}
AX=b.
\end{align*}

Puedes verificar esto usando la definición de $A$ como transformación lineal y comparando los vectores en ambos lados de la igualdad entrada a entrada. Resolver el sistema se traduce entonces a responder cómo son todos los vectores $X$ en $F^n$ que satisfacen la igualdad anterior.

Ejemplo. A continuación tenemos un sistema de ecuaciones en tres variables (o incógnitas) $x_1$, $x_2$ y $x_3$:

\begin{align*}
\begin{cases}
3x_1-2x_2+7x_3&=5\\
4x_1+3x_3&=7\\
2x_1+x_2-7x_3&=-1\\
-x_1+3x_2&=8
\end{cases}.
\end{align*}

Si tomamos al vector $b=\begin{pmatrix} 5 \\ 7 \\ -1 \\8 \end{pmatrix}$ en $\mathbb{R}^4$, al vector de incógnitas $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ y a la matriz $$A=\begin{pmatrix} 3 & -2 & 7\\ 4 & 0 & 3 \\ 2 & 1 & -7 \\ -1 & 3 & 0\end{pmatrix},$$ entonces el sistema de ecuaciones lineales consiste exactamente en determinar aquellos vectores $X$ en $\mathbb{R}^3$ tales que $$AX=b.$$

$\triangle$

También podríamos describir nuestro sistema en términos solo de vectores. Recordando un resultado visto en la entrada de producto de matrices, si $C_1, \dots, C_n$ son las columnas de $A$, vistos como vectores columna en $F^{m}$, el sistema es equivalente a

\begin{align*}
x_1 C_1+x_2 C_2 +\dots +x_n C_n=b.
\end{align*}

Sistemas de ecuaciones lineales homogéneos

Hay un tipo de sistemas de ecuaciones lineales muy especiales: aquellos en los que $b=0$. Son tan importantes, que tienen un nombre especial.

Definición.

  1. El sistema de ecuaciones lineales $AX=b$ se dice homogéneo si $b=0$ (es decir si $b_1= b_2=\dots= b_m=0$).
  2. Dado un sistema $AX=b$, el sistema lineal homogéneo asociado es el sistema $AX=0$.

Así, un sistema es homogéneo si es de la forma $AX=0$ para alguna matriz $A$.

Ejemplo. Considera el siguiente sistema de ecuaciones lineales:

\begin{align*}
\begin{cases}
2x+3y-z&=-1\\
5x+8z&=0\\
-x+y&=1.
\end{cases}
\end{align*}

Este es un sistema de ecuaciones que en representación matricial se ve así:

\begin{align*}
\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} -1 \\ 0 \\ 1\end{pmatrix}.
\end{align*}

Como el vector en el lado derecho de la igualdad no es el vector cero, entonces este no es un sistema homogéneo. Sin embargo, tiene asociado el siguiente sistema lineal homogéneo:

\begin{align*}
\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}=
\begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix}.
\end{align*}

$\triangle$

Para la resolución de sistemas lineales en general, el sistema homogéneo asociado juega un papel crucial gracias al siguiente resultado, que nos dice esencialmente que para resolver un sistema $AX=b$ basta con encontrar un vector solución $X_0$ y resolver el sistema homogéneo asociado.

Proposición. (Principio de superposición) Sea $A\in M_{m,n}(F)$ y $b\in F^{m}$. Sea $\mathcal{S}\subset F^{n}$ el conjunto de soluciones del sistema homogéneo asociado $AX=0$. Si el sistema $AX=b$ tiene una solución $X_0$, entonces el conjunto de soluciones del sistema $AX=b$ no es más que

\begin{align*}
X_0+\mathcal{S}= \lbrace X_0 +s\mid s\in \mathcal{S} \rbrace.
\end{align*}

Demostración: Por hipótesis, $AX_0=b$. Ahora al sustituir, $AX=b$ si y sólo si $AX=A X_0$, o bien $A(X-X_0)=0$. Es decir, un vector $X$ es solución de $AX=b$ si y sólo si $X-X_0$ es solución de $AY=0$, de otra manera, si y sólo si $X-X_0\in \mathcal{S}$. Pero esto último es equivalente a decir que existe $s\in \mathcal{S}$ tal que $X-X_0=s$, luego $X= X_0 +s\in X_0 +\mathcal{S}$. Esto prueba el resultado.

$\square$

Consistencia de sistemas lineales

Definición. Un sistema lineal es dicho consistente si tiene al menos una solución. Se le llama inconsistente si no es consistente (es decir, si no existe una solución).

Presentamos una última definición para esta entrada.

Definición.

  1. Dos sistemas lineales se dicen equivalentes si tienen el mismo conjunto de soluciones
  2. Sean $A$ y $B$ dos matrices del mismo tamaño. Si los sistemas $AX=0$ y $BX=0$ son equivalentes, escribiremos $A\sim B$.

Ejemplo. Un ejemplo clásico de un sistema inconsistente es

\begin{align*}
\begin{cases}
x_1=0\\
x_1=1
\end{cases}
\end{align*}

o bien

\begin{align*}
\begin{cases}
x_1 -2x_2=1\\
2 x_2-x_1=0
\end{cases}.
\end{align*}

$\triangle$

Observación. Observamos que todo sistema homogéneo siempre es consistente, ya que el vector cero (cuyas coordenadas son todas cero) satisface el sistema. A esta solución la conocemos como solución trivial. Se sigue de la proposición que un sistema consistente $AX=b$ tiene una única solución si y sólo si el sistema homogéneo asociado tiene como única solución la solución trival.

Más adelante

El principio de superposición dice que para entender las soluciones de los sistemas lineales de la forma $AX=b$, basta con entender a los homogéneos, es decir, los de la forma $AX=0$.

Nuestro siguiente paso será ver cómo podemos entender las soluciones de los sistemas lineales homogéneos. Para ello, tenemos que hablar de los sistemas que corresponden a matrices en forma escalonada reducida. La ventaja de estos sistemas es que sus soluciones son muy fáciles de entender, y para cualquier sistema de ecuaciones $AX=0$, hay uno de la forma $A_{red}X=0$, con $A_{red}$ una matriz escalonada reducida, y equivalente a $A$.

Más adelante, ya que tengamos a nuestra disposición herramientas de determinantes, hablaremos de otra forma en la que se pueden resolver sistemas de ecuaciones lineales usando la regla de Cramer.

Tarea moral

  • Muestra que el sistema \begin{align*}
    \begin{cases}
    x_1 -2x_2=1\\
    2 x_2-x_1=0
    \end{cases}.
    \end{align*}
    es inconsistente. Para ello, puedes proceder por contradicción, suponiendo que existe una solución.
  • Rescribe el primer ejemplo de sistemas de ecuaciones lineales en términos de vectores.
  • Sea $b$ un vector en $F^n$ y $I_n$ la matriz identidad en $M_n(F)$. ¿Cómo se ve de manera explícita el sistema de ecuaciones $(2I_n)X=b$? ¿Cuáles son todas sus soluciones?
  • Sean $A,B$ matrices de tamaño $n\times n$ tales que el sistema $ABX=0$ solo tiene como solución la solución trivial. Demuestre que el sistema $BX=0$ también tiene como única solución a la solución trivial.
  • Sea $A\in M_2(\mathbb{C})$ y considere el sistema homogéneo $AX=0$. Demuestre que son equivalentes:
    1. El sistema tiene una única solución, la solución trivial.
    2. $A$ es invertible.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices de bloques

Por Julio Sampietro

Introducción

En esta entrada definimos el concepto de submatriz y estudiamos las llamadas matrices de bloques que esencialmente son matrices grandes obtenidas por matrices más pequeñas (esto tendrá sentido después de algunos ejemplos). Las matrices de bloque aparecen frecuentemente en muchas áreas y permiten realizar cálculos que podrían ser bastante complicados de otra manera.

Dentro de este curso, nos encontraremos con las matrices de bloque cuando hablemos de solución de ecuaciones lineales y de encontrar inversas de matrices usando el método de reducción gaussiana.

Definición de matrices de bloques

Definición. Una submatriz de una matriz $A\in M_{m,n}(F)$ es una matriz que se obtiene al quitar filas y/o columnas de $A$.

Notamos que $A$ es submatriz de si misma. Una matriz puede partirse en submatrices marcando líneas verticales u horizontales en la matriz. Llamamos a una matriz de este estilo una matriz de bloques y a las submatrices marcadas las llamamos bloques.

Unos ejemplos de matrices de bloques:

\begin{align*}
\left( \begin{array}{c|cc}
1 & 2 & 3\\
0& 5 & 6\\
0 & 0&9
\end{array}\right)
,\hspace{2mm} \left( \begin{array}{c|cc} 1 & 0 & 1 \\ \hline 2 & 5 & -3\end{array}\right),\\ \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2\\ \hline 5 & 16 & 2 & 0\\ 17 & 19 & -5 & 3\\ 117 & 0 & 0 & 11\end{array}\right). \end{align*}

Como mencionamos en la introducción, podemos ver a una matriz de bloques como una ‘matriz de matrices’: una matriz de bloques en $M_{m,n}(F)$ típica se ve como

\begin{align*}
\begin{pmatrix}
A_{11} & A_{12} & \dots & A_{1k}\\
A_{21} & A_{22} & \dots & A_{2k}\\
\vdots & \vdots & \ddots & \vdots\\
A_{l1} & A_{l2} & \dots & A_{lk}
\end{pmatrix},
\end{align*}

en donde cada submatriz $A_{ij}$ es una matriz de tamaño $m_i\times n_j$ para algunos enteros positivos $m_1,\dots, m_l$ y $n_1,\dots, n_k$ tales que $m_1+\dots +m_l=m$ y $n_1+\dots+n_k=n$. La matriz tiene entonces $l$ filas de bloques y $k$ columnas de bloques.

Si $l=k$, llamamos a los bloques $A_{11}, \dots, A_{kk}$ los bloques diagonales y decimos que $A$ es diagonal por bloques si todos los bloques aparte de los diagonales son la matriz cero del tamaño correspondiente. Es decir, una matriz diagonal por bloques es de la forma

\begin{align*}
A=\begin{pmatrix} A_{11} & 0 &\dots & 0\\
0 & A_{21} & \dots & 0\\
\vdots & \vdots & \ddots &\vdots\\
0 & 0 &\dots & A_{kk}.
\end{pmatrix}
\end{align*}

Observa que sólo estamos pidiendo que $k=l$, es decir, que haya la misma cantidad de filas de bloques y de columnas de bloques. Sin embargo, no es necesario que la matriz $A$ sea cuadrada para que sea diagonal por bloques.

Por más que la definición en abstracto pueda ocultar su sentido práctico, uno siempre reconoce una matriz diagonal por bloques cuando la ve.

Ejemplo. La matriz

\begin{align*}
\begin{pmatrix}
1& -1 & 0 & 0\\
0& 2 & 0 & 0\\
0&0 & 3 &0\\
0 & 0 & 15 & -2
\end{pmatrix}
\end{align*}

es diagonal por bloques, y los resaltamos con las líneas de división

\begin{align*}
\left( \begin{array}{cc|cc}
1& -1 & 0 & 0\\
0& 2 & 0 & 0\\ \hline
0&0 & 3 &0\\
0 & 0 & 15 & -2
\end{array}\right).\end{align*}

La matriz
\begin{align*}
\begin{pmatrix}
2 & -1 & 0 & 0\\
8 & 3 & 0 & 0\\
0& 3 & 0 &0\\
0&0 & 0 & -2\\
0 & 0 & 1 & 0
\end{pmatrix}
\end{align*}

también es diagonal por bloques, aunque los bloques no necesariamente sean cuadrados. Resaltamos la lineas divisorias a continuación:

\begin{align*}
\left( \begin{array}{cc|cc}
2& -1 & 0 & 0\\
8 & 3 & 0 & 0\\
2 & 3 & 0 & 0\\ \hline
0 & 0 & 0 &-2\\ 0 & 0 & 1 & 0
\end{array}\right).\end{align*}

Los bloques diagonales son \begin{align*}\begin{pmatrix} 2 & -1 \\ 8 & 3 \\2 & 3 \end{pmatrix}\end{align*} y \begin{align*}\begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}. \end{align*}

$\triangle$

Operaciones con matrices de bloques

Al ser ‘matrices de matrices’, las matrices de bloques se comportan adecuadamente con las operaciones de suma y producto de matrices que conocemos. Enunciamos esto con más detalle en la siguiente proposición que no demostraremos. Las demostraciones son directas pero tediosas.

Proposición.

  • Si
    \begin{align*}
    A= \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1k}\\ A_{21} & A_{22} & \dots & A_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ A_{l1} & A_{l2} & \dots & A_{lk} \end{pmatrix}\end{align*} y \begin{align*} B=\begin{pmatrix} B_{11} & B_{12} & \dots & B_{1k}\\ B_{21} & B_{22} & \dots & B_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ B_{l1} & B_{l2} & \dots & B_{lk} \end{pmatrix} \end{align*}
    son matrices de bloques con $A_{ij}$ y $B_{ij}$ del mismo tamaño para cada $i,j$ (es decir, la partición es igual) entonces
    \begin{align*}
    A+B=\begin{pmatrix} A_{11} +B_{11} & A_{12}+B_{12} & \dots & A_{1k}+B_{1k}\\ A_{21} +B_{21}& A_{22}+B_{22} & \dots & A_{2k}+B_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ A_{l1}+B_{l1} & A_{l2}+B_{l2} & \dots & A_{lk}+B_{lk} \end{pmatrix}
    \end{align*}
  • Si
    \begin{align*}
    A=\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1k}\\ A_{21} & A_{22} & \dots & A_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ A_{l1} & A_{l2} & \dots & A_{lk} \end{pmatrix}\end{align*} y \begin{align*} B=\begin{pmatrix} B_{11} & B_{12} & \dots & B_{1r}\\ B_{21} & B_{22} & \dots & B_{2r}\\ \vdots & \vdots & \ddots & \vdots\\ B_{k1} & B_{k2} & \dots & B_{kr} \end{pmatrix} \end{align*}
    son de tamaño $m\times n$ y $n\times p$ respectivamente tal que $A_{ij}$ es de tamaño $m_i \times n_j$y $B_{ij}$ de tamaño $n_i\times p_j$, entonces
    \begin{align*}
    AB=\begin{pmatrix} C_{11} & C_{12} & \dots & C_{1r}\\ C_{21} & C_{22} & \dots & C_{2r}\\ \vdots & \vdots & \ddots & \vdots\\ C_{l1} & C_{l2} & \dots & C_{lr} \end{pmatrix}
    \end{align*}
    donde
    \begin{align*}
    C_{ij}=\sum_{u=1}^{k} A_{iu} B_{uj}.
    \end{align*}

Más adelante…

En unas cuantas entradas hablaremos del algoritmo de reducción gaussiana y lo usaremos para resolver sistemas de ecuaciones y encontrar inversas de matrices. Nos encontraremos con matrices de bloque muy específicas, por ejemplo, las que resultan de «pegarle» un vector columna a una matriz, por ejemplo

\begin{align*}
\left( \begin{array}{cccc|c}
-3& -1 & 3 & -11 & 0\\
8 & 3 & 0 & 2 & -1\\
1 & -5 & 0 & 0 & 0
\end{array}\right).\end{align*}

y las que resultan de «pegarle» la matriz identidad a una matriz cuadrada, por ejemplo

\begin{align*}
\left( \begin{array}{ccc|ccc}
-3& -1 & 3 & 1 & 0 & 0\\
8 & 3 & 0 & 0 & 1 & 0\\
1 & -5 & 0 & 0 & 0 & 1
\end{array}\right).\end{align*}

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cómo se portan las matrices de bloques respecto a la transposición?
  • Escribe todas las formas en las que puedes dividir a la matriz $I_3$ para que quede como una matriz de bloques. Aquí hay algunas: \begin{align*}\left(\begin{array}{c|cc} 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \left(\begin{array}{c|c|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1\end{array}\right), \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right). \end{align*}
  • Demuestra que toda matriz diagonal puede verse como una matriz diagonal por bloques. Muestra que no toda matriz diagonal por bloques es una matriz diagonal.
  • Escribe todas las formas en las que puedes dividir a la matriz $I_4$ para que quede como una matriz diagonal por bloques.
  • ¿Cómo es la inversa de una matriz diagonal por bloques?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de producto de matrices y matrices invertibles

Por Julio Sampietro

Introducción

Esta sección consta de puros problemas para practicar los conceptos vistos en entradas previas. Las entradas anteriores correspondientes son la de producto de matrices y la de matrices invertibles.

Problemas resueltos

Problema. Encuentra todas las matrices $B\in M_3(\mathbb{C})$ que conmutan con la matriz

\begin{align*}
A=\begin{pmatrix}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 &2
\end{pmatrix}.
\end{align*}

Solución. Sea

\begin{align*}
B=\begin{pmatrix} a & b & c\\ d & e & f \\ g & h & i \end{pmatrix}\in M_3(\mathbb{C}).
\end{align*}

Calculamos usando la regla del producto:

\begin{align*}
AB=\begin{pmatrix}
a & b & c\\ 0 & 0 & 0\\ 2 g & 2h & 2i \end{pmatrix}
\end{align*}

y

\begin{align*}
BA= \begin{pmatrix} a & 0 & 2c\\ d & 0 & 2f\\ g & 0 & 2i\end{pmatrix}.
\end{align*}

Igualando ambas matrices obtenemos que $A$ y $B$ conmutan si y sólo si se satisfacen las condiciones

\begin{align*}
\begin{cases}
b=d=f=h=0\\
2c=c\\
2g=g\end{cases}.
\end{align*}

Las últimas dos condiciones son equivalentes a que $c=g=0$. Cualquier matriz que conmuta con $A$ satisface estas condiciones y conversamente (por nuestro cálculo) si satisface estas ecuaciones conmuta con $A$. Esto nos deja como parámetros libres a $a,e,i$, es decir $B$ puede ser cualquier matriz diagonal.

$\triangle$

Problema. Considerando las matrices

\begin{align*}
A=\begin{pmatrix} 1 & 1 & 1\\ 0& 4 &-1\\ 9& 6 & 0 \end{pmatrix}, \hspace{2mm} B= \begin{pmatrix} -1 & 1\\ 0 & -2 \\ 1 &0 \end{pmatrix},
\end{align*}

¿cuáles de los productos $A^2, AB, BA, B^2$ tienen sentido? Calcula los que si lo tienen.

Solución. Recordamos que los productos tienen sentido si el número de columnas de la matriz de la izquierda sea el mismo que el número de filas de la matriz de la derecha. Entonces no podemos realizar los productos $BA$ o $B^2$ pues esta condición no se cumple (por ejemplo, $B$ tiene $3$ columnas, $A$ tiene $2$ filas, y estos números difieren). Calculamos entonces usando la regla del producto:

\begin{align*}
A^2 = \begin{pmatrix}
10 & 11 & 0\\
-9 & 10 & -4\\
9 & 33 & 3\end{pmatrix}, \hspace{2mm} AB= \begin{pmatrix} 0 & -1\\ -1 & -8\\ -9 &-3\end{pmatrix}.
\end{align*}

$\triangle$

Problema. Considera la matriz \begin{align*}
A=\begin{pmatrix} 1 & 1& 0 \\ 0 & 1 &1\\ 0 &0 & 1 \end{pmatrix}
\end{align*}

  • Demuestra que $A$ satisface que $(A-I_3)^3=O_3$
  • Calcula $A^{n}$ para cualquier entero positivo $n$.

Solución.

  • Hacemos el cálculo directamente:
    \begin{align*}
    (A-I_3)^3&= \begin{pmatrix} 0 & 1 & 0\\0 & 0 &1\\ 0 & 0 &0 \end{pmatrix}^{2} \cdot \begin{pmatrix} 0 & 1 &0 \\ 0 & 0 & 1\\ 0 & 0 &0 \end{pmatrix} \\&= \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 &0 &0\end{pmatrix}\cdot \begin{pmatrix} 0 & 1 &0 \\ 0 & 0 & 1\\ 0 & 0 &0 \end{pmatrix}\\&=O_3. \end{align*}
  • Para este tipo de problemas, una estrategia que funciona es hacer casos pequeños para hacer una conjetura, y luego demostrarla por inducción. Probando para algunos valores de $n$ conjeturamos que
    \begin{align*}
    A^{n}=\begin{pmatrix} 1 & n & \frac{n(n-1)}{2}\\ 0 & 1 & n\\ 0 & 0 &1 \end{pmatrix}.
    \end{align*}
    Lo demostramos por inducción sobre $n$, dando por cierto el caso base con $n=1$.
    Hagamos ahora el paso inductivo. Para esto usamos que $1+\dots + (n-1)= \frac{n(n-1)}{2}$.
    Nuestra hipótesis de inducción nos dice entonces que para cierto $n$ se tiene que $A^{n}=\begin{pmatrix} 1 & n & 1+\dots +(n-1) \\ 0 & 1 & n\\ 0 & 0 & 1\end{pmatrix}$. Usando que $A^{n+1}=A^{n}\cdot A$ con nuestra hipótesis de inducción se sigue:
    \begin{align*}
    A^{n+1}= A^{n}\cdot A&= \begin{pmatrix} 1 & n & 1+\dots +(n-1)\\ 0 & 1 &n\\ 0 & 0 &1\end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1\end{pmatrix}\\ &= \begin{pmatrix} 1 & 1+n & 1+\dots + (n-1)+n\\ 0 & 1 & n+1\\ 0 & 0 &1\end{pmatrix}.\end{align*}
    Luego el resultado es cierto para $n+1$ y así queda demostrado el resultado.

$\square$

El siguiente problema combina temas de números complejos y de matrices invertibles. Para que lo entiendas a profundidad, es útil recordar la teoría de raíces $n$-ésimas de la unidad. Puedes revisar esta entrada del blog. El ejemplo puede parecer un poco artificial. Sin embargo, las matrices que se definen en él tienen muchas aplicaciones, por ejemplo, en procesamiento de señales.

Problema. Sea $n>1$ un natural y sea

\begin{align*}
\zeta= e^{\frac{2\pi i}{n}}= \cos \left( \frac{2\pi}{n}\right)+i\sin \left( \frac{2\pi}{n}\right).
\end{align*}

Este número puede parecer muy feo, pero es simplemente la raíz $n$-ésima de la unidad de menor argumento.

Definimos la matriz de Fourier de orden $n$, denotada por $\mathcal{F}_n$ como la matriz tal que su $(j,k)-$ésima entrada es $\zeta^{(j-1)(k-1)}$ para $1\leq j,k\leq n$.

  • a) Sea $\overline{\mathcal{F}_n}$ la matriz cuya $(j,k)-$ésima entrada es el conjugado complejo de la $(j,k)-$ésima entrada de $\mathcal{F}_n$. Demuestra que
    \begin{align*}
    \mathcal{F}_n\cdot \overline{\mathcal{F}_n} = \overline{\mathcal{F}_n}\cdot \mathcal{F}_n= nI_n.
    \end{align*}
  • b) Deduce que $\mathcal{F}_n$ es invertible y calcule su inversa.

Solución.

  • a) Sean $1\leq j,k\leq n$. Usando la regla del producto, podemos encontrar la entrada $(j,k)$ como sigue:
    \begin{align*}
    \left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n} \right)_{jk} &= \sum_{l=1}^{n} \left(\mathcal{F}_n\right)_{jl} \cdot \left(\overline{\mathcal{F}_n}\right)_{lk}\\
    &= \sum_{l=1}^{n} \zeta^{(j-1)(l-1)} \cdot \overline{\zeta^{(l-1)(k-1)}}\\
    &= \sum_{l=1}^{n} \zeta^{(j-1)(l-1)-(l-1)(k-1)},
    \end{align*}
    la última igualdad se debe a que $\overline{\zeta}= \zeta^{-1}$. Así
    \begin{align*}
    \left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n}\right)_{jk}=\sum_{l=1}^{n}\zeta^{(l-1)(j-k)}=\sum_{l=0}^{n-1}\left( \zeta^{j-k}\right)^{l}.
    \end{align*}
    Y la suma de la derecha es la suma de una sucesión geométrica con razón $\zeta^{j-k}$. Si $j=k$, entonces $\zeta^{j-k}=1$, así que la suma es igual a $n$ ya que cada termino es $1$ y lo sumamos $n$ veces. Si $j\neq k$ entonces $\zeta^{j-k}\neq 1$ y usamos la fórmula para una suma geométrica:
    \begin{align*}
    \sum_{l=0}^{n-1} \left( \zeta^{j-k}\right)^{l}= \frac{1-\left(\zeta^{j-k}\right)^{n}}{1-\zeta^{j-k}}=\frac{1-(\zeta^{n})^{j-k}}{1-\zeta^{j-k}}=0.\end{align*}
    Usamos en la última igualdad que $\zeta^{n}=1$. Se sigue que $\left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n}\right)_{jk}$ es $n$ si $j=k$ y $0$ de otra manera, es decir
    \begin{align*}
    \mathcal{F}_n\cdot\overline{\mathcal{F}_n}=n\cdot I_n.
    \end{align*}
    La igualdad simétrica $\overline{\mathcal{F}_n}\cdot \mathcal{F}_n=n \cdot I_n$ se prueba de la misma manera y omitimos los detalles.
  • b) Por el inciso anterior, sugerimos $\frac{1}{n} \overline{\mathcal{F}_n}$, y esta satisface

    \begin{align*}
    \mathcal{F}_n \cdot \frac{1}{n} \overline{\mathcal{F}_n} = \frac{1}{n} \cdot n I_n= I_n
    \end{align*}
    y la otra igualdad se verifica de la misma manera. Por lo tanto, $\mathcal{F}_n$ es invertible y su inversa es $\frac{1}{n} \overline{\mathcal{F}_n}$.

$\square$

Problema. Sean $A,B\in M_n(\mathbb{R})$ matrices tales que

\begin{align*}
A+B=I_n \hspace{5mm} A^2+B^2=O_n
\end{align*}

Demuestra que $A$ y $B$ son invertibles y que satisfacen

\begin{align*}
(A^{-1}+B^{-1})^{n}=2^{n} I_n
\end{align*}

Solución. Observamos que las propiedades dadas nos permiten calcular

\begin{align*}
A(I_n+B-A)&= (I_n-B) (I_n+B-A)\\&=I_n+B-A-B-B^2+BA\\
&= I_n -A-B^2+BA \\&=I_n+(B-I_n)A-B^2\\ &=I_n-A^2-B^2\\&= I_n.
\end{align*}

Es decir $A^{-1}=I_n+B-A$ (falta demostrar que con esta propuesta, también se cumple $A^{-1}A=I_n$, omitimos los cálculos). Similarmente $B^{-1}= I_n+A-B$ y por tanto $A^{-1}+B^{-1}= 2\cdot I_n$ y de esta igualdad se sigue la segunda parte del problema, pues

\begin{align*}
\left(A^{-1}+B^{-1}\right)^{n}= \left( 2\cdot I_n\right)^{n}=2^{n} \cdot I_n.\end{align*}

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices invertibles

Por Julio Sampietro

Introducción

Siguiendo el hilo de la entrada pasada, por la correspondencia entre transformaciones lineales y matrices así como la composición y su producto, podemos traducir el problema de invertibilidad de transformaciones lineales en términos de matrices, a las que llamaremos matrices invertibles. Es decir, si tenemos $\varphi: F^n\to F^n$, $\psi: F^n\to F^n$ transformaciones lineales tales que

\begin{align*}
\varphi\circ \psi= Id_{F^n}, \hspace{2mm} \psi \circ \varphi=Id_{F^n}
\end{align*}

¿cómo se traduce esto en términos de sus matrices asociadas?

Veremos que la respuesta yace en matrices que tienen inverso multiplicativo, a diferencia de un campo $F$, donde todo $x$ tiene un $x^{-1}$, cuando trabajamos con matrices no todas tienen una matriz inversa y las que si son de especial importancia.

Definición de matrices invertibles

Definición. Decimos que una matriz $A\in M_n (F)$ es invertible o bien no singular si existe una matriz $B\in M_n(F)$ tal que

\begin{align*}
AB=BA=I_n
\end{align*}

Ejemplo. Veamos que la matriz $A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ es invertible. Para ello, tenemos que exhibir una matriz $B$ tal que $AB=I_2=BA$. Proponemos a la matriz $B=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Haciendo la multiplicación con la regla del producto, tenemos que

\begin{align*}
AB&=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + 1 \cdot 0 & 1 \cdot (-1) + 1\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot (-1)+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

¡Aún no hemos terminado! Para satisfacer la definición, también tenemos que mostrar que $BA=I_2$:

\begin{align*}
BA&=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + (-1) \cdot 0 & 1 \cdot 1 + (-1)\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot 1+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

Ahora sí, podemos concluir que la matriz $A$ es invertible.

$\square$

Observación. Una primera cosa que hay que notar es que en la definición se pide que tanto $AB$ como $BA$ sean la matriz identidad $I_n$. Es importante verificar ambas, pues como sabemos, el producto de matrices no siempre conmuta.

Otra observación importante es que si la matriz $B$ como en la definición existe, entonces es necesariamente única: En efecto, si $C\in M_n(F)$ es otra matriz tal que

\begin{align*}
AC=CA=I_n,
\end{align*}

entonces manipulando las expresiones en juego:

\begin{align*}
C&= I_n C \\&= (BA)C\\
&=B(AC)\\&= B I_n \\&=B.
\end{align*}

Entonces no hay ambigüedad al hablar de la matriz inversa de $A$. Ya no tiene mucho sentido usar una letra diferente para ella. Simplemente la denotaremos por $A^{-1}$.

Primeras propiedades de matrices invertibles

Resumimos algunas propiedades de las matrices invertibles en la siguiente proposición.

Proposición.

  1. Para $c\in F$ es un escalar distinto de cero, se tiene que $c I_n$ es invertible.
  2. Si $A$ es invertible, entonces $A^{-1}$ también lo es, y $\left(A^{-1}\right)^{-1}=A$
  3. Si $A,B\in M_n(F)$ son invertibles, entonces $AB$ también lo es y

    \begin{align*}
    \left(AB\right)^{-1}= B^{-1}A^{-1}.
    \end{align*}

Demostración:

  1. Como $c\neq 0$ y $F$ es un campo, entonces existe $c^{-1}$ en $F$ y así $c^{-1} I_n$ satisface (por la compatibilidad del producto por escalares de esta entrada)

    \begin{align*}
    (cI_n)\cdot (c^{-1}I_n)&= (cc^{-1})\cdot (I_n I_n)\\&= I_n\\
    &= (c^{-1} c) \cdot(I_n)\\&= (c^{-1} I_n) \cdot (c I_n).
    \end{align*}
    Luego $c^{-1}I_n$ es la matriz inversa de $c I_n$.
  2. Para evitar alguna confusión con la notación, denotemos a $A^{-1}$ por $B$. Así

    \begin{align*}
    AB=BA=I_n.
    \end{align*}
    Luego $B$ es invertible y su inversa es $A$.
  3. Si $A,B\in M_n(F)$ son invertibles entonces existen $A^{-1}$ y $B^{-1}$. Sea $C= B^{-1} A^{-1}$. Así

    \begin{align*}
    (AB)C=ABB^{-1}A^{-1}= A I_n A^{-1}= AA^{-1} =I_n.
    \end{align*}
    Y análogamente

    \begin{align*}
    C(AB)= B^{-1}A^{-1} A B= B^{-1} I_n B= B^{-1} B=I_n.
    \end{align*}
    Mostrando así que $AB$ es invertible con inversa $C$.

$\square$

Observación. Es importante notar que el ‘sacar inverso’ invierte el orden de los productos. Es decir, en el producto $AB$ aparece primero $A$ y luego $B$, mientras que el inverso $(AB)^{-1}$ es $B^{-1}A^{-1}$, en donde aparece primero $B^{-1}$ y luego $A^{-1}$. Esto es muy importante en vista de que la multiplicación de matrices no es conmutativa y por lo tanto en general

\begin{align*}
(AB)^{-1}\neq A^{-1} B^{-1}.
\end{align*}

También es importante notar que si bien la invertibilidad se preserva bajo productos (el producto de matrices invertibles es invertible) ésta no se preserva bajo sumas. Por ejemplo, tanto $I_n$ como $-I_n$ son invertibles en virtud del teorema, sin embargo su suma es $I_n+(-I_n)=O_n$, que no es invertible.

Ya hablamos de cuándo una matriz $A$ en $M_n(F)$ es invertible. ¿Qué sucede si consideramos a todas las matrices invertibles en $M_n(F)$? Introducimos el siguiente objeto de importancia fundamental en muchas áreas de las matemáticas:

Definición. El conjunto de matrices invertibles $A\in M_n(F)$ es llamado el grupo lineal general y es denotado por $GL_n(F)$.

En la tarea moral hay un ejercicio en el que se pide mostrar que $GL_n(F)$ es un grupo bajo la operación de producto de matrices. En realidad en este curso no hablaremos mucho de $GL_n(F)$ como grupo. Pero es importante que sepas de su existencia y que conozcas su notación, pues será importante en tu preparación matemática futura.

Invirtiendo matrices

Si bien el concepto de invertibilidad es sencillo de introducir, gran parte de la herramienta para determinar (irónicamente, a través de los determinantes) la invertibilidad de una matriz o propiedades relacionadas (por ejemplo, una computación efectiva de matrices inversas) todavía no está a nuestra disposición. Por tanto, lo único que podemos hacer es uso de ‘fuerza bruta’ para encontrar las inversas de matrices invertibles, y eso haremos en los siguientes ejemplos para al menos familiarizarnos con los cálculos.

Problema. Sea la matriz $A=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}$. ¿Es $A$ invertible? De serlo, calcula su inversa.

Solución. Como mencionamos, con la teoría que hemos desarrollado hasta ahora solo podemos atacar el problema directamente. Buscamos una matriz

\begin{align*}
B= \begin{pmatrix} a & b & c\\ x & y & z\\ u & v & w\end{pmatrix}
\end{align*}

tal que $AB=I_3=BA$. Usando la regla del producto, calculamos

\begin{align*}
AB=\begin{pmatrix} x & y & z\\ a & b &c \\ u & v & w \end{pmatrix}.
\end{align*}

Igualando esta matriz a $I_3$ obtenemos las condiciones

\begin{align*}
\begin{cases} x=b=w=1\\ y=z=a=c=u=v=0. \end{cases}
\end{align*}

Esto muestra que una buena candidata a ser la inversa de $A$ es la matriz

\begin{align*}
A^{-1}= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}.
\end{align*}

Falta un paso más: hay que verificar que $BA=I_3$. Afortunadamente esto es cierto. Su verificación queda como tarea moral.

$\triangle$

Resaltamos que el método usado no es eficiente, y tampoco es general (pues funcionó solo por la particularidad de la matriz $A$). Dicho esto, exhibimos un método que puede ser útil cuando la matriz por invertir es suficientemente ‘bonita’ (por ejemplo si tiene muchos ceros).

Sea $A\in M_n(F)$ una matriz y $b\in F^n$ un vector. Supongamos que el sistema $AX=b$ en el vector variable $X$ tiene una única solución $X\in F^n$. Un resultado que probaremos más adelante nos dice que entonces $A$ es invertible y que la solución es $X=A^{-1}b$ (es decir, que podemos ‘despejar’ $X$ multiplicando por $A^{-1}$ del lado izquierdo ambos lados). Así, si el sistema resulta fácil de resolver, podemos obtener una expresión de $A^{-1}$ en términos de cualquier vector $b$, y ésto basta para determinar a $A^{-1}$. En la práctica, la resolución del sistema mostrará que

\begin{align*}
A^{-1} b = \begin{pmatrix}
c_{11}b_1 + c_{12} b_2 +\dots + c_{1n}b_n\\
c_{21}b_1+c_{22}b_2 + \dots + c_{2n} b_n\\
\vdots\\
c_{n1} b_1 + c_{n2} b_2 +\dots + c_{nn}b_n
\end{pmatrix}
\end{align*}

para algunos escalares $c_{ij}$ independientes de $b$. Escogiendo $b=e_i$ el $i-$ésimo vector de la base canónica, el lado izquierdo es simplemente la $i-$ésima columna de $A^{-1}$ y el lado derecho es la $i-$ésima columna de $[c_{ij}]$. Como ambas matrices son iguales columna a columna, deducimos que

\begin{align*}
A^{-1}=[c_{ij}]
\end{align*}

Subrayamos que, una vez el sistema resuelto, el resto es relativamente sencillo pues solo es fijarnos en los coeficientes. La dificultad reside entonces en resolver el sistema $AX=b$, y la dificultad de este sistema depende fuertemente de la matriz $A$, por lo que nos limitaremos por lo pronto a ejemplos sencillos.

Retomemos el problema anterior para ver cómo funciona este método recién expuesto.

Problema. Resuelve el problema anterior usando el método que acabamos de describir.

Solución. Sea $b=\begin{pmatrix} b_1 \\ b_2 \\ b3 \end{pmatrix}\in F^3$, tratemos de resolver $AX=b$ para $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. El sistema se escribe entonces

\begin{align*}
\begin{pmatrix} b_1 \\ b_2 \\ b_3\end{pmatrix}=AX= \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} x_2 \\ x_1 \\ x_3\end{pmatrix}.
\end{align*}

O equivalentemente

\begin{align*}
\begin{cases} x_1=b_2\\ x_2= b_1 \\ x_3=b_3.\end{cases}
\end{align*}

Como el sistema siempre se puede resolver dado $b\in F^3$, podemos afirmar que $A$ es invertible, y tenemos que

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1\\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} b_2\\ b_1 \\ b_3\end{pmatrix}= \begin{pmatrix} 0\cdot b_1 + 1\cdot b_2 + 0 \cdot b_3\\ 1\cdot b_1 +0\cdot b_2 +0\cdot b_3\\ 0\cdot b_1 + 0\cdot b_2 +1\cdot b_3\end{pmatrix}. \end{align*}

Fijándonos en los coeficientes del lado derecho, vemos que la primera fila de $A^{-1}$ es $(0 \ 1 \ 0)$, la segunda $(1\ 0 \ 0)$ y la tercera $(0\ 0\ 1)$. Luego

\begin{align*}
A^{-1}=\begin{pmatrix}
0 & 1& 0\\
1 & 0&0\\
0 & 0 & 1\end{pmatrix}\end{align*}

$\triangle$

Problema. Sea la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 1 &1 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 1\end{pmatrix} \end{align*}

Demuestre que $A$ es invertible y encuentre su inversa.

Solución. Usamos el mismo método. Sea $b= \begin{pmatrix} b_1\\ b_2 \\ b_3 \\ b_4 \end{pmatrix}\in F^4$ y resolvemos $AX=b$ con $X=\begin{pmatrix} x_1\\ x_2 \\ x_3 \\ x_4\end{pmatrix}$. Esta vez el sistema asociado es el siguiente (omitimos los cálculos de la regla del producto):

\begin{align*}
\begin{cases}
x_1+x_2+x_3+x_4=b_1\\
x_2+x_3+x_4=b_2\\
x_3+x_4=b_3\\
x_4=b_4
\end{cases}.
\end{align*}

Este sistema lo podemos resolver de manera más o menos sencilla: De la última ecuación tenemos que $x_4=b_4$, luego sustituyendo en la penúltima obtenemos $x_3+b_4=b_3$ o bien $x_3=b_3-b_4$. Sustituyendo esto a su vez en la segunda ecuación obtenemos que $x_2+b_3=b_2$, es decir $x_2=b_2-b_3$ y finalmente $x_1= b_1-b_2$. Así el sistema siempre tiene solución y estas están dadas por

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4\end{pmatrix} = \begin{pmatrix} b_1-b_2\\ b_2-b_3\\ b_3-b_4\\ b_4 \end{pmatrix}.
\end{align*}

De esto se sigue que (fijándonos en los coeficientes) la primera fila de $A^{-1}$ es $(1\ -1 \ 0 \ 0)$, y análogamente obtenemos las demás, de manera que

\begin{align*}
A^{-1}=\begin{pmatrix}
1 & -1 & 0 &0\\
0 & 1 & -1 & 0\\
0&0 &1 &-1\\
0 & 0 & 0 &1
\end{pmatrix}.
\end{align*}

Un buen ejercicio es verificar que en efecto con esta inversa propuesta se cumple que $AA^{-1}=I_4=A^{-1}A$.

$\triangle$

Matrices invertibles diagonales

Concluimos esta sección con un último problema de matrices invertibles. Para resolverlo no usamos el método expuesto, sino un argumento particular para las matrices diagonales.

Problema. Demuestre que una matriz diagonal $A\in M_n(F)$ es invertible si y sólo si todas sus entradas en la diagonal son distintas de cero. Más aún, de ser el caso, $A^{-1}$ también es diagonal.

Solución. Sea $A=[a_{ij}]\in M_n(F)$ una matriz diagonal y $B=[b_{ij}]\in M_n(F)$ cualquier matriz. Usando la regla del producto tenemos que

\begin{align*}
(AB)_{ij}= \sum_{k=1}^{n} a_{ik} b_{kj}.
\end{align*}

Como $a_{ik}=0$ para $k\neq i$ (por ser $A$ diagonal) muchos de los términos en la suma desaparecen y nos quedamos con

\begin{align*}
(AB)_{ij}= a_{ii} b_{ij}
\end{align*}

y de manera similar se puede verificar que

\begin{align*}
(BA)_{ij}=a_{jj}b_{ij}.
\end{align*}

Aprovechemos estas observaciones para proponer a la inversa de $A$.

Si $a_{ii}\neq 0$ para todo $i\in \{1,\dots, n\}$ entonces podemos considerar a $B$ como la matriz diagonal con entradas $b_{ii}=\frac{1}{a_{ii}}$. Las fórmulas que acabamos de calcular nos dan que $AB=BA=I_n$ y así $A$ es invertible y su inversa $B$ es diagonal.

Conversamente, supongamos que $A$ es invertible y diagonal. Así, existe una matriz $B$ tal que $AB=BA=I_n$. Luego para toda $i\in \{1, \dots, n\}$ se cumple

\begin{align*}
1= (I_n)_{ii}= (AB)_{ii}= a_{ii}b_{ii}
\end{align*}

Así $a_{ii}\neq 0$ para $i\in \{1, \dots, n\}$ y así todas las entradas en la diagonal son distintas de cero.

$\square$

Más adelante…

En esta entrada hablamos del concepto de matrices invertibles, vimos algunas de sus propiedades y esbozamos un método para encontrar la inversa de una matriz. Hay mejores métodos para encontrar dicha inversa. Uno de ellos, que es muy rápido, es el método de reducción gaussiana, que sirve para mucho más que invertir matrices. Para llegar a él, aún tenemos que desarrollar algo de teoría. Pero antes de eso, hablaremos de otros tipos particulares de matrices.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Aunque para determinar inversos de matrices generales necesitamos desarrollar más teoría, las matrices invertibles de $2\times 2$ son fáciles de entender. Muestra que si se tiene una matriz $A$ en $M_2(F)$ con entradas $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ y $ad-bc\neq 0$, entonces la matriz $$B=\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$ es la inversa de $A$. Para ello verifica explícitamente usando la regla del producto que tanto $AB=I_2$, como que $BA=I_2$.
  • En el primer problema de invertir matrices, muestra que $BA$ también es $I_3$.
  • La matriz $$A=\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \sqrt{2}\end{pmatrix}$$ es invertible. Encuentra su inversa.
  • Verifica que $GL_n(F)$ es en efecto un grupo bajo la operación de multiplicación de matrices. Debes mostrar que:
    • El producto de dos matrices invertibles es invertible.
    • Existe un neutro multiplicativo $E$ (¿quién sería?).
    • Para matriz $A$ en $GL_n(F)$ existe una matriz $B$ en $GL_n(F)$ tal que $AB=BA=E$.
  • Explica por qué la matriz $O_n$ no es invertible. Explica por que si una matriz en $M_n(F)$ tiene una columna (o fila) tal que todas sus entradas sen iguales a $0$, entonces la matriz no es invertible. Este ejercicio lo puedes hacer directamente de la definición, sin tener que recurrir a herramientas más fuertes.
  • Generaliza el penúltimo problema a una matriz de tamaño $n\times n$ con puros unos sobre y por encima de la diagonal, es decir, para la cual $[a_{ij}]=1$ si $j\geq i$ y $0$ en otro caso.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»