Archivo del Autor: Ayax Calderón

Álgebra Lineal I: Problemas de transformaciones transpuestas y formas bilineales

Por Ayax Calderón

Introducción

En la entrada del miércoles pasado se definió el concepto de la transpuesta de una transformación lineal. Así mismo, se probó el impresionante y muy útil hecho de que si $A$ es la matriz asociada a la transformación $T$ con respecto a ciertas bases, entonces $^tA$ es la matriz asociada de la transformación $^tT$ con respecto a las bases duales. Comenzamos esta entrada con problemas de transformaciones transpuestas. Los problemas 1 y 2 de esta entrada nos servirán para repasar la teoría vista en esa clase.

Por otra parte, en la entrada del viernes pasado comenzamos con el estudio de las formas bilineales y también se definió la forma cuadrática asociada a una forma bilineal. Además, se presentó la identidad de polarización, la cuál dada una forma cuadrática $q$ nos recupera la única forma bilineal simétrica de la cuál viene $q$.

Para repasar esta teoría, en esta entrada se encuentran los problemas 3 y 4. El problema 4 es interesante porque introduce de manera sencilla los espacios de funciones $l_p$ , de los cuáles se hace un estudio mucho más profundo en un primer curso de análisis matemático. Además, para este problema hacemos uso de herramientas de convergencia de series.

Problemas resueltos

Veamos dos problemas de transformaciones transpuestas

Problema 1. Considera la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^2$ dada por $$T(x,y,z)=(x+3y, x+y-z).$$
Sea $\mathcal{B}^*=\{e_1^*, e_2^*\}$ la base dual canónica de $\mathbb{R}^2$.
Calcula $^tT(e_1^*+e_2^*)$ y $^tT(e_1^*-e_2^*)$ en términos de la base dual canónica $\{f_1^\ast, f_2^\ast, f_3^\ast\}$ de $\mathbb{R}^3$.

Solución. Primero observemos que para un vector cualquiera de $\mathbb{R}^2$ se tiene que
\begin{align*}
e_1^*(x,y)&=x\\
e_2^*(x,y)&=y.
\end{align*}

entonces
\begin{align*}
(e_1^* + e_2^* )(x,y)&=x+y\\
(e_1^* – e_2^* )(x,y)&=x-y.
\end{align*}

Así,

\begin{align*}
(^tT(e_1^*&+e_2^*))(x,y,z)\\=&(e_1^* + e_2^*)(T(x,y,z))\\
=&(e_1^* + e_2^*)(x+3y, x+y-z)\\=&x+3y+x+y-z\\
=&2x+4y-z.
\end{align*}

Esto nos dice que $^tT(e_1^*+e_2^*)=2f_1^\ast+4f_2^\ast – f_3^\ast$.

Por otro lado,

\begin{align*}
(^tT(e_1^*&-e_2^*))(x,y,z)\\
=&(e_1^* – e_2^*)(T(x,y,z))\\
=&(e_1^* – e_2^*)(x+3y, x+y-z)\\
=&x+3y-x-y+z\\
=&2y+z.
\end{align*}

Por lo tanto, $ ^tT(e_1^*-e_2^*)) =2f_2^\ast+f_3^\ast.$

$\triangle$

Problema 2. Encuentra la matriz de $^tT$ con respecto a la base canónica de $\mathbb{R}^3$ sabiendo que

$T(x,y,z)=(x+y, y-z,x+2y-3z).$

Solución. Recordemos que para calcular la matriz asociada a una transformación con respecto a una base canónica sólo hace falta poner en la $i$-ésima columna la imagen del $i$-ésimo vector canónico. Por esto, calculamos los siguientes valores

$T(e_1)=T(1,0,0)=(1,0,1)$
$T(e_2)=T(0,1,0)=(1,1,2)$
$T(e_3)=(0,0,1)=(0,-1,-3).$

Entonces la matriz asociada a $T$ es

$A=\begin{pmatrix}
1 & 1 & 0\\
0 & 1 & -1\\
1 & 2 & -3\end{pmatrix}.$

Así, por Teorema 2 visto en la entrada de ortogonalidad y transformación transpuesta, sabemos que la matriz asociada a $^tT$ es justamente la matriz

$^tA=\begin{pmatrix}
1 & 0 & 1\\
1 & 1 & 2\\
0 & -1 & -3\end{pmatrix}$.

$\triangle$

Problemas de formas bilineales y cuadráticas

Problema 1. Demuestra que la transformación

$b:\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$
$b((x,y),(z,t))=xt-yz$

es una forma bilineal sobre $\mathbb{R}^2$. Describe la forma cuadrática asociada.

Demostración. Sea $(x,y)\in \mathbb{R}^2$ fijo. Queremos ver que

$b((x,y), \cdot):\mathbb{R}^2 \to \mathbb{R}$
definida por
$(u,v)\mapsto b((x,y),(u,v))$
es lineal.

Sean $(u,v),(z,t)\in \mathbb{R}^2$.

\begin{align*}
b(&(x,y),(u,v)+(z,t))\\&=b((x,y),(u+z, v+t))\\&=x(v+t)-y(u+z)\\&=(xv-yu)+(xt-yz)\\
&=b((x,y),(u,v))+b((x,y),(z,t)).
\end{align*}

Sea $k \in \mathbb{R}$.
\begin{align*}
b((x,y),k(u,v))&=b((x,y),(ku,kv))\\
&=kxv-kyu\\
&=k(xv-yu)\\
&=kb((x,y),(u,v)).
\end{align*}

Así, $(u,v)\mapsto b((x,y),(u,v))$ es lineal.

Ahora veamos que dado $(u,v)\in\mathbb{R}^2$ fijo, la transformación $(x,y)\mapsto b((x,y),(u,v))$ es lineal.

Sean $(x,y),(z,t)\in\mathbb{R}^2$ y $k\in \mathbb{R}$. Tenemos que
\begin{align*}
b((x&,y)+k(z,t),(u,v))\\
=&b((x+kz,y+kt),(u,v))\\
=&(x+kz)v – (y+kt)u\\
=& xv-kzv-yu-ktu\\
=&(xv-yu)+k(zv-tu)\\
=&b((x,y),(u,v))+kb((z,t),(u,v)).
\end{align*}

Así, $(x,y)\mapsto b((x,y),(u,v))$ es lineal y por consiguiente $b$ es una forma bilineal.

Ahora, tomemos $q:\mathbb{R}^2\to \mathbb{R}$ definida por $$q(x,y)=b((x,y),(x,y)).$$
Entonces $q(x,y)=xy-yx=0$. Así, la forma cuadrática cero es la forma cuadrática asociada a la forma bilineal $b$.

$\square$

Problema 2. Para un real $p\geq 0$, definimos el espacio $$l_p:=\left\{(x_n)_{n\in\mathbb{N}} : x_n\in\mathbb{R} \forall n\in \mathbb{N} ; \displaystyle\sum_{i\in \mathbb{N}}|x_i| ^p < \infty \right\}.$$

Notemos que para $p\in[1,\infty)$, $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas de manera natural. La demostración no es totalmente trivial, pues hay que mostrar que este espacio es cerrado bajo la suma, y esto requiere de la desigualdad del triángulo para la norma $|\cdot |_p$. Puedes intentar demostrar esto por tu cuenta como tarea moral.

Ahora, considera $H:l_2\times l_2 \to\mathbb{R}$ definida por

$H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})=\displaystyle\sum_{n\in\mathbb{N}}x_ny_n$.


Demuestra que $H$ es una forma bilineal simétrica sobre $l_2$.

Demostración. Lo primero que haremos es mostrar que la forma bilineal que definimos en efecto tiene valores reales. Para ello, tenemos que ver que converge.

Observemos que para cada $n\in\mathbb{N}$ se tiene que

$0\leq(|x_n|- |y_n|)^2.$

Entonces ,
\begin{align*}
0&\leq |x_n| ^2 -2|x_ny_n|+ |y_n |^2\\
|x_n y_n|&\leq \frac{1}{2}(|x_n|^2 + |y_n|^2).
\end{align*}


Por consiguiente,

$\displaystyle\sum_{n\in\mathbb{N}}|x_n y_n|\leq \frac{1}{2}\left (\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 + \displaystyle\sum_{n\in\mathbb{N}}|y_n|^2 \right ) < \infty$.

Lo anterior se debe a que

$\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 < \infty$ ya que $(x_n)_{n\in \mathbb{N}}\in l_2$

y análogamente para $(y_n)_{n\in \mathbb{N}}$.

Así, $\displaystyle\sum_{n\in\mathbb{N}}x_n y_n < \infty$, pues converge absolutamente, y por lo tanto $H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ siempre cae en $\mathbb{R}$.

Ahora veamos que $H$ es bilineal. Sea $x=(x_n)_{n\in \mathbb{N}}\in l_2$ fija. Queremos ver que $$(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$$ es lineal.

Sean $y=(y_n)_{n\in \mathbb{N}},z=(z_n)_{n\in \mathbb{N}}\in l_2$ y $k\in \mathbb{R}$.

Entonces

\begin{align*}
H(x,&y+kz)\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n +kx_nz_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n + k\displaystyle\sum_{n\in\mathbb{N}}x_n z_n\\
&= H(x,y) + k H(x,z).
\end{align*}

Así, $(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

De manera análoga se ve que si $(y_n)_{n\in \mathbb{N}} \in l_2$ fija, entonces $(x_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

Además
\begin{align*}
H(x,y)&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}y_n x_n \\
&= H(y,x).
\end{align*}

Por lo tanto, $H$ es una forma bilineal simétrica sobre $l_2$.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que en efecto $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas entrada a entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de ortogonalidad, ecuaciones e hiperplanos

Por Ayax Calderón

Introducción

En esta entrada ejercitaremos los conceptos introducidos recientemente. Abordamos los temas de espacio ortogonal e hiperplanos. Para ello, resolveremos problemas de ortogonalidad relacionados con encontrar una base para el espacio ortogonal y de escribir subespacios en términos de ecuaciones e intersecciones de hiperplanos.

Problemas resueltos de espacio ortogonal

Problema 1. Sea $S=\{x^3+x, x^2+x ,-x^3+x^2+1\} \subseteq \mathbb{R}_3[x]$.
Describe $S^{\bot}$ dando una base de este espacio.

Solución. Una forma lineal $l$ sobre $\mathbb{R}_3[x]$ es de la forma

$l(a_0 + a_1x+a_2x^2+a_3x^3)=aa_0+ba_1+ca_2+da_3$

para algunos $a, b,c,d\in \mathbb{R}$, pues basta decidir quiénes son $a=l(1)$, $b=l(x)$, $c=l(x^2)$ y $d=l(x^3)$.

La condición $l\in S^{\bot}$ es equivalente a

$l(x^3+x)=l(x^2+x)=l(-x^3+x^2+1)=0.$

Esto es
\begin{align*}
l(x^3+x)&=b+d=0\\
l(x^2+x)&=b+c=0\\
l(-x^3+x^2+1)&=a+c-d=0.
\end{align*}

La matriz asociada al sistema es

$A=\begin{pmatrix}
0 & 1 & 0 & 1\\
0 & 1 & 1 & 0\\
1 & 0 & 1 & -1\end{pmatrix}$

y su forma escalonada reducida es

$A_{red}=\begin{pmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 1\\
0 & 0 & 1 & -1\end{pmatrix}.$

Así, $d$ es variable libre y \begin{align*} a&=0\\ b&=-d\\ c&=d.\end{align*}

De aquí, el conjunto de soluciones del sistema es
$$\{(0,-u,u,u) : u\in \mathbb{R}\}.$$

Las correspondientes formas lineales son $$l_u(a_0+a_1x+a_2x^2+a_3x^3)=u(-a_1+a_2+a_3).$$

Este es un subespacio de dimensión $1$, así que para determinar una base para $S^{\bot}$, basta con elegir una de estas formas lineales con $u\neq 0$, por ejemplo, para $u=1$ tenemos
$$l_1(a_o+a_1x+a_2x^2+a_3x^3)=-a_1+a_2+a_3.$$

$\triangle$

Problema 2. Sea $V$ un espacio vectorial sobre un campo $F$, sea $V^\ast$ su espacio dual y tomemos subconjuntos $S, S_1, S_2\subseteq V^\ast$ tales que $S_1\subseteq S_2$. Prueba lo siguiente.

  1. $S_2^{\bot}\subseteq S_1^{\bot}$.
  2. $S\subseteq (S^{\bot})^{\bot}$.

Solución.

  1. Sea $l\in S_2^{\bot}$. Por definición $l(s)=0$ para toda $s\in S_2$.
    Luego, si $s\in S_1$, entonces $s\in S_2$ y así $l(s)=0$. Por consiguiente $l\in S_1^{\bot}$. Concluimos $S_2^{\bot}\subseteq S_1^{\bot}$.
  2. Sea $s\in S$. Para cualquier $l\in S^{\bot}$ se cumple que $l(s)=0$ y así $s\in (S^{\bot})^{\bot}$

$\square$

Observación. El problema anterior también es cierto si suponemos que $S, S_1, S_2\subseteq V$ tales que $S_1\subseteq S_2$ y la prueba es idéntica a la anterior.

Observación. Por muy tentador que sea pensar que la igualdad se da en el inciso 2 del problema anterior, esto es totalmente falso: $(S^{\bot})^{\bot}$ es un subespacio de $V$ (o de $V^\ast$), mientras que no hay razón para que $S$ lo sea, pues este es solamente un subconjunto arbitrario de $V$ (o $V^\ast$). Como vimos en una entrada anterior, la igualdad se da si $S$ es un subespacio de $V$ (o de $V^\ast$) cuando $V$ es un subespacio de dimensión finita.

Problemas resueltos de ecuaciones lineales y de hiperplanos

Veamos ahora problemas de ortogonalidad relacionados con encontrar expresiones para un subespacio en términos de ecuaciones lineales y de hiperplanos.

Problema 1. Sea $W$ el subespacio de $\mathbb{R}^4$ generado por los vectores

$v_1=(1,1,0,1)$
$v_2=(1,2,2,1).$

Encuentra ecuaciones lineales en $\mathbb{R}^4$ cuyo conjunto solución sea $W$.

Solución. Necesitamos encontrar una base para $W^{\bot}$.
Recordemos que $W^{\bot}$ consiste de todas las formas lineales

$l(x,y,z,t)=ax+by+cz+dt$

tales que $l(v_1)=l(v_2)=0$, es decir
\begin{align*}
a+b+d&=0\\
a+2b+2c+d&=0.
\end{align*}

La matriz asociada al sistema anterior es

$A=\begin{pmatrix}
1 & 1 & 0 & 1\\
1 & 2 & 2 & 1\end{pmatrix}$

y por medio de reducción gaussiana llegamos a que su forma reducida escalonada es

$A_{red}=\begin{pmatrix}
1 & 0 & -2 & 1\\
0 & 1 & 2 & 0\end{pmatrix}.$

De aquí, $c$ y $d$ son variables libres y $a$ y $b$ son variables pivote determinadas por
\begin{align*}a&=2c-d\\b&=-2c.\end{align*}

Por lo tanto,
\begin{align*}
l(x,y,z,t)&=(2c-d)x-2cy+cz+dt\\
&=c(2x-2y+z)+d(-x+t).
\end{align*}

Así, deducimos que una base para $W^{\bot}$ está dada por

$l_1(x,y,z,t)=2x-2y+z$ y $l_2(x,y,z,t)=-x+t$

y por consiguiente $W=\{v\in \mathbb{R}^4 : l_1(v)=l_2(v)=0\}$, de donde $$l_1(v)=0, l_2(v)=0$$ son ecuaciones cuyo conjunto solución es $W$.

$\triangle$

Problema 2. Considera el espacio vectorial $V=\mathbb{R}_3[x]$. Escribe el subespacio vectorial generado por $p(x)=1-2x^2$ y $q(x)=x+x^2-x^3$ como la intersección de dos hiperplanos linealmente independientes en $V$.

Solución. Sea $\mathcal{B}=\{1,x,x^2,x^3\}=\{e_1,e_2,e_3,e_4\}$ la base canónica de $V$.

Entonces

\begin{align*}
p(x)&=e_1-2e_3\\
q(x)&=e_2+e_3-e_4.
\end{align*}

Escribir $W=\text{span}(p(x),q(x))$ como intersección de dos hiperplanos es equivalente a encontrar dos ecuaciones que definan a $W$, digamos $l_1(v)=l_2(v)=0$ pues entonces $$W=H_1 \cap H_2,$$ donde $H_1=\ker(l_1)$ y $H_2=\ker(l_2)$.

Así que sólo necesitamos encontrar una base $l_1,l_2$ de $W^{\bot}$.

Recordemos que una forma lineal en $\mathbb{R}_3[x]$ es de la forma $$l_1(x_1e_1+x_2e_2+x_3e_3+x_4e_4)=ax_1+bx_2+cx_3+dx_4$$

para algunos $a,b,c,d \in \mathbb{R}$.

Esta forma lineal $l$ pertenece a $W^{\bot}$ si y sólo si $$l(p(x))=l(q(x))=0,$$ o bien

\begin{align*}
a-2c&=0\\
b+c-d&=0.
\end{align*}

Podemos fijar $c$ y $d$ libremente y despejar $a$ y $b$ como sigue:

\begin{align*}a&=2c\\b&=-c+d.\end{align*}

Por consiguiente

\begin{align*}
l(x_1e_1&+x_2e_2+x_3e_3+x_4e_4)\\
&=2cx_1+(-c+d)x_2+cx_3+dx_4\\
&=c2x_1-x_2+x_3)+d(x_2+x_4).
\end{align*}

Así deducimos que una base $l_1,l_2$ de $W^{\bot}$ está dada por

\begin{align*}
l_1(x_1e_1+x_2e_2+x_3e_3+x_4e_4)&=2x_1-x_2+x_3\\
l_2(x_1e_1+x_2e_2+x_3e_3+x_4e_4)&=x_2+x_4.
\end{align*}

y así $W=H_1\cap H_2$, donde

\begin{align*}
H_1&=\ker(l_1)=\{a+bx+cx^2+dx^3\in V : 2a-b+c=0\}\\
H_2&=\ker(l_2)=\{a+bx+cx^2+dx^3\in V : b+d=0\}.
\end{align*}


$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de rango de transformaciones y matrices.

Por Ayax Calderón

Introducción

Con anterioridad vimos el concepto de rango de una matriz y rango de una transformación lineal, además del muy importante teorema de rango-nulidad y la desigualdad de Sylvester. Vimos también, como contenido optativo, el versátil teorema de la factorización $PJQ$. En esta ocasión nos enfocaremos en resolver problemas de rango que nos servirán para repasar dichos conceptos.

Problemas resueltos

Problema 1. Encuentra el kernel y el rango de la transformación lineal $T:\mathbb{R}_2[x] \longrightarrow \mathbb{R}_3[x]$ definida por $$T(f(x))=2f'(x) + \int _{0}^{x} 3f(t)dt.$$

Antes de comenzar a leer la solución, es conveniente que te convenzas de que $T$ es una transformación lineal y que está bien definida, es decir, que en efecto toma un polinomio de grado a lo más dos con coeficientes reales y lo lleva a un polinomio de grado a lo más tres con coeficientes reales.

Solución. Consideremos $\mathcal{B}=\{1, x, x^2\}$ la base canónica de $\mathbb{R}_2[x]$.
Entonces
\begin{align*}
\Ima(T)&=\text{span}(\{T(1),T(x),T(x^2)\})\\
&= \text{span}(\{3x,2+\frac{3}{2}x^2,4x+x^3\}).
\end{align*}

Para determinar el rango de $\Ima{T}$, colocamos a las coordenadas de estas imágenes en la siguiente matriz $A$,

$$A=\begin{pmatrix}
0 & 3 & 0 & 0\\
2 & 0 & \frac{3}{2} & 0\\
0 & 4 & 0 & 1 \end{pmatrix}$$

y con el algoritmo de reducción gaussiana llegamos a que

$$A_{red}=\begin{pmatrix}
1 & 0 & \frac{3}{4} & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 \end{pmatrix}$$

Como $A_{red}$ tiene $3$ pivotes se sigue que $\rank(T)=3$.

Luego, por el teorema de rango nulidad se tiene que

\begin{align*}
3&=\dim(\mathbb{R}_2[x])\\
&= \dim (\ker (T))+\rank(T)\\
&=\dim(\ker(T))+3.
\end{align*}

Así, $\dim(\ker(T))=0$, por lo tanto $\ker(T)=\{0\}$.

$\triangle$

La desigualdad de Sylvester nos ayuda a acotar el rango de una suma de matrices por abajo. La desigualdad $$\rank(A+B)\leq \rank(A)+\rank(B)$$ nos ayuda a acotarlo por arriba. Combinar ambas ideas puede ser útil en problemas de rango de matrices.

Problema 2. Sea $A\in M_n(\mathbb{C})$ una matriz idempotente. Prueba que $$\rank(A)+\rank(I_n-A)=n.$$

Recuerda que una matriz es idempotente si $A^2=A$.

Solución. Como $A^2=A$, entonces $A(I_n – A)=O_n$.
Luego, por la desigualdad de Sylvester se tiene que
\begin{align*}
0&=\rank(O_n)\\
&=\rank(A(I_n-A))\\
&\geq \rank(A) + \rank(I_n-A)-n,
\end{align*}

entonces $$\rank(A)+\rank(I_n-A)\leq n.$$

Por otro lado, como para cualesquiera matrices $X,Y$ se tiene
$\rank(X+Y)\leq \rank(X)+\rank(Y)$, entonces
$$n=\rank(I_n)\leq \rank(A) + \rank(I_n-A),$$
de modo que $$n\leq \rank(A)+\rank(I_n – A).$$

Combinando ambas desigualdades, $$\rank(A)+\rank(I_n-A)=n.$$

$\square$

Problema 3. Encuentra el rango de la transformación lineal $T:\mathbb{R}_2[x]\longrightarrow M_2(\mathbb{R})$ definida por
$$T(f(x))=\begin{pmatrix}
f(1)-f(2) & 0\\
0 & f(0)\end{pmatrix}.$$

Solución. Para determinar el rango, basta tomar una base, encontrar la imagen de sus elementos bajo $T$ y determinar cuántos de estos elementos son linealmente independientes. Considera $\mathcal{B}=\{1,x,x^2\}$ la base canónica de $\mathbb{R}_2[x]$. Tenemos que

\begin{align*}
\Ima(T)&=\text{span}(T(\mathcal{B}))\\
&=\text{span}(\{T(1), T(x), T(x^2)\})\\
&=\text{span}\left(\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix}, \begin{pmatrix}
-3 & 0\\
0 & 0\end{pmatrix} \right\} \right )\\
&=\text{span}\left (\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix} \right\} \right ).
\end{align*}

Notemos también que $\mathcal{C}=\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix}} \right\}$ es linealmente independiente.

Por lo tanto $\mathcal{C}$ es una base para $\Ima(T)$ y así $\rank(T)=2$.

$\triangle$

Problema 4. Sean $A\in M_{3,2}(\mathbb{R})$ y $B\in M_{2,3}(\mathbb{R})$ matrices tales que
$$AB=\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix} $$

Muestra que $BA$ es la identidad.

El enunciado no parece mostrar que este sea uno de los problemas de rango de matrices. Sin embargo, para poder resolverlo usaremos las herramientas que hemos desarrollado hasta ahora.

Partiremos el problema en los siguientes pasos.

  1. Verificar que $(AB)^2=AB$ y que $\rank(AB)=2$.
  2. Probar que $BA$ es invertible.
  3. Probar que $(BA)^3=(BA)^2$ y deducir que $BA=I_2$.

Solución.

1. Realizamos la operación matricial:

$$\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}=\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}$$

Ahora, aplicando reducción gaussiana en $AB$ obtenemos que $$(AB)_{red}=\begin{pmatrix}
1 & 0 & -1\\
0 & 1 & 1\\
0 & 0 & 0\end{pmatrix}.$$

Como $(AB)_{red}$ tiene sólo dos pivotes, entonces $\rank(AB)=2$.

2. Usando la desigualdad de rango para producto de matrices, obtenemos que
\begin{align*}
\rank(BA)&\geq \rank(A(BA)B)\\
&=\rank((AB)^2)\\
&=\rank(AB)=2.
\end{align*}

Entonces, $\rank(BA)\geq 2$. Por otro lado, como $BA\in M_2(\mathbb{R})$, entonces $\rank(BA)\leq 2$. Así, $\rank(BA)=2$ y $BA$ es una matriz en $M_2(\mathbb{R})$, así que es invertible.

3. Como $(AB)^2=AB$, entonces $B(AB)^2 A=B(AB)A=(BA)^2$. Por consiguiente $BABABA=(BA)^2$ y así $(BA)^3=(BA)^2$ y como $BA$ es invertible, podemos multiplicar en ambos lados de esta última igualdad por $((BA)^{-1})^2$ para obtener $BA=I_2$.

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de transformaciones lineales, vectores independientes y forma matricial

Por Ayax Calderón

Introducción

En esta entrada resolveremos algunos problemas acerca de transformaciones lineales, de su efecto en conjuntos generadores, independientes y bases, y de la forma matricial de transformaciones lineales.

Problemas resueltos

El siguiente problema es para repasar qué le hace una transformación lineal a una combinación lineal, y cómo podemos usar este hecho para saber cuánto vale una transformación lineal evaluada en un vector, sabiendo qué le hace a los elementos de una base.

Problema 1. Sean $$v_1=(1,0,0), v_2=(1,1,0), v_3=(1,1,1),$$

y sea $T:\mathbb{R}^3\to \mathbb{R}^2$ una transformación lineal tal que \begin{align*}T(v_1)&=(3,2)\\ T(v_2)&=(-1,2)\\ T(v_3)&=(0,1).\end{align*}

Calcula el valor de $T(5,3,1)$.

Solución. Primero observemos que ${(1,0,0), (1,1,0), (1,1,1)}$ es una base de $\mathbb{R}^3$, entonces existen $a,b,c\in \mathbb{R}$ tales que $$(5,3,1)=a(1,0,0)+b(1,1,0)+c(1,1,1).$$
Si logramos expresar a $(5,3,1)$ de esta forma, después podremos usar que $T$ es lineal para encontrar el valor que queremos. Encontrar los valores de $a,b,c$ que satisfacen la ecuación anterior lo podemos ver como el sistema de ecuaciones $$\begin{pmatrix}
1 & 1 & 1\\
0 & 1 & 1\\
0 & 0 & 1\end{pmatrix} \begin{pmatrix}
a\\
b\\
c\end{pmatrix} = \begin{pmatrix}
5\\
3\\
1\end{pmatrix}.$$

Para resolver este sistema, consideramos la matriz extendida del sistema y la reducimos
\begin{align*} & \begin{pmatrix}
1 & 1 & 1 & 5\\
0 & 1 & 1 & 3\\
0 & 0 & 1 & 1\end{pmatrix} \\ \to &\begin{pmatrix}
1 & 0 & 0 & 2\\
0 & 1 & 1 & 3\\
0 & 0 & 1 & 1\end{pmatrix} \\ \to & \begin{pmatrix}
1 & 0 & 0 & 2\\
0 & 1 & 0 & 2\\
0 & 0 & 1 & 1\end{pmatrix}\end{align*}

Así, $a=2, b=2, c=1$.

Finalmente, usando que $T$ es transformación lineal,

\begin{align*}
T(5,3,1)&=T(2(1,0,0)+2(1,1,0)+(1,1,1))\\
&=2T(1,0,0)+2T(1,1,0)+T(1,1,1)\\
&=2(3,2)+2(-1,2)+(0,1)\\
&=(6,4)+(-2,4)+(0,1)\\
&=(4,9).
\end{align*}

$\triangle$

Veamos ahora un problema para practicar encontrar la matriz correspondiente a una base.

Problema 2. Sea $\mathbb{R}_n[x]$ el espacio de los polinomios de grado a lo más $n$ con coeficientes reales.

Considera la transformación lineal $T:\mathbb{R}_3[x]\to \mathbb{R}_2[x]$ dada por $T(p(x))=p'(x)$, es decir, aquella que manda a cada polinomio a su derivada.

Sean $\beta=(1,x,x^2,x^3)$ y $\gamma=(1,x,x^2)$ las bases canónicas ordenadas de $\mathbb{R}_3[x]$ y $\mathbb{R}_2[x]$, respectivamente. Encuentra la representación matricial de la transformación $T$.

Solución. Primero le aplicamos $T$ a cada uno de los elementos de $\beta$, que simplemente consiste en derivarlos. Obtenemos que:

$T(1)=0=0\cdot 1 + 0\cdot x + 0\cdot x^2$
$T(x)=1=1\cdot 1 + 0\cdot x + 0\cdot x^2$
$T(x^2)=2x=0\cdot 1 + 2\cdot x + 0\cdot x^2$
$T(x^3)=3x^2=0\cdot 1 + 0\cdot x + 3\cdot x^2$

Para construir la matriz de cambio de base, lo que tenemos que hacer es formar una matriz con cuatro columnas (una por cada elemento de la base $\beta$). La primera columna debe tener las coordenadas de $T(1)$ en la base $\gamma$. La segunda columna, las coordenadas de $T(x)$ en la base $\gamma$. Y así sucesivamente. Continuando de este modo, llegamos a que

$$\begin{pmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 3\end{pmatrix}$$
es la forma matricial de $T$ con respecto a las bases canónicas.

$\triangle$

Finalmente, el siguiente problema combina muchas de las ideas relacionadas con la forma matricial de una transformación. Se recomienda fuertemente que lo leas con detenimiento. Es un ejemplo en el que encontramos tres formas matriciales: las de dos transformaciones y las de su composición. Después, se verifica que la de la composición en efecto es el producto de las correspondientes a las dos transformaciones.

Problema 3. Considera las transformaciones

\begin{align*}
T:\mathbb{R}^3&\to \mathbb{R}_2[x]\quad\text{y}\\
S:\mathbb{R}_2[x] &\to M_2(\mathbb{R})
\end{align*}

dadas por

\begin{align*}
T(a,b,c)&=a+2bx+3cx^2\quad \text{y}\\
S(a+bx+cx^2)&=\begin{pmatrix}
a & a+b\\
a-c & b\end{pmatrix}.
\end{align*}

Consideramos la base ordenada $B_1=(1,x,x^2)$ de $\mathbb{R}_2[x]$, la base canónica ordenada $B_2$ de $\mathbb{R}^3$ y la base ordenada $B_3=(E_{11}, E_{12}, E_{21}, E_{22})$ de $M_2(\mathbb{R})$.

  1. Verifica que $T$ y $S$ son transformaciones lineales.
  2. Escribe las matrices asociadas a $T$ y $S$ con respecto a las bases dadas.
  3. Encuentra la matriz asociada a la composición $S\circ T$ con respecto a las bases anteriores usando el resultado que dice que es el producto de las dos matrices que ya encontraste.
  4. Calcula explícitamente $S\circ T$, después encuentra directamente su matriz asociada con respecto a las bases anteriores y verifica que el resultado obtenido aquí es el mismo que en el inciso anterior.

Solucion. 1. Sea $u\in \mathbb{R}$ y sean $(a,b,c), (a’,b’,c’)\in \mathbb{R}^3$.
Entonces

\begin{align*}
T(u&(a,b,c)+(a’,b’,c’))\\
&=T(au+a’,bu+b’,cu+c’)\\
&=(au+a’)+2(bu+b’)x+3(cu+c’)x^2\\
&=u(a+2bx+3cx^2)+(a’+2b’x+3c’x^2)\\
&=uT(a,b,c)+T(a’,b’,c’).
\end{align*}

Así, $T$ es lineal.

Ahora, sea $u\in \mathbb{R}$ y sean $a+bx+cx^2, a’+b’x+c’x^2\in \mathbb{R}_2[x]$.
Entonces

\begin{align*}
S(u&(a+bx+cx^2)+(a’+b’x+c’x^2))\\
&=S(ua+a’+(ub+b’)x+(uc+c’)x^2)\\
&=\begin{pmatrix}
ua+a’ & (ua+a’)+(ub+b’)\\
ua+a’-(uc+c’) & ub+b’\end{pmatrix}\\
&=u\begin{pmatrix}
a & a+b\\
a-c & b\end{pmatrix} + \begin{pmatrix}
a’ & a’+b’\\
a’-c’ & b’\end{pmatrix}\\
&=uS(a+bx+cx^2)+S(a’+b’x+c’x^2).
\end{align*}

Así, $S$ es lineal.

2. Empezamos calculando la matriz $\Mat_{B_1,B_2}(T)$ de $T$ con respecto a $B_1$ y $B_2$. La base $B_2$ es la base canónica ordenada de $\mathbb{R}^3$, es decir, $B_2=(e_1,e_2,e_3)$. Aplicando $T$ en cada uno de estos vectores,

\begin{align*}
T(e_1)&=T(1,0,0)=1=1\cdot 1 + 0\cdot x + 0\cdot x^2,\\
T(e_2)&=T(0,1,0)=2x= 0\cdot 1 + 2\cdot x + 0 \cdot x^2,\\
T(e_3)&=T(0,0,1)=3x^2= 0\cdot 1 + 0\cdot x + 3 \cdot x^2.
\end{align*}

Así, $$\Mat_{B_1,B_2}(T)=\begin{pmatrix}
1 & 0 & 0\\
0 & 2 & 0\\
0& 0 & 3\end{pmatrix}.$$

De manera análoga, calculamos

\begin{align*}
S(1)&=\begin{pmatrix}
1 & 1\\
1 & 0\end{pmatrix} \\
&= 1 \cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0\cdot E_{22},\\
S(x)&=\begin{pmatrix}
0 & 1\\
0 & 1\end{pmatrix} \\
&= 0 \cdot E_{11} + 1 \cdot E_{12} + 0 \cdot E_{21} + 1\cdot E_{22},\\
S(x^2)&=\begin{pmatrix}
0 & 0\\
-1 & 0\end{pmatrix} \\
&= 0 \cdot E_{11} + 0 \cdot E_{12} + (-1) \cdot E_{21} + 0\cdot E_{22}.\end{align*}

Por lo tanto $$\Mat_{B_3,B_1}(S)=\begin{pmatrix}
1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 0 & -1\\
0 & 1 & 0\end{pmatrix}.$$

3. Usando el resultado de que la forma matricial de una composición de transformaciones es el producto de sus formas matriciales, $$\Mat_{B_3,B_2}(S\circ T)=\Mat_{B_3,B_1}(S)\cdot \Mat_{B_1,B_2}(T).$$

Así, tenemos que:
\begin{align*}
\Mat_{B_3,B_2}(S\circ T)&=\begin{pmatrix}
1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 0 & -1\\
0 & 1 & 0\end{pmatrix} \begin{pmatrix}
1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 3\end{pmatrix} \\
&= \begin{pmatrix}
1 & 0 & 0\\ 1 & 2 & 0\\ 1 & 0 & -3\\
0 & 2 & 0\end{pmatrix}.\end{align*}

4. Calculamos la composición directamente como sigue:

\begin{align*}
(S\circ T)(a,b,c)&=S(T(a,b,c))\\
&= S(a+2bx+3cx^2)\\
&=\begin{pmatrix}
a & a+2b\\
a-3c & 2b\end{pmatrix}.
\end{align*}

Para encontrar la matriz que representa a esta transformación lineal, evaluamos en cada elemento de $B_2$.

\begin{align*}
(S\circ T)(e_1)&=\begin{pmatrix}
1 & 1\\
1 & 0\end{pmatrix}\\
& = 1\cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0 \cdot E_{22},\\
(S\circ T)(e_2)&=\begin{pmatrix}
0 & 2\\
0 & 2\end{pmatrix} \\
&= 0\cdot E_{11} + 2 \cdot E_{12} + 0 \cdot E_{21} + 2 \cdot E_{22},\\
(S\circ T)(e_2)&=\begin{pmatrix}
0 & 0\\
-3 & 0\end{pmatrix} \\
&= 0 \cdot E_{11} + 0 \cdot E_{12} +(-3) \cdot E_{21} + 0 \cdot E_{22}.
\end{align*}

Así, la matriz asociada a $S\circ T$ con las bases indicadas es $$\Mat_{B_3,B_2}(S\circ T)= \begin{pmatrix}
1 & 0 & 0\\ 1 & 2 & 0\\ 1 & 0 & -3\\
0 & 2 & 0\end{pmatrix}.$$

Esto es, por supuesto, justo lo que se obtuvo en el inciso 3.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Forma matricial de una transformación lineal

Por Ayax Calderón

Introducción

Durante la primera unidad de este curso vimos que las transformaciones lineales $T:F^n \to F^m$ pueden ser descritas por medio de matrices $A\in M_{m,n}(F)$. Nuestro objetivo ahora es extender este resultado para describir transformaciones lineales $T:V\to W$ entre espacios vectoriales de dimensión finita $V$ y $W$. Es decir, para cada una de estas transformaciones, queremos ver cómo se ven en forma matricial.

Sin embargo, a diferencia de lo que sucedía antes, la descripción en esta forma no será única. Para construir una matriz que represente a una transformación lineal, necesitaremos fijar bases para $V$ y $W$. Distintas bases nos darán distintas matrices.

Para esta entrada todos los espacios vectoriales que usemos son de dimensión finita sobre el campo $F$. Usaremos los resultados de la entrada pasada, en la que estudiamos qué le hacen las transformaciones lineales a los conjuntos linealmente independientes, a los generadores y a las bases.

Un paréntesis técnico de isomorfismos

Quizás a estas alturas ya te hayas dado cuenta de que, en cierto sentido, los espacios vectoriales con la misma dimensión se parecen mucho entre sí. Por ejemplo, los espacios vectoriales $\mathbb{R}^4$, $M_2(\mathbb{R}) $ y $\mathbb{R}_3[x]$ pueden pensarse «como el mismo» si identificamos a cada vector $(a,b,c,d)$ con la matriz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, o bien con el polinomio $a+bx+cx^2+dx^3$. Esta identificación es biyectiva y «respeta las operaciones».

Con esta motivación, veamos una definición formal.

Definición. Decimos que una transformación lineal $T:V\to W$ es un isomorfismo de espacios vectoriales si es biyectiva. Lo denotamos como $V\simeq_{T} W$, que se lee «$V$ isomorfo a $W$ mediante $T$».

Problema. Sea $T:V\to W$ un isomorfismo de espacios vectoriales. Prueba que su inversa $T^{-1}:W\to V$ es un isomorfismo de espacios vectoriales.

Demostración. La transformación $T^{-1}$ es biyectiva, pues es invertible de inversa $T$, así que sólo hace falta checar que $T^{-1}$ es lineal. Tomemos $w_1$, $w_2$ en $W$, y $c$ en el campo. Como $T$ es suprayectiva, podemos tomar $v_1=T^{-1}(w_1)$ y $v_2=T^{-1}(w_2)$. Entonces $T(v_1)=w_1$ y $T(v_2)=w_2$, así
\begin{align*}
T^{-1}(w_1+cw_2)&=T^{-1}(T(v_1)+cT(v_2))\\
&=T^{-1}(T(v_1+cv_2))\\
&=v_1+cv_2
\end{align*}

En la segunda igualdad estamos usando que $T$ es lineal. De esta forma, concluimos que $T^{-1}$ es lineal también.

$\square$

Formalicemos ahora sí nuestra intuición de que «todos los espacios vectoriales de la misma dimensión finta $n$ sobre un mismo campo se comportan igual». En términos matemáticos, decimos que «es posible clasificar los espacios vectoriales de dimensión finita distintos de $\{0\}$, salvo isomorfismos». Para mostrar esto, veremos que para cada entero positivo $n$ todos los espacios vectoriales de dimensión $n$ son isomorfos a $F^n$. El siguiente resultado da el isomorfismo de manera explícita.

Teorema. Sea $n$ un entero positivo y sea $V$ un espacio vectorial de dimensión finita sobre $F$. Si $B={e_1,\dots,e_n}$ es una base de $V$, entonces la transformación $i_B:F^n\to V$ definida por $$i_B(x_1,\dots,x_n)=x_1e_1+x_2e_2+\dots+x_ne_n$$ es un isomorfismo de espacios vectoriales.

La verificación de los detalles de este teorema queda como tarea moral. Como sugerencia, recuerda que una base $B$ de $V$ te permite expresar a cada vector de $V$ (de aquí saldrá la suprayectividad) de manera única (de aquí saldrá la inyectividad) como combinación lineal de elementos de $B$.

Corolario. Si $T:V\to W$ es un isomorfismo de espacios vectoriales, entonces $\dim V=\dim W$.

Bases ordenadas

Sea $V$ un espacio vectorial de dimensión finita $n$. Una base ordenada de $V$ es simplemente una base para la cual nos importa en qué orden están sus elementos. La escribimos con notación de paréntesis en vez de llaves, es decir, en vez de poner $B=\{v_1,\ldots,v_n\}$, ponemos $B=(v_1,\ldots,v_n)$ para hacer énfasis en el orden.

Ejemplo 1. El conjunto $\{(1,2),(3,4)\}$ es una base de $\mathbb{R}^2$. De aquí, podemos obtener dos bases ordenadas, $B=((1,2),(3,4))$ y $B’=((3,4),(1,2))$. Aunque tienen a los mismos elementos, las pensamos como bases ordenadas diferentes pues sus elementos aparecen en diferente orden.

Del mismo modo, las bases $B=(1,x,x^2,x^3)$ y $B’=(x^3,x^2,x,1)$ son la misma base de $\mathbb{R}_2[x]$, pero son distintas como bases ordenadas.

$\triangle$

Por las discusión en la sección anterior, la elección de una base ordenada en un espacio vectorial $V$ de dimensión $n$ nos permite identificar $V$ con $F^{n}$. Es decir, dada una base $B$, podemos «ponerle coordenadas» a los elementos de $V$. Dependiendo de la base ordenada escogida, es posible que obtengamos diferentes coordenadas.

Ejemplo 2. Consideremos el espacio vectorial $M_2(\mathbb{R})$. Se puede verificar que cada uno de los siguientes conjuntos ordenados son una base:

\begin{align*}
B&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B’&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B»&=\left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)
\end{align*}

Como cada uno de ellos es una base, entonces podemos escribir a la matriz $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ como combinación lineal de elementos de cada uno de $B$, $B’$ o $B»$.

Si lo hacemos para $B$, tendríamos (en orden), a los coeficientes $1,2,3,4$, así que las coordenadas de $A$ en la base ordenada $B$ serían $(1,2,3,4)$.

Si lo hacemos para $B’$, tendríamos (en orden), a los coeficientes $1,3,2,4$, así que las coordenadas de $A$ en la base ordenada $B’$ serían $(1,3,2,4)$. Aunque $B$ y $B’$ tengan los mismos elementos, las coordenadas difieren pues como bases ordenadas $B$ y $B’$ son distintas.

Si lo hacemos para $B»$, tendríamos (en orden), a los coeficientes $1,1,1,1$, así que las coordenadas de $A$ en la base ordenada $B»$ serían $(1,1,1,1)$. Aquí obtenemos coordenadas muy distintas pues $B$ y $B»$ ni siquiera tienen a los mismos elementos.

$\triangle$

La forma matricial de una transformación lineal

Consideremos ahora espacios vectoriales $V$ y $W$ de dimensiones $n$ y $m$ respectivamente. Supongamos que tenemos una transformación lineal $T:V\to W$. Escogemos bases ordenadas $B_V=(v_1,\dots, v_n)$ y $B_W=(w_1,\dots,w_m)$ de $V$ y $W$ respectivamente. Ten cuidado, aquí $(v_1,\dots, v_n)$ no es un vector de $F^n$, sino una colección ordenada de vectores de $V$.

Por el teorema de caracterización de espacios vectoriales de dimensión finita, tenemos los isomorfismos $$i_{B_{V}}:F^n\to V,$$ $$i_{B_{W}}:F^m\to W.$$

¿Cómo podemos usar todas estas transformaciones para construir una transformación $F^n\to F^m$? La idea es usar el inverso de $i_{B_W}$ y componer todo.

Así, consideramos $\psi_T$ como la composición de las transformaciones $i_{B_{V}}, T, i_{B_{W}}^{-1}$, es decir, $$\psi_T:F^n\to F^m,$$ está dada por $$\psi_T=i_{B_W}^{-1}\circ T\circ i_{B_{V}}.$$

De esta forma, $\psi_T$ es una transformación lineal entre $F^n$ y $F^m$. ¡Este tipo de transformaciones ya las conocemos! Sabemos que $\psi_T$ se describe de manera única por medio de una matriz $A\in M_{m,n}(F).$ Esta es, por definición, la matriz asociada a $T$ con respecto a las bases $B_V$ y $B_W$ o bien la forma matricial de $T$. Dicha matriz depende fuertemente de las dos bases, así que la denotaremos como $\text{Mat}_{B_W,B_V}(T)$ . Por el momento sólo pongamos mucha atención en el orden en el que escribimos las bases en los subíndices. Es importante más adelante veremos que resulta útil escribirlo así.

Cuando $T:V\to V$ va de un espacio vectorial a sí mismo y usamos sólo una base $B$, simplificamos la notación a $\text{Mat}_B(T)$.

Evaluar $T$ usando su forma matricial

La construcción anterior parece muy complicada, pero en realidad es muy natural. Lo que está sucediendo es lo siguiente. Ya sabemos que toda transformación lineal entre $F^n$ y $F^m$ está dada por matrices. Podemos extender esto a una descripción de transformaciones lineales entre $V$ y $W$ identificando $V$ con $F^n$ y $W$ con $F^m$ vía la elección de bases en $V$ y $W$.

Notemos que si definimos $A:=\text{Mat}_{B_{W},B_{V}}(T)$, entonces tenemos que

$i_{B_{W}}(Ax)=T(i_{B_{V}}(x))$ … (1)

Esta igualdad nos va a ayudar a decir quién es $T$ en términos de las entradas de la matriz $A$. Sea $\{e_1,\dots,e_n\}$ la base canónica de $F^n$ y $\{f_1,\dots,f_m\}$ la base canónica de $F^m$. Si$ A=[a_{ij}]$, entonces por definición $Ae_i=a_{1i}f_1+\dots+a_{mi}f_{m}$, así para $x=e_i$ se tiene

$i_{B_{W}}(Ax)=i_{B_{W}}(a_{1i}f_1+\dots + a_{mi}f_m) = a_{1i}w_1+\dots + a_{mi}w_m.$

Por otro lado, $i_{B_{V}}(e_i)=v_i$, de manera que la relación (1) es equivalente a la relación

$T(v_i)=a_{1i}w_1+\dots + a_{mi}w_m$

Aquí empieza a haber mucha notación, pero no hay que perderse. Hasta ahora lo que tenemos es que «podemos saber cuánto vale la transformación $T$ en cada elemento de la base de $V$ en términos de la matriz $A$». ¡Este es un paso importante, pues en la entrada anterior vimos que basta saber qué le hace una transformación a los elementos de la base para saber qué le hace a cualquier vector! Resumimos lo obtenido hasta ahora.

Proposición. Sea $T:V\to W$ una transformación lineal y sean $B_V=\{v_1,\dots v_n\}, B_W=\{w_1,\dots,w_m\}$ bases en $V$ y $W$, respectivamente. Escribamos $\text{Mat}_{B_W,B_V}(T)=[a_{ij}]$. Entonces para toda $1\leq i\leq n$ se tiene $$T(v_i)=\displaystyle\sum_{j=1}^m a_{ji}w_j.$$

Así, si tenemos la matriz $A$ que representa a $T$ en las bases $B_V$ y $B_W$ y un vector arbitrario $v$ en $V$, para saber quién es $T(V)$ basta:

  • Usar la proposición anterior para saber quién es $T(v_i)$ para cada $v_i$ en la base $B_V$.
  • Expresar a $v$ en términos de la base $B_V$ como, digamos, $v=c_1v_1+\ldots+c_nv_n$.
  • Usar que $T$ es lineal para concluir que $T(v)=c_1T(v_1)+\ldots+c_nT(v_n)$ y usar los valores de $T(v_i)$ encontrados en el primer inciso.

Forma matricial de composiciones de transformaciones lineales

Para finalizar esta entrada queremos entender la relación entre la composición $S\circ T$ de transformaciones lineales y las matrices asociadas de $T$ y $S$. En otras palabras, sean $T:V\to W$ y $S:W\to U$ transformaciones lineales fijas y supongamos que $m=dimV$, $n=dimW$, $p=dimU$. También fijemos las bases $B_U, B_V, B_W$ en $U,V,W$, respectivamente. Para simplificar las cosas escribamos

$\mathcal{A}=\text{Mat}_{B_U,B_W}(S)$ y $\mathcal{B}=\text{Mat}_{B_W,B_V}(T)$

Con respecto a las bases $B_U,B_V,B_W$ se tienen los isomorfismos $i_{B_U}, i_{B_V}, i_{B_W}$ definidos como lo hicimos anteriormente en esta misma entrada del blog, y por definición de $\mathcal{A}, \mathcal{B}$ se tiene

$i_{B_W}(\mathcal{B}x)=T(i_{B_V}(x))$ con $x\in F^m$,

$i_{B_U}(\mathcal{A}y)=S(i_{B_W}(y))$ con $y\in F^n$.

Aplicando $S$ en la primera relación y después usando la segunda relación, se tiene para $x\in F^m$

$(S\circ T)(i_{B_V}(x))=S(i_{B_W}(\mathcal{B}x))=i_{B_U}(\mathcal{A} \mathcal{B}x)$.

Esta última relación y la definición de $\text{Mat}_{B_U,B_V}(S\circ T)$ nos muestra que

$\text{Mat}_{B_U,B_V}(S\circ T)=\mathcal{A} \cdot \mathcal{B}$.

En otras palabras, la composición de transformaciones lineales se reduce a multiplicar sus matrices asociadas o de manera más formal

Teorema. Sean $T:V\to W$ y $S:W\to U$ transformaciones lineales entre espacios vectoriales de dimensión finita y sean $B_U, B_V, B_W$ bases de $U,V,W$, respectivamente. Entonces

$\text{Mat}_{B_U,B_V}(S\circ T)=\text{Mat}_{B_U,B_W}(S)\cdot \text{Mat}_{B_W,B_V}(T).$

Cuando tenemos transformaciones lineales de un espacio vectorial $V$ a sí mismo, y usamos la misma base $B$, el resultado anterior se puede escribir de una manera más sencilla.

Corolario. Sean $T_1,T_2:V\to V$ transformaciones lineales en un espacio vectorial de dimensión finita $V$, y sea $B$ una base de $V$. Entonces

$\text{Mat}_{B}(T_1\circ T_2)=\text{Mat}_{B}(T_1)\cdot \text{Mat}_{B}(T_2)$.

Más adelante…

En esta entrada comenzamos con una transformación lineal $T:V\to W$ y bases ordenadas de de $V$ y $W$ para representar a $T$ como una matriz. Así mismo, vimos cómo tras una elección de base podemos pensar a cualquier vector en términos de sus «coordenadas», usando a los coeficientes que permiten expresarlo (de manera única) como combinación lineal de elementos de la base. Las matrices y coordenadas que así obtenemos nos ayudarán mucho. Sin embargo, será fundamental entender qué es lo que sucede con estas representaciones cuando elegimos bases diferentes, y cómo podemos cambiar de ciertas coordenadas o matrices a otras cuando hacemos un cambio de base. Esto es lo que estudiaremos en las siguientes entradas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que la relación «son isomorfos» para espacios vectoriales es una relación de equivalencia.
  • Muestra que la transformación $i_B$ dada en el teorema de clasificación de espacios vectoriales de dimensión finita en efecto es un isomorfismo.
  • Asegúrate de entender el último corolario.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»