Archivo de la etiqueta: triangular superior

Cálculo Diferencial e Integral III: Determinantes

Por Alejandro Antonio Estrada Franco

Introducción

El determinante de una matriz cuadrada es un número asociado a esta. Como veremos, los determinantes nos proporcionarán información de interés para varios problemas que se pueden poner en términos de matrices.

Recuerda que los temas de esta unidad son tratados a manera de repaso, por lo cual no nos detenemos en detallar las demostraciones, ni en extender las exposiciones de las definiciones. Para mayor detalle, te remitimos al curso de Álgebra Lineal I, específicamente comenzando con la entrada Transformaciones multilineales. Aún así, es recomendable que revises estas notas en el curso de Cálculo Diferencial e Integral III, pues sintetizamos los temas de tal manera que recuperamos los conceptos relevantes para el cálculo de varias variables. Así mismo, en ocasiones, abordamos las definiciones y resultados de manera un poco distinta, y es muy instructivo seguir los mismos conceptos abordados con un sabor ligeramente distinto.

Permutaciones

Recordemos que en la entrada anterior definimos para cada $n\in \mathbb{N}$ el conjunto $[n]=\{1, 2,\ldots, n\}$.

Definición. Una permutación del conjunto $[n]$ es una función biyectiva $\sigma :[n]\rightarrow [n]$. Una forma de escribir a $\sigma$ de manera más explícita es la siguiente:
\[ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\
\sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \]

Podemos pensar también a una permutación como un reacomodo de los números $1, 2, …, n$. Pensado de esta manera, escribimos $\sigma =\sigma(1) \sigma(2)\dots \sigma(n)$.

El conjunto de todas las permutaciones del conjunto $[n]$ se denota como $S_n$. Una observación interesante es que $S_{n}$ tiene $n!$ elementos.

Definición. Para $\sigma \in S_{n}$, una inversión en $\sigma$ consiste en un par $(i,k)\in [n]\times [n]$ tal que $i>k$ pero $i$ precede a $k$ en $\sigma$ cuando se considera $\sigma$ como una lista. Diremos que $\sigma$ es permutación par o impar según tenga un número par o impar de inversiones.

Ejemplo. Consideremos $\sigma=12354$ permutación en $[5]$. Tenemos que $(5,4)$ es una inversión en $\sigma$ pues $5>4$ pero en la permutación $5$ precede a $4$. Al tener $\sigma$ una sola inversión, es una permutación impar.

$\triangle$

Definición. El signo de $\sigma$, denotado $\text{sign}(\sigma)$ se define como:
\[
\text{sign}(\sigma )= \begin{cases} 1 & \text{si $\sigma$ es par} \\
-1 & \text{si $\sigma$ es impar.}\end{cases}
\]

Sea $A\in M_{n}(\mathbb{R})$. Pensemos en un producto de $n$ entradas de $A$ tomadas de tal manera que se eligió una y sólo una de cada fila y columna. Podemos reordenar los números para poner en orden la fila de la que tomamos cada uno, y escribir el producto como
\begin{equation}
a_{1j_{1}} a_{2j_{2}}\dots a_{nj_{n}}.
\label{eq:producto}
\end{equation}

Así, $a_{kj_{k}}$ nos dice que en la fila $k$ tomamos la entrada de la columna $j$. Como se eligió una y sólo una entrada por columna, tenemos que $j_1,\ldots,j_n$ es una permutación de $[n]$. Y viceversa, cada permutación $\sigma =j_{1}\dots j_{n} \in S_{n}$ determina un producto como en \eqref{eq:producto}. Por ello la matriz $A$ nos entrega $n!$ productos con esta característica.

Determinantes en términos de permutaciones

A partir de las permutaciones podemos definir a los determinantes.

Definición. El determinante de la matriz $A$, denotado por $\det(A)$, se define como:
\[
\det(A)=\sum_{\sigma \in S_{n}} \left(\text{sign}(\sigma)\prod_{i=1}^{n} a_{i\sigma (i)}\right)
\]
donde
\[
\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\
\sigma (1) & \sigma (2) & \dots & \sigma (n)
\end{pmatrix}
\]

Ejemplo. Para la matriz \[ A= \begin{pmatrix} 0 & 2 & 1 \\ 1 & 2 & 0 \\ 3 & 0 & 1 \end{pmatrix} \] tomemos en cuenta las permutaciones del conjunto $[3]$ las cuales son: \[ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \]

De acuerdo con la definición de determinante, tenemos:

\begin{align*}
\det(A)=&(1)a_{11}a_{22}a_{33}+(-1)a_{11}a_{23}a_{32}+(-1)a_{12}a_{21}a_{33}+\\
&(1)a_{12}a_{23}a_{31}+(1)a_{13}a_{22}a_{31}+(-1)a_{13}a_{21}a_{32}\\
=&0\cdot 2\cdot 1+(-1)0\cdot 0\cdot 0+(-1)2\cdot 1\cdot 1+\\
&(1)2\cdot 0\cdot 3+(1)1\cdot 2\cdot 3+(-1)1\cdot 1\cdot 0\\
=&4.
\end{align*}

$\triangle$

Propiedades de los determinantes

Veamos algunas de las propiedades que tienen los determinantes. Aprovecharemos para introducir algunas matrices especiales.

Definición. La matriz identidad $I\in M_{n}(\mathbb{R})$ es aquella que cumple que en las entradas de la forma $(i,i)$ son iguales a 1 y el resto de las entradas son iguales a 0.

Definición. Diremos que una matriz $A\in M_n(\mathbb{R})$ es una matriz triangular superior si cumple $a_{ij}=0$ para $i>j$. La llamaremos triangular inferior si cumple $a_{ij}=0$ para $i<j$. Finalmente, diremos que es diagonal si cumple $a_{ij}=0$ para $i\neq j$ (en otras palabras, si simultáneamente es triangular superior e inferior).

Definición. Sea $A\in M_{m,n}(\mathbb{R})$. La transpuesta de la matriz $A$, denotada por $A^t$, es la matriz en $M_{n,m}(\mathbb{R})$ cuyas entradas están definidas como $(a^{t})_{ij} =a_{ji}$.

El siguiente resultado enuncia algunas propiedades que cumplen los determinantes de la matriz identidad, de matrices transpuestas, y de matrices triangulares superiores, triangulares inferiores y diagonales.

Proposición. Sea $A\in M_{n}(\mathbb{R})$. Se cumple todo lo siguiente.

  1. $\det(A)=\det(A^{t})$.
  2. Si $A$ tiene dos filas iguales $\det(A)=0$.
  3. Si $A$ tiene dos columnas iguales $\det(A)=0$.
  4. Si $A$ es triangular superior, triangular inferior, o diagonal, $\det(A)=\prod_{i=1}^{n} a_{ii}$.
  5. $\det(I_n)=1$.

Demostración.

  1. Notemos que (tarea moral) $\text{sign}( \sigma )= \text{sign}( \sigma ^{-1})$, así tenemos que
    \begin{align*}
    \det(A^{t})&=\sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{\sigma (1) 1}\dots a_{\sigma (n) n}\\
    &=\sum_{\sigma \in S_{n}} \text{sign}(\sigma ^{-1})a_{1\sigma (1)}\dots a_{n\sigma (n)}\\
    &= \sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{1\sigma (1)}\dots a_{n\sigma (n)}\\&= \det(A).
    \end{align*}
  2. Si tenemos dos filas iguales, en cada producto $a_{1\sigma (1)}\cdots a_{n\sigma (n)}$ tenemos dos factores de la misma fila, por tanto para cada producto tenemos otro igual en la suma solo que con signo contrario (signo de la permutación correspondiente); al hacer la suma estos sumandos se anularán por pares resultando en cero.
  3. Mismo argumento que en el inciso anterior.
  4. Si tenemos una matriz triangular, ya sea superior, o inferior $\prod_{i=1}^{n} a_{i\sigma (i)}\neq 0$ sólo cuando $\sigma(i)=i$ ya que en otro caso este producto siempre tendrá algún factor cero.
  5. Es un corolario de la propiedad anterior, pues la matriz identidad es una matriz diagonal con unos en la diagonal.

$\square$

Otra propiedad muy importante del determinante es que es multiplicativo. A continuación enunciamos el resultado, y referimos al lector a la entrada Propiedades de determinantes para una demostración.

Teorema. Sean $A$ y $B$ matrices en $M_n(\mathbb{R})$. Se tiene que $$\det(AB)=\det(A)\det(B).$$

Mas adelante

En la siguiente entrada revisaremos la teoría de sistemas de ecuaciones lineales. Comenzaremos definiéndolos, y entendiéndolos a partir de las operaciones elementales que definimos en la entrada anterior. Hablaremos un poco de cómo saber cuántas soluciones tiene un sistema de ecuaciones. Así mismo veremos que en ciertos sistemas de ecuaciones lineales, podemos asociar una matriz cuyo determinante proporciona información relevante para su solución.

Un poco más adelante también hablaremos de diagonalizar matrices. A grandes rasgos, esto consiste en encontrar representaciones más sencillas para una matriz, pero que sigan compartiendo muchas propiedades con la matriz original. El determinante jugará de nuevo un papel muy importante en esta tarea.

Tarea moral

  1. Sea $\sigma \in S_{n}$. Muestra que su inversa, $\sigma ^{ -1}$ también es una permutación. Después, muestra que
    \[\text{sign}(\sigma)= \text{sign}(\sigma ^{-1}).\]
    Sugerencia: no es difícil hacerlo por inducción sobre el número de inversiones.
  2. Encuentra explícitamente cuántas inversiones tiene la permutación $\sigma$ en $S_n$ dada por $S(j)=n-j+1$.
  3. Escribe con más detalle la demostración de que una matriz y su transpuesta tienen el mismo determinante. Puedes pensarlo como sigue. Toma \[ \det(A)=\sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{1\sigma(1)}\cdot \dots \cdot a_{n\sigma (n)}.\] Supón que las filas $s$ y $t$ son iguales; para cada factor argumenta por qué \[ a_{1\sigma (1)}\cdots a_{s\sigma (s)} \cdots a_{t\sigma (t)}\cdots a_{n\sigma (n)} \] el factor \[ a_{1\sigma (1)}\cdots a_{t\sigma (t)}\cdots a_{s\sigma (s)} \cdots a_{n\sigma (n)} \] donde permutamos el $t$-ésimo factor con el $s$-ésimo también está en la suma, y por qué ambos son de signos contrarios.
  4. Demuestra que el producto de una matriz triangular superior con otra matriz triangular superior también es una matriz triangular superior. Enuncia y demuestra lo análogo para matrices triangulares inferiores, y para matrices diagonales.
  5. Argumenta con más detalle por qué el determinante de una matriz triangular superior es el produto de las entradas en su diagonal. Específicamente, detalla el argumento de las notas que dice que «en otro caso, este producto siempre tendrá algún factor cero».

Entradas relacionadas

Álgebra Lineal II: Triangularizar y descomposición de Schur

Por Julio Sampietro

Introducción

En esta entrada estudiaremos el concepto de triangularizar matrices. Esto simplemente quiere decir encontrar una base respecto a la cual podamos escribir a nuestra matriz como una matriz triangular superior. Esto tiene muchas ventajas, puesto que las matrices triangulares superiores son relativamente fáciles de calcular. Como veremos, el concepto de triangularización está íntimamente ligado con los ceros de polinomios.

Matrices triangulares

Recordamos que una matriz $A=[a_{ij}]\in M_n(F)$ se dice triangular superior si $a_{ij}=0$ siempre que $i>j$, es decir si todas las entradas por debajo de la diagonal son cero. Las matrices triangulares gozan de algunas propiedades que ya hemos explorado. Por ejemplo, sus valores propios son fácilmente calculables: ¡son precisamente las entradas de la diagonal! Más explícitamente su polinomio característico es exactamente

\begin{align*}
\chi_A(X)=\prod_{i=1}^{n}(X-a_{ii}).
\end{align*}

Además forman un subespacio cerrado bajo multiplicación del espacio de todas las matrices. Puesto que son matrices ‘sencillas’, es deseable poder escribir alguna otra matriz como una matriz triangular, tal vez mediante un cambio de base: esto es precisamente triangularizar. Tenemos entonces la siguiente definición.

Definición. Diremos que una matriz es triangularizable si es similar a una matriz triangular superior.

Primero, necesitaremos de un par de conceptos sobre polinomios.

Polinomios y sus raíces

Definición. Un polinomio $P\in F[X]$ se divide sobre F si es de la forma

\begin{align*}
P(X)=c(X-a_1)\cdots (X-a_n)
\end{align*}

para algunos escalares $c,a_1,\dots, a_n\in F$ no necesariamente distintos.

Por ejemplo el polinomio $X^2+1$ no se divide sobre $\mathbb{R}$ ya que sabemos que no tiene raíces reales. Sin embargo, el mismo polinomio si se divide sobre $\mathbb{C}$: en efecto

\begin{align*}
X^2+1=(X-i)(X+i).
\end{align*}

Por otro lado, el polinomio $X^2-3X+2$ si se divide sobre $\mathbb{R}$, puesto que lo podemos escribir como

\begin{align*}
X^2-3X+2=(X-1)(X-2).
\end{align*}

Nota que el polinomio también se divide sobre $\mathbb{C}$ puesto que $\mathbb{R}\subset \mathbb{C}$. De hecho, no existe ningún polinomio con coeficientes complejos que no se divida sobre $\mathbb{C}$, este es un sorprendente resultado de Gauss:

Teorema (fundamental del Álgebra). Cualquier polinomio $P\in \mathbb{C}[X]$ se divide sobre $\mathbb{C}$.

Este teorema también se enuncia diciendo que $\mathbb{C}$ es algebraícamente cerrado. Es decir, todo polinomio con coeficientes complejos tiene al menos una raíz compleja. Es un buen ejercicio verificar que ambas versiones son equivalentes.

Por lo que mencionamos al principio, el polinomio característico de una matriz triangular superior se divide sobre el campo. Como el polinomio de matrices similares es igual, se sigue que si una matriz es triangularizable, entonces su polinomio característico se divide sobre el campo.

Problema. Da un ejemplo de una matriz $A\in M_2(\mathbb{R})$ que no sea triangularizable en $M_2(\mathbb{R})$.

Solución. Puesto que el polinomio característico de una matriz triangularizable se divide sobre el campo, es suficiente con encontrar una matriz cuyo polinomio característico no se divida sobre $\mathbb{R}$: por ejemplo $X^2+1$. Enseguida proponemos la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 \\ -1 & 0 \end{pmatrix}.
\end{align*}

Entonces $\chi_A(X)=X^2+1$, que ya aclaramos que no se divide sobre $\mathbb{R}$. Por tanto $A$ no es triangularizable.

$\triangle$

Un teorema sobre triangularizar

Ya vimos que si $A$ es una matriz triangularizable su polinomio característico se divide sobre el campo. El siguiente teorema nos dice que el converso también es cierto.

Teorema. Sea $A\in M_n(F)$. Las siguientes afirmaciones son equivalentes:

  1. El polinomio característico de $A$ se divide sobre $F$.
  2. $A$ es similar a una matriz triangular superior.

Demostración. La discusión previa ya nos mostró que $2$ implica $1$. Probaremos el converso por inducción sobre $n$. El resultado se cumple para $n=1$ (pues toda matriz es triangular superior), así que podemos asumir que $n\geq 2$ y que el resultado se cumple para $n-1$.

Sea $\lambda\in F$ una raíz de $\chi_A$. Nota que dicha raíz existe pues estamos suponiendo que $\chi_A$ se divide sobre $F$. También escogemos un vector no-cero $v$ tal que $Av=\lambda v$, es decir, un eigenvector asociado a $\lambda$. Como $v\neq 0$, podemos completar a una base $v=v_1,\dots, v_n$ de $V=F^n$. La matriz asociada a la transformación lineal $T$ asociada a $A$ se ve entonces de la forma

\begin{align*}
\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}
\end{align*}

para alguna $B\in M_{n-1}(F)$. Entonces podemos encontrar una matriz de cambio de base (y por tanto invertible) $P_1$ tal que

\begin{align*}
P_1 AP_1^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}.
\end{align*}

Puesto que matrices similares comparten el mismo polinomio característico, tenemos que

\begin{align*}
\chi_A(X)=\chi_{P_1AP_1^{-1}}(X)=(X-\lambda)\chi_B(X).
\end{align*}

Se sigue que $\chi_B$ se divide sobre el campo. Además, $B\in M_{n-1}(F)$, por lo que podemos aplicar la hipótesis de inducción para afirmar que existe una matriz invertible $Q\in M_{n-1}(F)$ tal que $QBQ^{-1}$ es triangular superior. Luego definiendo

\begin{align*}
P_2=\begin{pmatrix}
1 & 0\\
0 & Q
\end{pmatrix},
\end{align*}

se cumple no solo que $P_2$ es invertible (¿por qué?) pero además que

\begin{align*}
P_2(P_1AP_1^{-1})P_2^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & QBQ^{-1}\end{pmatrix}.
\end{align*}

Notamos que esta última matriz es triangular superior, puesto que $QBQ^{-1}$ lo es. Esto completa la prueba.

$\square$

Un corolario importante

Combinando el teorema fundamental del álgebra junto con el teorema pasado obtenemos un corolario importante, conocido como el teorema de descomposición de Schur. Lo enunciamos como teorema.

Teorema (descomposición de Schur). Para cualquier matriz $A\in M_n(\mathbb{C})$ podemos encontrar una matriz invertible $P\in M_n(\mathbb{C})$ y una matriz triangular superior $T\in M_n(\mathbb{C})$ tal que $A=PTP^{-1}$. Por tanto toda matriz con entradas complejas es triangularizable.

Demostración. Por el teorema fundamental del álgebra, tenemos que $\chi_A$ se divide sobre $\mathbb{C}$. Luego usando el teorema anterior concluimos que $A$ es triangularizable.

$\square$

Más adelante…

En la próxima entrada veremos un concepto parecido a triangularizar pero más fuerte: diagonalizar, que consiste en llevar a una matriz a una matriz diagonal similar.

Tarea moral

A continuación presentamos algunos ejercicios que sirven para repasar los temas vistos en esta entrada.

  1. ¿Es la matriz
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2 & 1\\ 3 & 2 & 2\\ 0 & 1 & 1\end{pmatrix}
    \end{align*}
    triangularizable sobre $\mathbb{R}$?
  2. Encuentra una matriz traingular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 2\\ 3 & 2\end{pmatrix}.
    \end{align*}
  3. Encuentra una matriz triangular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1\end{pmatrix}.
    \end{align*}
  4. ¿Por qué la matriz $P_2$ construida en la demostración del segundo teorema es invertible?
  5. Demuestra que una matriz $A\in M_n(F)$ es nilpotente si y sólo si es similar a una matriz triangular superior con entradas cero en la diagonal.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Introducción al curso, vectores y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

Esta es la primer entrada correspondiente a las notas del curso Álgebra Lineal I. En esta serie de entradas, cubriremos todo el temario correspondiente al plan de estudios de la materia en la Facultad de Ciencias de la UNAM. Las notas están basadas fuertemente en el libro Essential Lineal Algebra with Applications de Titu Andreescu.

El curso se trata, muy a grandes rasgos, de definir espacios vectoriales y estudiar muchas de sus propiedades. Un espacio vectorial con el que tal vez estés familiarizado es $\mathbb{R}^n$, donde sus elementos son vectores con $n$ entradas. En él se pueden hacer sumas entrada a entrada, por ejemplo, si $n=3$ una suma sería

\begin{align*}
(5,-1,2)+(1,4,9)=(6,3,11).
\end{align*}

También se puede multiplicar un vector por un número real, haciéndolo entrada a entrada, por ejemplo,

\begin{align*}
3(1,5,-2,6)=(3,15,-6,18).
\end{align*}

El álgebra lineal estudia espacios vectoriales más generales que simplemente $\mathbb{R}^n$. Como veremos más adelante, hay muchos objetos matemáticos en los que se puede definir una suma y un producto escalar. Algunos ejemplos son los polinomios, ciertas familias de funciones y sucesiones. La ventaja de estudiar estos espacios desde el punto de vista del álgebra lineal es que todas las propiedades que probemos «en general», se valdrán para todos y cada uno de estos ejemplos.

Lo que haremos en la primer unidad del curso es entender muy a profundidad a $F^n$, una generalización de $\mathbb{R}^n$ en la que usamos un campo arbitrario $F$. También, entenderemos a las matrices en $M_{m,n}(F)$, que son arreglos rectangulares con entradas en $F$. La unidad culmina con estudiar sistemas de ecuaciones lineales y el método de reducción Gaussiana.

Más adelante veremos que estudiar estos conceptos primero es muy buena idea pues los espacios vectoriales más generales tienen muchas de las propiedades de $F^n$, y podemos entender a ciertas transformaciones entre ellos al entender a $M_{m,n}(F)$.

Breve comentario sobre campos

En este curso no nos enfocaremos en estudiar a profundidad las propiedades que tienen los campos como estructuras algebraicas. De manera pragmática, pensaremos que un campo $F$ consiste de elementos que se pueden sumar y multiplicar bajo propiedades bonitas:

  • La suma y el producto son asociativas, conmutativas, tienen neutro (que llamaremos $0$ y $1$ respectivamente y tienen inversos (i.e. se vale «restar» y «dividir»)
  • La suma y producto satisfacen la regla distributiva

De hecho, de manera muy práctica, únicamente usaremos a los campos $\mathbb{Q}$ de racionales, $\mathbb{R}$ de reales, $\mathbb{C}$ de complejos y $\mathbb{F}_2$, el campo de dos elementos $0$ y $1$. Este último sólo lo usaremos para observar que hay algunas sutilezas cuando usamos campos con una cantidad finita de elementos.

Para todos estos campos, supondremos que sabes cómo se suman y multiplican elementos. Si necesitas dar un repaso a estos temas, puedes echarle un ojo a las entradas del curso Álgebra Superior II, que también están aquí en el blog.

Nociones iniciales de álgebra lineal: escalares, vectores y matrices

Quizás te has encontrado con vectores y matrices en otros cursos. Por ejemplo, en geometría analítica es usual identificar a un vector $(x,y)$ con un punto en el plano cartesiano, o bien con una «flecha» que va del origen a ese punto. En álgebra lineal nos olvidaremos de esta interpretación por mucho tiempo. Será hasta unidades posteriores que tocaremos el tema de geometría de espacios vectoriales. Por el momento, sólo nos importan los vectores desde el punto de vista algebraico.

Tomemos un campo $F$. A los elementos de $F$ les llamaremos escalares. Para un entero positivo $n$, un vector $X$ en $F^n$ consiste de un arreglo de $n$ entradas $a_1,a_2,\ldots,a_n$ que pueden estar dispuestas en un vector fila $$X=(a_1, a_2,\ldots, a_n),$$ o bien un vector columna $$X=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}.$$

Para $i=1,\ldots,n$, a $a_i$ le llamamos la $i$-ésima coordenada o $i$-ésima entrada de $X$.

Como vectores, puedes pensar que el vector fila y el vector columna correspondientes son el mismo. Abajo veremos en qué sentido tenemos que pensarlos como diferentes. Aunque como vectores sean los mismos, los vectores columna tienen varias ventajas conceptuales en álgebra lineal.

Ejemplo 1. El vector $$X=\left(\frac{1}{2}, -1, \frac{2}{3}, 4\right).$$ tiene cuatro entradas, y todas ellas son números racionales. Por lo tanto, es un vector en $\mathbb{Q}^4$. Su primer entrada es $\frac{1}{2}$. Está escrito como vector fila, pero podríamos escribirlo también como vector columna: $$\begin{pmatrix} \frac{1}{2} \\ -1 \\ \frac{2}{3} \\ 4 \end{pmatrix}.$$

El vector $$Y=\left(\pi, \frac{3}{4}, 5, 6, \sqrt{2}\right)$$ es un vector fila en $\mathbb{R}^5$, pero no en $\mathbb{Q}^5$, pues no todas sus entradas son racionales. A $Y$ también lo podemos pensar como un vector en $\mathbb{C}$.

$\triangle$

Una matriz en $M_{m,n}(F)$ es un arreglo rectangular de elementos en $F$ dispuestos en $m$ filas y $n$ columnas como sigue:

$$A=\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n}\\
\vdots & & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{pmatrix}.$$

Al escalar $a_{ij}$ le llamamos la entrada $(i,j)$ de $A$.

Para cada $i=1,\ldots,m$, definimos a la $i$-ésima fila de $A$ como el vector fila $$L_i=(a_{i1},a_{i2},\ldots,a_{in}),$$ y para cada $j=1,2,\ldots,n$ definimos a la $j$-ésima columna de $A$ como el vector columna $$C_j=\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj}\end{pmatrix}.$$

Veamos algunas aclaraciones de notación. Cuando $m=n$, las matrices en $M_{m,n}(F)$ tienen la misma cantidad de filas que de columnas. En este caso simplemente usamos la notación $M_{n}(F)$ para ahorrarnos una letra, y si una matriz está en $M_{n}(F)$, le llamamos una matriz cuadrada. También, en ocasiones expresamos a una matriz en forma compacta diciendo cuántas filas y columnas tiene y usando la notación $A=[a_{ij}]$.

Ejemplo 2. Consideremos la matriz $A$ en $M_3(\mathbb{R})$ dada por $A=[a_{ij}]=[i+2j]$. Si queremos poner a $A$ de manera explícita, simplemente usamos la fórmula en cada una de sus entradas:

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2 & 1+2\cdot 3\\
2+2\cdot 1 & 2+2\cdot 2 & 2+2\cdot 3\\
3+2\cdot 1 & 3+2\cdot 2 & 3+2\cdot 3\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 & 7\\
4 & 6 & 8\\
5 & 7 & 9\\
\end{pmatrix}
\end{align*}

Esta es una matriz cuadrada. Sin embargo, la matriz $B$ en $M_{3,2}(\mathbb{R})$ con la misma regla $B=[b_{ij}]=[i+2j]$ no es una matriz cuadrada pues es

\begin{align*}
B=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2\\
2+2\cdot 1 & 2+2\cdot 2\\
3+2\cdot 1 & 3+2\cdot 2\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 \\
4 & 6 \\
5 & 7 \\
\end{pmatrix},
\end{align*}

la cual es una matriz con $3$ filas y $2$ columnas.

$\triangle$

Cualquier vector fila en $F^n$ lo podemos pensar como una matriz en $M_{1n}(F)$ y cualquier vector columna en $F^n$ lo podemos pensar como una matriz en $M_{n1}(F)$. En este sentido estos dos vectores sí serían distintos. Usualmente será claro si se necesita o no hacer la distinción.

Para que dos vectores o dos matrices sean iguales, tienen que serlo coordenada a coordenada.

Vectores y matrices especiales

Al vector en $F^n$ con todas sus entradas iguales al cero del campo $F$ le llamamos el vector cero y lo denotamos con $0$. El contexto nos ayuda a decidir si estamos hablando del escalar cero (el neutro aditivo del campo $F$) o del vector cero.

De manera similar, a la matriz en $M_{m,n}$ con todas sus entradas iguales al cero del campo $F$ le llamamos la matriz cero y la denotamos con $O_{m,n}$. Si $m=n$, la llamamos simplemente $O_n$.

Otra matriz especial que nos encontraremos frecuentemente es la matriz identidad. Para cada $n$, es la matriz $I_n$ en $M_n(F)$ tal que cada entrada de la forma $a_{ii}$ es igual a uno (el neutro multiplicativo de $F$) y el resto de sus entradas son iguales a $0$.

Cuando estamos trabajando en $M_n(F)$, es decir, con matrices cuadradas, hay otras familias de matrices que nos encontraremos frecuentemente. Una matriz $A=[a_{ij}]$ en $M_{n}(F)$:

  • Es diagonal si cuando $i\neq j$, entonces $a_{ij}=0$.
  • Es triangular superior si cuando $i>j$, entonces $a_{ij}=0$.
  • Y es triangular inferior si cuando $i<j$ entonces $a_{ij}=0$.

A las entradas de la forma $a_{ii}$ se les conoce como las entradas de la diagonal principal de la matriz. En otras palabras, $A$ es diagonal cuando sus únicas entradas no cero están en la diagonal principal. Es triangular superior cuando sus entradas por debajo de la diagonal principal son iguales a cero. Y de manera similar, es triangular inferior cuando sus entradas por encima de la diagonal principal son iguales a cero.

Ejemplo. La matriz $O_{3,2}$ de $M_{3,2}(\mathbb{Q})$ es la siguiente

$$O_{3,2}=\begin{pmatrix}
0 & 0 \\ 0& 0 \\ 0 & 0 \\
\end{pmatrix}$$

La matriz $I_4$ de $M_{4}(F)$ es la siguiente

$$I_4=\begin{pmatrix}
1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Esta matriz identidad es diagonal, triangular superior y triangular inferior. Una matriz diagonal distinta a la identidad podría ser la siguiente matriz en $M_3(\mathbb{Q})$:

$$\begin{pmatrix}
1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \\
\end{pmatrix}.$$

Una matriz que es triangular superior, pero que no es diagonal (ni triangular inferior), podría ser la siguiente matriz en $M_4(\mathbb{R})$:

$$\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 0\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

$\triangle$

Operaciones de vectores y matrices

Si tenemos dos matrices $A=[a_{ij}]$ y $B=[b_{ij}]$ en $M_{m,n}(F)$, entonces podemos definir a la matriz suma $A+B$ como la matriz cuyas entradas son $[a_{ij}+b_{ij}]$, es decir, se realiza la suma (del campo $F$) entrada por entrada.

Ejemplo 1. Si queremos sumar a las matrices $A$ y $B$ en $M_{4}(\mathbb{R})$ dadas por $$A=\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 2\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

y $$B=\begin{pmatrix}
1 & 1 & -1 & -3\\ 0 & 1 & 1 & -2\\ 0& 0 & 1 & 1\\ 0 & 0 & 0 & 1
\end{pmatrix},$$

entonces hacemos la suma entrada por entrada para obtener:

$$A+B=\begin{pmatrix}
2 & 1+\sqrt{2} & 1 & -3+\sqrt{5}\\ 0 & 2 & 1+\sqrt{3} & 0\\ 0 & 0 & 2 & 1+\sqrt{2}\\ 0 & 0 & 0 & 2
\end{pmatrix}.$$

$\triangle$

Es muy importante que las dos matrices tengan la misma cantidad de filas y renglones. Insistiendo: si no coinciden la cantidad de filas o de columnas, entonces las matrices no se pueden sumar.

Si tenemos una matriz $A=[a_{ij}]$ en $M_{m,n}(F)$ y un escalar $c$ en $F$, podemos definir el producto escalar de $A$ por $c$ como la matriz $cA=[ca_{ij}]$, es decir, aquella que se obtiene al multiplicar cada una de las entradas de $A$ por el escalar $c$ (usando la multiplicación del campo $F$).

Ejemplo 2. Al tomar la siguiente matriz en $M_{2}(\mathbb{C})$ $$A=\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$ y el escalar $i$ en $\mathbb{C}$, se tiene que $$iA=\begin{pmatrix} i\cdot 1 &i\cdot i \\ i\cdot (-i) & i\cdot 1\end{pmatrix} = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}.$$

$\triangle$

Dada una matriz $A$, a la matriz $(-1)A$ le llamamos simplemente $-A$, y definimos $A-B:=A+(-B)$.

Como todo vector en $F^n$ se puede pensar como una matriz, estas operaciones también se pueden definir para vectores para obtener la suma de vectores y el producto escalar en vectores.

En álgebra lineal frecuentemente hablaremos de escalares, vectores y matrices simultáneamente. Cada que veas una una variable es importante que te preguntes de cuál de estos tipos de objeto es. También, cada que veas una operación (por ejemplo, una suma), es importante preguntarte si es una suma de escalares, vectores o matrices.

Muchas de las buenas propiedades de las operaciones de suma y producto en el campo $F$ también se cumplen para estas definiciones de suma y producto escalar de vectores y matrices.

Teorema. Sean $A,B,C$ matrices en $M_{m,n}(F)$ y $\alpha,\beta,\gamma$ escalares en $F$. Entonces la suma de matrices:

  • Es asociativa: $(A+B)+C = A+(B+C)$
  • Es conmutativa: $A+B=B+A$
  • Tiene neutro: $A+O_{m,n}=A=O_{m,n}+A$
  • Tiene inversos: $A+(-A)=O_{m,n}=(-A)+A$

Además,

  • La suma de escalares y el producto escalar se distribuyen: $(\alpha+\beta)A=\alpha A + \beta A$
  • La suma de matrices y el producto escalar se distribuyen: $\alpha(A+B)=\alpha A + \alpha B$
  • El producto escalar es homogéneo: $\alpha(\beta A) = (\alpha \beta) A$
  • El $1$ es neutral para el producto escalar: $1A = A$

Un teorema análogo se vale al cambiar matrices por vectores. La demostración de este teorema se sigue directamente de las propiedades del campo $F$. La notación de entradas nos ayuda mucha a escribir una demostración sin tener que escribir demasiadas entradas una por una. Veamos, como ejemplo, la demostración de la primera propiedad.

Demostración. Tomemos matrices $A=[a_{ij}]$, $B=[b_{ij}]$ y $C=[c_{ij}]$ en $M_{m,n}(F)$. Para mostrar que $$(A+B)+C=A+(B+C),$$ tenemos que mostrar que la entrada $(i,j)$ del lado izquierdo es igual a la entrada $(i,j)$ del lado derecho para cada $i=1,\ldots,m$ y $j=1,\ldots,n$.

Por definición de suma, $A+B=[a_{ij}]+[b_{ij}]=[a_{ij}+b_{ij}]$. Por ello, y de nuevo por definicón de suma, $$(A+B)+C=[(a_{ij}+b_{ij})+c_{ij}].$$ De manera similar, $$A+(B+C)=[a_{ij}+(b_{ij}+c_{ij})].$$

Pero en $F$ la suma es asociativa, de modo que $$(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij}).$$

Con esto hemos demostrado que $(A+B)+C$ y $A+(B+C)$ son iguales entrada a entrada, y por lo tanto son iguales como matrices.

$\square$

La receta para demostrar el resto de las propiedades es la misma:

  1. Usar la definición de suma o producto por escalares para saber cómo es la entrada $(i,j)$ del lado izquierdo y del lado derecho.
  2. Usar las propiedades del campo $F$ para concluir que las entradas son iguales.
  3. Concluir que las matrices son iguales.

Para practicar las definiciones y esta técnica, la demostración del resto de las propiedades queda como tarea moral. A partir de ahora usaremos todas estas propiedades frecuentemente, así que es importante que las tengas en cuenta.

Base canónica de vectores y matrices

Cuando estamos trabajando en $F^n$, al vector $e_i$ tal que su $i$-ésima entrada es $1$ y el resto son $0$ lo llamamos el $i$-ésimo vector de la base canónica. Al conjunto de vectores $\{e_1,\ldots,e_n\}$ le llamamos la base canónica de $F^n$.

De manera similar, cuando estamos trabajando en $M_{m,n}(F)$, para cada $i=1,\ldots,m$ y $j=1,\ldots,n$, la matriz $E_{ij}$ tal que su entrada $(i,j)$ es $1$ y todas las otras entradas son cero se le conoce como la matriz $(i,j)$ de la base canónica. Al conjunto de todas estas matrices $E_{ij}$ le llamamos la base canónica de $M_{m,n}(F)$.

Ejemplo 1. El vector $e_2$ de $F^3$ es $(0,1,0)$. Ten cuidado, pues este es distinto al vector $e_2$ de $F^5$, que es $(0,1,0,0,0)$.

La matriz $E_{12}$ de $M_{2,3}(\mathbb{R})$ es $$\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

$\triangle$

Más adelante veremos el concepto de base en general, cuando hablemos de espacios vectoriales. Por el momento, la intuición para álgebra lineal es que una base es un conjunto que nos ayuda a generar elementos que nos interesan mediante sumas y productos escalares. Los siguientes resultados dan una intuición inicial de este fenómeno.

Teorema. Todo vector $X$ en $F^n$ se puede escribir de manera única de la forma $$X=x_1e_1+x_2e_2+\ldots+x_ne_n,$$ en donde $x_1,\ldots,x_n$ son escalares en $F$ y $\{e_1,\ldots,e_n\}$ es la base canónica.

Demostración. Si $X$ es un vector en $F^n$, entonces es de la forma $X=(x_1,x_2,\ldots,x_n)$. Afirmamos que las coordenadas de $X$ son los $x_i$ buscados.

En efecto, tomemos una $i=1,\ldots,n$. Como $e_i$ tiene $1$ en la $i$-ésima entrada y $0$ en el resto, entonces $x_ie_i$ es el vector con $x_i$ en la $i$-ésima entrada y $0$ en el resto. De esta forma, sumando entrada a entrada, tenemos

\begin{align*}
x_1e_1+x_2e_2+\ldots+x_ne_n&=\begin{pmatrix} x_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} 0\\ 0 \\ 0 \\ \vdots \\ x_n \end{pmatrix}\\
&=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X.
\end{align*}

Esto muestra la existencia.

Para demostrar la unicidad, un argumento análogo muestra que si tenemos otros escalares $y_1,\ldots,y_n$ que cumplan, entonces:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X=y_1e_1+\ldots+y_ne_n=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix},$$

de modo que $x_i=y_i$ para todo $i=1,\ldots,n$.

$\square$

Tenemos un resultado análogo para matrices.

Teorema. Toda matriz $A$ en $M_{m,n}(F)$ se puede escribir de manera única de la forma $$A=\sum_{i=1}^m \sum_{j=1}^n x_{ij} E_{ij},$$ en donde para $i=1,\ldots,m$ y $j=1,\ldots,n$, se tiene que $x_{ij}$ son escalares en $F$ y $E_{ij}$ son las matrices de la base canónica.

La demostración es muy similar a la del teorema anterior y como práctica queda como tarea moral.

Ejemplo 2. La matriz $$A=\begin{pmatrix} 2 & 0\\ 0 & -1 \\ 3 & 5 \end{pmatrix}$$ en $M_{3,2}(\mathbb{C})$ se expresa de manera única en términos de la base canónica como $$A=2E_{11}-1E_{22}+3E_{31}+5E_{32}.$$

$\square$

Más adelante…

En esta entrada dimos una breve introducción al álgebra lineal. Ya definimos la suma y el producto escalar para vectores y matrices. En la siguiente entrada hablaremos de otro producto que sucede en álgebra lineal: la de una matriz en $M_{m,n}(F)$ por un vector en $F^n$. Veremos que esta multiplicación nos permite pensar a una matriz $A$ como una función $\varphi_A:F^n\to F^m$ con ciertas propiedades especiales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Explica por qué no puedes sumar la matriz $I_5$ con la matriz $O_4$.
  • Muestra que la suma de dos matrices diagonales es diagonal. Haz lo mismo para matrices triangulares superiores y para matrices triangulares inferiores.
  • Termina de demostrar el teorema de propiedades de las operaciones de suma y producto escalar.
  • Explica por qué si una matriz es simultáneamente triangular superior y triangular inferior, entonces es diagonal.
  • Expresa a la siguiente matriz como combinación lineal de matrices de la base canónica:
    $$\begin{pmatrix}
    2 & \frac{1}{2} & 0 & 1\\
    3 & -3 & 3 & -3\\
    7 & -8 & -1 & 0
    \end{pmatrix}.$$
  • Demuestra el teorema de representación de matrices en términos de la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM».