Archivo de la etiqueta: teoría de grupos

Álgebra Moderna I: Guía de Notación

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En los libros de matemáticas es muy común dedicar algunas páginas a un glosario de notación, que resulta muy útil para recordar la notación del libro o, si sólo estás consultando un capítulo, entenderlo sin que la notación sea un impedimento.

Inspirados por estos libros, se recopiló todos los signos que usamos a lo largo del curso y lo dividimos en distintas secciones que pueden ayudarte a encontrarlos.

Si en algún momento se te olvida lo que significa la notación puedes regresar aquí para refrescar tu memoria y hasta para encontrar la entrada en donde se define el concepto.

Álgebra general: Aquí están los símbolos de conceptos algebraicos que son explicados en algún otro curso. Cabe aclarar que a lo mejor no se usa el mismo símbolo o notación que en otros textos, pero los conceptos son los mismos.

Conjuntos generales: Aquí se enlistan todos los conjuntos que probablemente ya conoces, podemos decir que son los conjuntos básicos como el de los reales, enteros, racionales, etc. Con seguridad, estos conjuntos se definen en algún curso introductorio al Álgebra, como Álgebra Superior I.

Conjuntos especiales y grupos nuevos: Aquí están los conjuntos algebraicos que usamos en este curso y que a lo mejor se mencionan en otros cursos más avanzados. Son conjuntos que definimos o describimos para usarlos y que probablemente no conocías hasta ahora.

Teoría de grupos: Aquí están todos los símbolos y notaciones propias del curso, es decir, las que vamos definiendo formalmente y forman parte del contenido de Álgebra Moderna I. Se encuentran en orden de aparición. Observarás que hay algunos grupos y conjuntos. A diferencia de los conjuntos especiales, estos conjuntos nacen de la teoría de grupos. Es decir, suelen ser subconjuntos o subgrupos que dependen de un grupo $G$. Aquí encontrarás los enlaces a las entradas en donde dicho concepto se define.

Álgebra general

SímboloSignificado
$(n;m)$Máximo común divisor
$(n;m)=1$$n$ y $m$ son primos relativos
$a \thicksim b$$a$ está relacionado con $b$
$\varphi(d)$Phi de Euler
$\therefore$Por lo tanto
$A\;\dot\cup\; B$Unión disjunta de $A$ y $B$
$A \setminus B$Diferencia de conjutos. Los elementos de $A$ que no pertenecen a $B$
$m!$Factorial de $m$
$\ln$Logaritmo natural

Conjuntos generales

SímboloSignificado
$\emptyset$Conjunto vacío
$\r$Números Reales
$\z$Números Enteros
$\mathbb{Q}$Números Racionales
$\n$Números Naturales
$\mathbb{C}$Números Complejos
$\mathbb{C}^*$Números Complejos sin el cero
$\r^+$Números Reales positivos
$\z^+$Números Enteros positivos
$\z^+ \cup \{0\}$Enteros positivos con el 0
$\z_m$Enteros módulo $m$
$\z_p$Enteros módulo $p$, con $p$ primo
$\mathcal{M}_{2\times2}(\z)$Matrices $2\times 2$ con coeficientes enteros
$\mathcal{M}_{n\times n}(\r)$Matrices $n\times n$ con coeficientes reales
$\mathcal{P}(X)$Conjunto potencia del conjunto $X$

Conjuntos especiales y grupos nuevos

SímboloSignificadoDefinición en…
$S_3$Funciones biyectivas de ${1,2,3}$ en sí mismoOperación binaria
$S_n$Grupo simétrico de $n$ símbolosPermutaciones y Grupo Simétrico
$GL(n,\r)$Grupo lineal generalDefinición de Grupos
$SL(n,\r)$Grupo lineal especialDefinición de Grupos
$SO(n,\r)$Grupo ortogonal especialDefinición de Grupos
$O(n,\r)$Grupo ortogonalDefinición de Grupos
$D_{2(n)}$Grupo diédrico, $2n$ simetrías de un polígono de $n$ ladosDihedral Group de Socratica
$V$Grupo de KleinOrden de un elemento y Grupo cíclico
$U(\z_m)$Conjunto de unidades de $\z_m$Orden de un elemento y Grupo cíclico
$Q$, $Q_8$Grupo de los cuaterniosPalabras
$A_n$Grupo alternanteParidad de una permutación

Teoría de grupos

SímboloSignificadoAparece en…
$*$Operación binariaOperación binaria
$(G, *)$Grupo $G$Definición de Grupos
$\bar{a},\, a^{-1}$Elemento inverso de $a$, bajo $*$Definición de Grupos
$e$Elemento neutro del grupo $G$Definición de Grupos
$\circ$Composición de funciones, $f\circ g(x)= f(g(x))$Definición de Grupos
$\text{id}_\r$Función identidad de $\r$ en $\r$Definición de Grupos
$H\leq G$$H$ es subgrupo de $G$Subgrupos
$o(a)$Orden de un elemento $a$ de un grupo finitoOrden de un elemento y Grupo cíclico
$\left< a \right>$Subgrupo cíclico de $G$ generado por $a$Orden de un elemento y Grupo cíclico
$|G|$Orden de $G$, con $G$ grupoOrden de un grupo
$\#A$Orden o cardinalidad de un conjunto $A$Paridad de una permutación
$\left< X \right>$Subgrupo de $G$ generado por $X$Teoremas sobre subgrupos y
Subgrupo generado por $X$
$W_X$Conjunto de todas las palabras de $X$Palabras
$\text{sop}\;\alpha$Soporte de $\alpha$Permutaciones y Grupo Simétrico
$\text{long} \; \alpha$Longitud de un ciclo $\alpha$Permutaciones y Grupo simétrico
$\sigma_{\alpha,i}$Ciclo definido por $\alpha$ y por $i$Permutaciones disjuntas
$V(x_1,\dots, x_n)$Polonomio de VandermondeMisma Estructura Cíclica, Permutación
Conjugada y Polinomio de Vandermonde
$sgn \: \alpha$Función signo de $\alpha$Paridad de una permutación
$aH$, $Ha$Clase lateral izquierda/derecha de $H$ en $G$ con representante $a$.Producto de subconjuntos y Clases Laterales
$[G:H]$Índice de $H$ en $G$Relación de equivalencia dada por un subgrupo e índice de $H$ en $G$
$\text{gen }C$Conjunto de generadores del grupo cíclico $C$Caracterización de grupos cíclicos
$aHa^{-1}$Conjugado de $H$ por el elemento $a$Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial
$N\unlhd G$, $G\unrhd N$$N$ es subconjunto normal de $G$Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial
$G/N$Grupo cociente de $G$ módulo $N$Grupo Cociente
$[a,b]$El conmutador de $a$ y $b$Subgrupo Conmutador
$G’$Subgrupo conmutador de $G$Subgrupo Conmutador
$G \cong \bar{G}$$G$ es isomorfo a $\bar{G}$Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo
$\text{Núc}\; \varphi$, $\text{Ker}\; \varphi$Núcleo de $\varphi$, Kernel de $\varphi$Núcleo e Imagen de un Homomorfismo
$\text{Im} \; \varphi$Imagen de $\varphi$Núcleo e Imagen de un Homomorfismo
$\text{Sub}_N^G$Conjunto de subgrupos de $G$ que contienen a $N$ como subgrupoCuarto Teorema de Isomorfía
$\text{Sub}_{ G/N}$Conjunto de subgrupos de $G/N$Cuarto Teorema de Isomorfía
$\mathcal{O}(x)$Órbita de $x$Órbita de $x$ y tipos de acciones
$G_x$Estabilizador de $x$Órbita de $x$ y tipos de acciones
$x^G$Clase de conjugación de $x$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$C_G(x)$Centralizador de $x$ en $G$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$Z(G)$Centro de $G$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$X_G$El conjunto de elementos de $X$ que quedan fijos sin importar qué elemento de $G$ actúe sobre ellosClase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$N_G(H)$Normalizador de $H$ en $G$$p-$Subgrupo de Sylow y el Normalizador de $H$ en $G$ 
$r_p$, $r_p(G)$Número de $p-$subgrupos de Sylow de $G$Teoremas de Sylow
$\text{inc}_i$Inclusión natural del elemento en la $i-$ésima posiciónProducto directo externo
$\pi_i$Proyección natural del $i-$ésimo elementoProducto directo externo

Entradas relacionadas

Seminario de Resolución de Problemas: Grupos, anillos y campos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En estas entradas hemos visto cómo distintas herramientas de álgebra nos pueden ayudar en la resolución de problemas. En las primeras dos entradas, hablamos de identidades algebraicas básicas y un par de avanzadas. Luego, hablamos de factorización en polinomios y del teorema de la identidad. Ahora platicaremos de cómo estructuras un poco más abstractas nos pueden ayudar. De manera particular, nos enfocaremos en aplicaciones de teoría de grupos a la resolución de problemas. Sin embargo, hacia el final de la entrada también hablaremos un poco acerca de anillos, dominios enteros y campos.

Teoría de grupos básica

Una de las nociones de álgebra abstracta más básicas, y a la vez más flexibles, es la de grupo. La teoría de grupos es muy rica y se estudia a profundidad en un curso de álgebra abstracta o álgebra moderna. Aquí veremos únicamente un poco de esta teoría y algunas aplicaciones a resolución de problemas. Comenzamos con la definición.

Definición. Un grupo es un conjunto no vacío $G$ con una operación binaria $\cdot$ que cumple lo siguiente:

  • Asociatividad: Para cualesquiera elementos $x,y,z$ en $G$ tenemos que $x\cdot (y\cdot z) = (x\cdot y) \cdot z$.
  • Neutro: Existe un elemento $e$ en $G$ tal que $x\cdot e = x = e\cdot x$ para todo elemento x.
  • Inversos: Para cada elemento $x$ en $G$, existe un elemento $y$ en $G$ tal que $x\cdot y = e = y\cdot x$.

Usualmente se simplifica la notación de la siguiente manera. Por un lado, en vez de poner el símbolo de producto, simplemente se ponen elementos consecutivos, por ejemplo $a\cdot b = ab$. Además, por la asociatividad, muchas veces no se ponen los paréntesis, de modo que expresiones como $(a\cdot b)\cdot c$ se escriben simplemente como $abc$, a menos que los paréntesis ayuden a entender un argumento.

Hay que tener cuidado con invertir el orden de factores. En grupos, no necesariamente sucede que la operación es conmutativa, es decir, que $ab=ba$ para todo par de elementos $a$ y $b$. Si $ab=ba$ decimos que $a$ y $b$ conmutan y si todo par de elementos de $G$ conmutan, decimos que $G$ es conmutativo. Un elemento siempre conmuta consigo mismo. Para $n$ un entero positivo definimos $a^n$ como el producto formado por $n$ veces el elemento $a$.

A partir de la definición se puede ver que el neutro es único, pues si hubiera dos neutros $e$ y $e’$ tendríamos $e=e\cdot e’=e’$, en donde primero usamos que $e’$ es neutro y después que $e$ lo es. Para $a$ en $G$, definimos $a^0$ como $e$.

En grupos se vale «cancelar». Por ejemplo, si $ab=ac$, entonces podemos multiplicar esta igualdad a la izquierda por un inverso $d$ de $a$ y obtendríamos $$b=eb=dab=dac=ec=c.$$ Del mismo modo, la igualdad $ba=ca$ implica $b=c$.

En particular, si $d$ y $d’$ son inversos de $a$, tenemos $da=e=d’a$, de donde $d=d’$. Esto muestra que los inversos también son únicos, así que al inverso de $a$ le llamamos $a^{-1}$. Observa que $e^{-1}=e$. Nota que si $a$ y $b$ son elementos de $G$, entonces $$ab(b^{-1}a^{-1})=aea^{-1}=aa^{-1}=e,$$ de modo que el inverso de un producto $ab$ es el producto $b^{-1}a^{-1}$. Para $n$ un entero positivo, definimos $a^{-n}$ como el inverso de $a^n$, que por lo anterior, es precisamente $(a^{-1})^n$. De hecho, ya definido $a^n$ para todo entero, se puede verificar que se satisfacen las leyes usuales de los exponentes.

Problema. Sean $a$ y $b$ dos elementos en un grupo $G$ con neutro $e$ tales que $aba=ba^2b$, $a^3=e$ y $b^{2021}=e$. Muestra que $b=e$.

Sugerencia pre-solución. Observa que si $a$ y $b$ conmutaran, entonces el resultado se deduce fácilmente de la primer igualdad. Así, intenta modificar el problema a demostrar que $a$ y $b$ conmutan. Para ello tienes que hacer un paso intermedio que necesita inducción.

Solución. Lo primero que veremos es que $a$ y $b^2$ conmutan. Poniendo una identidad entre ambas $b$ en el producto $ab^2$, tenemos que $$ab^2=abaa^{-1}b=ba^2ba^{-1}b.$$ De $a^3=e$, tenemos $a^{-1}=a^2$, así que siguiendo con la cadena de igualdades, \begin{align*}
ba^2ba^{-1}b&=ba^2ba^2b\\
&=ba^2aba\\
&=bba=b^2a.
\end{align*} Así, $ab^2=b^2a$.

Ahora veremos que $a$ y $b$ conmutan. Para ello, como $a$ y $b^2$ conmutan, tenemos que $a$ y $b^{2k}$ conmutan para cualquier entero $k$. Esto se puede probar por inducción. El caso $k=1$ es lo que ya probamos. Si es válido para cierta $k$, se sigue que $$ab^{2k+2}=b^{2k}ab^2=b^{2k+2}a.$$ Por hipótesis, $b^{2020}=b$, así que el resultado anterior nos dice que $a$ y $b$ conmutan.

Por esta razón, la primer hipótesis $aba=ba^2b$ se puede reescribir como $a^2b=a^2b^2$, que por cancelación izquierda da $e=b$, como queríamos mostrar.

$\square$

Subgrupos y órdenes

Dentro de un grupo pueden vivir grupos más pequeños.

Definición. Un subgrupo de un grupo $G$ es un subconjunto $H$ de $G$ que es un grupo con las operaciones de $G$ restringidas a $H$.

Para que $H$ sea subgrupo, basta con que no sea vacío y que sea cerrado bajo la operación de grupos y la operación «sacar inverso».

Por ejemplo, se puede ver que $\mathbb{Z}_{12}$, los enteros módulo $12$ con la suma, forman un grupo. De aquí, $H_1=\{0,3,6,9\}$ es un subgrupo y $H_2=\{0,4,8\}$ es otro.

Proposición. Si $a$ es un elemento de un grupo $G$, entonces o bien $$1,a, a^2, a^3,\ldots$$ son todos elementos distintos de $G$, o bien existe un entero positivo $n$ tal que $a^n=1$ y $1,a,\ldots,a^{n-1}$ son todos distintos. En este segundo caso, $\{1,a,\ldots,a^{n-1}\}$ es un subgrupo de $G$.

Sugerencia pre-demostración. Divide en casos. Luego, usa el principio de cancelación o las leyes de exponentes para grupos.

Demostración. Si todos los elementos son distintos, entonces no hay nada que hacer. De otra forma, existen $i<j$ tales que $a^j=a^i$, de donde por la ley de cancelación tenemos que $a^{j-i}=e$ y $j-i\geq 1$. Así, el conjunto de enteros positivos $m$ tales que $a^m=e$ es no vacío, de modo que por el principio de buen orden tiene un mínimo, digamos $n$.

Afirmamos que $$1,a,a^2,\ldots,a^{n-1}$$ son todos distintos. En efecto, de no ser así, como en el argumento de arriba existirían $0\leq i < j \leq {n-1}$ tales que $a^{j-i}=e$, pero $j-i\leq n-1$ sería una contradicción a la elección de $n$ como elemento mínimo.

Probemos ahora que $A=\{1,a,\ldots,a^{n-1}\}$ es subgrupo de $G$. Si tenemos $a^k$ y $a^l$ en $A$, su producto es $a^{k+l}$. Por el algoritmo de la división, $k+l=qn+r$, con $r\in \{0,\ldots,n-1\}$, de modo que $$a^ka^l=a^{qn+r}=(a^n)^qa^r=e^qa^r=a^r,$$ así que $A$ es cerrado bajo productos. Además, si $1\leq k\leq n-1$, entonces $1\leq n-k \leq n-1$ y $a^ka^{n-k}=a^n=e$. Así, $A$ es cerrado bajo inversos. Esto muestra que $A$ es subgrupo de $G$.

$\square$

En teoría de grupos, la palabra «orden» se usa de dos maneras. Por un lado si $G$ es un grupo, su orden $\text{ord}(G)$ es la cantidad de elementos que tiene. Por otro, dado un elemento $a$, el orden $\text{ord}(a)$ de $a$ es el menor entero positivo $n$ tal que $a^n=e$, si es que existe.

Definimos al subgrupo generado por $a$ como $$\langle a\rangle:=\{a^n:n\in \mathbb{Z}\}.$$ La proposición anterior dice que si $\langle a \rangle$ es finito, entonces es un subgrupo de $G$ de orden $\text{ord}(\langle a \rangle) = \text{ord}(a).$ A los grupos de la forma $\langle a \rangle$ se les llama cíclicos.

Teorema de Lagrange

Cuando estamos trabajando con grupos finitos, el orden de un subgrupo debe cumplir una condición de divisibilidad.

Teorema (de Lagrange). Sea $G$ un grupo finito y $H$ un subgrupo de $G$. Entonces $\text{ord}(H)$ divide a $\text{ord}(G)$.

No daremos la demostración de este teorema, pero veremos algunos corolarios que sirven en la resolución de problemas.

Proposición. Sea $G$ un grupo finito.

  • Si $\text{ord}(G)$ es un primo $p$, entonces $G$ es cíclico.
  • El orden de cualquier elemento $a$ de $G$ divide al orden de $G$, y por lo tanto $a^{\text{ord}(G)}=1$.
  • Si $a$ es un elemento de $G$ de orden $n$ y $a^m=e$, entonces $n$ divide a $m$.

Demostración. Para la primer parte, si tomamos un elemento $a$ de $G$ que no sea $e$, ya vimos que $\langle a \rangle$ es un subgrupo cíclico de $G$. Por el teorema de Lagrange, su orden debe dividir al primo $p$. Pero el orden de $\langle a \rangle$ es al menos $2$, así que el orden de $\langle a \rangle$ debe ser $p$ y por lo tanto $\langle a \rangle=G$.

Como vimos arriba, el orden de $a$ es el orden de $\langle a \rangle$, que divide a $G$. Así,
\begin{align*}
a^{\text{ord}(G)}&=(a^{\text{ord}{a}})^{\text{ord}(G)/ \text{ord}(a)}\\
&=e^{\text{ord}(G)/ \text{ord}(a)}\\
&=e.
\end{align*} Con esto queda probado el segundo punto.

Para el último punto, usamos el algoritmo de la división para escribir $m=qn+r,$ con $r$ entre $0$ y $n-1$. Tenemos que $$e=a^m=a^{qn+r}=a^r.$$ Por lo visto en la sección anterior, necesariamente $r=0$, así que $n$ divide a $m$.

$\square$

Veamos cómo se pueden aplicar algunas de las ideas anteriores a un problema de teoría de grupos concreto.

Problema. En un grupo $G$, tenemos elementos $a$ y $b$ tales que $a^7=1$ y $aba^{-1}=b^2$. Determina qué posibles valores puede tener el orden de $b$.

Sugerencia pre-solución. Conjetura una fórmula para $b^{2n}$ buscando un patrón. Establécela por inducción.

Solución. El orden de $a$ debe dividir a $7$, así que es o $1$ o $7$. Si es $1$, entonces $a=e$, por lo que por la hipótesis tenemos $b=b^2$. De aquí $b=e$, así que el orden de $b$ es $1$. La otra opción es que el orden de $a$ sea $7$.

Afirmamos que para todo entero $n$ se tiene que $a^nba^{-n}=b^{2^n}$. Esto se prueba inductivamente. Es cierto para $n=1$ por hipótesis. Si se cumple para cierta $n$ y elevamos la igualdad al cuadrado, tenemos que
\begin{align*}
b^{2^{n+1}}&=(b^{2n})^2\\
&=a^nba^{-n}a^nba^{-n}\\
&=a^nb^2a^{-n}\\
&=a^{n+1}ba^{-(n+1)},
\end{align*}

lo cual termina la inducción.

En particular, para $n=7$ tenemos que $a^7=a^{-7}=e$, por lo que $b=b^{2^7}$, y por lo tanto $b^{127}=e$. Como $127$ es primo, el orden de $b$ puede ser $1$ ó $127$.

$\square$

En realidad, en el problema anterior falta mostrar que en efecto existe un grupo que satisfaga las hipótesis, y para el cual el orden de $b$ sea exactamente $127$. Esto no lo verificaremos aquí.

Teoría de grupos en teoría de números

Lo que hemos platicado de teoría de grupos se vale para grupos en general. Cuando aplicamos estos resultados a grupos particulares, tenemos nuevas técnicas para resolver problemas. Uno de los casos que aparecen más frecuentemente es aplicar teoría de grupos en problemas de teoría de números.

Si tomamos un entero $n$, los enteros entre $1$ y $n-1$ que son primos relativos con $n$ forman un grupo con la operación de producto módulo $n$. Si llamamos $\varphi(n)$ a la cantidad de primos relativos con $n$ entre $1$ y $n-1$, el teorema de Lagrange da el siguiente corolario.

Teorema (de Euler). Para todo entero positivo $n$ y $a$ un entero primo relativo con $n$, se tiene que $$a^\varphi(n)\equiv 1\pmod n.$$

Como corolario al teorema de Euler, tenemos el pequeño teorema de Fermat, que hemos discutido previamente aquí en el blog.

Teorema (pequeño teorema de Fermat). Para $p$ un primo y $a$ un entero que no sea múltiplo de $p$, se tiene que $$a^{p-1}\equiv 1 \pmod p.$$

Así, cuando $p$ es primo y $a$ no es múltiplo de $p$, se tiene que el orden de $a$ divide a $p-1$. Veamos un ejemplo en donde esta idea forma parte fundamental de la solución.

Problema. Muestra que para ningún entero $n>1$ se tiene que $n$ divide a $2^n-1$.

Sugerencia pre-solución. Procede por contradicción, suponiendo que sí existe. Considera un primo $p$ que divida a $n$ y que además sea extremo en algún sentido. Trabaja módulo $p$.

Solución. Supongamos que existe un entero $n>1$ tal que $n$ divide a $2^n-1$. Sea $p$ el primo más pequeño que divide a $n$. Tomemos $a$ el orden de $2$ en el grupo multiplicativo $\mathbb{Z}_p$.

Por un lado, como $p$ divide a $n$ y $n$ divide a $2^n-1$, se tiene que $p$ divide a $2^n-1$ y por lo tanto $$2^n\equiv 1 \pmod p.$$ De esta forma, $a$ divide a $n$.

Por otro lado, por el pequeño teorema de Fermat, tenemos que $$2^{p-1}\equiv 1 \pmod p,$$ así que $a$ divide a $p-1$ y por lo tanto $a\leq p-1$.

Si $a\neq 1$, entonces $a$ tiene un divisor primo que divide a $n$ y es menor que $a\leq p-1$, lo cual es imposible pues elegimos a $p$ como el menor divisor primo de $n$. De esta forma, $a=1$. Pero esto da la contradicción $2\equiv 1 \pmod p$.

$\square$

Anillos, dominios enteros y campos

Cuando se están resolviendo problemas, es importante tener en mente que existen otras estructuras algebraicas. Definiremos sólo las más comunes y veremos un problema ejemplo.

Definición. Un anillo es un conjunto $R$ con dos operaciones binarias suma y producto tales que:

  • $R$ con la suma es un grupo conmutativo.
  • El producto en $R$ es asociativo, es decir $(ab)c=a(bc)$ para $a,b,c$ en $R$.
  • Se cumple la ley distributiva, es decir $a(b+c)=ab+ac$ y $(b+c)a=ba+ca$ para $a,b,c$ en $R$.

El producto en $R$ no tiene por qué ser un grupo. De hecho, ni siquiera tiene que tener neutro.

Definición. Si un anillo $R$ tiene neutro, decimos que $R$ es un anillo con $1$. Si la multiplicación de $R$ es conmutativa, decimos que $R$ es conmutativo.

Definición. Un dominio entero es un anillo conmutativo con uno en donde además se vale cancelar, es decir, $ab=ac$ implica $b=c$ y $ba=ca$ implica $b=c$.

Definición. Un campo es un anillo conmutativo con uno en donde cada elemento distinto de la identidad aditiva tiene inverso multiplicativo. En otras palabras, es un anillo en donde la suma y el producto son grupos.

Problema. Muestra que todo dominio entero finito es un campo.

Sugerencia pre-solución. Usa el principio de las casillas.

Solución. Supongamos que $R=\{a_1,\ldots,a_n\}$ es un dominio entero con una cantidad finita de elementos. Lo único que falta para que sea campo es que los elementos tengan inversos multiplicativos.

Sea $a$ un elemento de $R$ y supongamos que $a$ no tiene inverso multiplicativo. Entonces, los números $$a_1a, a_2a,\ldots,a_n a$$ sólo pueden tomar a lo más $n-1$ valores diferentes, de modo que por principio de las casillas existen dos de ellos que son iguales, digamos $a_ia=a_ja$ para $i\neq j$.

Como $R$ es dominio entero, se vale cancelar, lo cual muestra $a_i=a_j$. Esto es una contradicción, pues $a_i$ y $a_j$ eran elementos distintos de $R$. Así, todo elemento tiene inverso multiplicativo.

$\square$

En cursos de matemáticas a nivel superior se ven muchos ejemplos de estas estructuras algebraicas. En cursos de Álgebra Superior se construye el dominio entero de enteros $\mathbb{Z}$. Se construyen los campos $\mathbb{R}$, $\mathbb{Q}$ y $\mathbb{C}$. También, se construyen los anillos de polinomios $\mathbb{F}[x]$. La noción de campo es fundamental cuando se construye la teoría de Álgebra Lineal. Como se puede ver, la teoría de álgebra es muy amplia, así que esta entrada sólo queda como invitación al tema.

Más problemas

Puedes encontrar más problemas de estructuras algebraicas en la Sección 4.4 del libro Problem Solving through Problems de Loren Larson.