Archivo de la etiqueta: lineal

Seminario de Resolución de Problemas: Sucesiones recursivas y recursiones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada estudiaremos aquellas sucesiones en las que un término está definido mediante términos anteriores. Estas son las sucesiones recursivas. Dentro de ellas hay unas muy especiales, que son las que satisfacen una recursión lineal. También hablaremos de eso.

En entradas anteriores ya hemos visto ejemplos de sucesiones recursivas. Por un lado, las sucesiones aritméticas y geométricas cumplen una recursión sencilla. Las sucesiones periódicas también se pueden poner en términos de una recursión.

Vimos otros ejemplos en la entrada de sucesiones monótonas y acotadas, en donde la recursion nos ayuda a demostrar algunas de estas propiedades.

Sucesiones recursivas

Una sucesión recursiva es una sucesión $\{x_n\}$ en la que, intuitivamente, cada término depende de los anteriores. La regla que dice cómo está relacionado cada término con los de antes le llamamos la regla o fórmula recursiva. Usualmente los primeros términos de la sucesión están dados, y se les conoce como los términos iniciales.

Las sucesiones aritméticas son recursivas. Si $\{x_n\}$ es aritmética de término inicial $a$ y diferencia $d$, se comienza con $x_0=a$ y para $n\geq 0$ se satisface la recursión $x_{n+1}=x_n+d$. Similarmente, una sucesión geométrica $\{y_n\}$ de término inicial $s$ y razón $r$ se puede poner en términos recursivos: $y_0=s$ y para $n\geq 0$, se tiene $y_{n+1}=ry_n$.

Una sucesión periódica $\{z_n\}$ de periodo $p$ también satisface una recursión. Los términos iniciales $z_0,\ldots,z_{p-1}$ están dados y para $n\geq 0$ se tiene que $z_{n+p}=z_n$.

Las sucesiones recursivas pueden aparecer como parte del enunciado de un problema, o bien pueden aparecer de manera natural como parte de la solución de un problema.

Problema. Para un triángulo $T$ del plano se define otro triángulo $f(T)$ como sigue:

  • Se nombran los vértices $A,B,C$ de modo que $|BC|\leq |AC|\leq |AB|$.
  • Al punto medio de $BC$ se le nombra $M$.
  • Se rota el punto $A$ alrededor de $M$ en $180^\circ$ para obtener un punto $A’$.
  • Se define $f(T)$ como el triángulo $ACA’$.

Definimos una sucesión de triángulos como sigue. Se toma $T_0=T$. Luego, para $n\geq 0$ se define $T_{n+1}=f(T_n)$. ¿Es posible que esta sucesión tenga dos triángulos congruentes?

Sugerencia pre-solución. Es difícil estudiar las ternas de lados bajo la operación. Modifica el problema a entender otro parámetro que puedas estudiar fácilmente bajo las reglas dadas.

Solución. La respuesta es que en la sucesión no hay dos triángulos congruentes. De hecho, la observación clave es mostrar algo más fuerte: en la sucesión no hay dos triángulos con el mismo perímetro.

Tomemos un triángulo $T$. En el primer paso se nombran los vértices $ABC$ de modo que $BC$ el lado más chico del triángulo, y por lo tanto el ángulo en $A$ es menor estrictamente a $90^\circ$. Por esta razón, $A$ está fuera del círculo con diámetro $BC$, y por lo tanto la mediana $AM$ tiene longitud mayor a $\frac{|BC|}{2}$. El nuevo triángulo tiene lados de longitudes $|AB|$, $|AC|$ y $2|AM|>|BC|$.

Así, la sucesión de perímetros de los triángulos es estrictamente creciente. Por lo tanto, en la sucesión no puede haber dos triángulos con el mismo perímetro, y entonces no hay dos congruentes.

$\square$

Sucesiones recursivas y conteo

Las sucesiones recursivas aparecen también en problemas de combinatoria o de algoritmos, en donde ciertos casos o cierta cantidad de pasos se puede poner en términos de versiones más pequeñas del problema. Además, es posible que en un problema interactúen dos o más sucesiones de manera recursiva. Veamos un ejemplo.

Problema. Se tienen palabras de $10$ letras que usan los símbolos $a$, $b$ y $c$. ¿Cuántas de ellas no tienen dos $a$ consecutivas, ni dos $b$ consecutivas?

Sugerencia pre-solución. En vez de resolver el problema directamente, generalízalo a cuando se tienen palabras de $n$ letras. Para contar cuántas son, divide en casos de acuerdo a en qué símbolo terminan y plantea una recursión en términos de valores anteriores. Hay cierta simetría en $a$ y $b$. Aprovéchala.

Solución. Vamos a resolver un problema más general. Contemos las sucesiones sin dos $a$ ni dos $b$ consecutivas. Dividamos en los siguientes casos:

  • $\{x_n\}$ será la sucesión que cuenta cuántas de $n$ letras hay que terminen en $a$.
  • $\{y_n\}$ será la sucesión que cuenta cuántas de $n$ letras hay que terminen en $b$.
  • $\{z_n\}$ será la sucesión que cuenta cuántas de $n$ letras hay que terminen en $c$.

Por ejemplo, $x_1=y_1=z_1=1$, pues con una letra y con la letra final definida sólo hay una opción. Tenemos que $x_2=2$, que son $$ba,ca,$$ que $y_2=2$, que son $$ab,cb,$$ y que $z_3=3$, que son $$ac,bc,cc.$$ El problema nos pregunta por $x_{10}+y_{10}+z_{10}$.

La razón para partir en estos casos es que si sabemos en qué letra termina una sucesión, entonces sabemos exactamente cómo encontrar las que tienen una letra más de manera recursiva. Por ejemplo, para $n\geq 1$ tenemos que $x_{n+1}=y_n+z_n$, pues una palabra buena de $n+1$ letras que termina en $a$ se forma por una palabra buena de $n$ letras que no termina en $a$, y luego al final se le pone una $a$. Las tres recursiones que obtenemos son
\begin{align*}
x_{n+1}&=y_n+z_n\\
y_{n+1}&=x_n+z_n\\
z_{n+1}&=x_n+y_n+z_n.
\end{align*}

Ahora sí podemos hacer las cuentas únicamente haciendo operaciones, sin la dificultad que implica llevar el conteo de casos en el problema original. La siguiente tabla se puede llenar fácilmente, llenando renglón a renglón de arriba a abajo. Además, la simetría del problema en $a$ y $b$ hace que las sucesiones $x_n$ y $y_n$ sean iguales, así que también podemos aprovechar esto al momento de hacer las cuentas:

$n$$x_n$$y_n$$z_n$
$1$$1$$1$$1$
$2$$2$$2$$3$
$3$$5$$5$$9$
$4$$14$$14$$19$
$5$$33$$33$$47$
$6$$80$$80$$113$
$7$$193$$193$$273$
$8$$466$$466$$659$
$9$$1125$$1125$$1591$
$10$$2716$$2716$$3841$
Tabla de valores de las sucesiones

De esta manera, la cantidad total de palabras que pide el problema es $$2716+2716+3841=9273.$$

$\square$

Recursiones lineales

Hay un tipo de sucesiones recursivas especiales, que cumplen que cada término depende de pocos términos anteriores y de manera lineal.

Por ejemplo, la sucesión de Fibonacci satisface $F_0=0$, $F_1=1$ y para $k\geq 0$ se tiene que $$F_{k+2}=F_k+F_{k+1}.$$ Aquí la recursión depende de los dos términos inmediatos anteriores, y cada uno de ellos aparece linealmente. Por ello, decimos que es una recursión lineal de orden 2.

La definición general es la siguiente.

Definición. Una sucesión $\{x_n\}$ de reales satisface una recursión lineal de orden $m$ si los primeros $m$ términos $x_0,\ldots,x_{m-1}$ están dados, y además existen reales $a_0,\ldots,a_{m-1}$ tales que para $k\geq 0$ se satisface la recursión lineal $$x_{m+k}=a_0x_k+a_1x_{k+1}+\ldots+a_{m-1}x_{m+k-1}.$$

El siguiente método nos ayuda en varios casos a pasar una sucesión que satisface una recursión lineal a una fórmula cerrada.

Primero, tomamos una sucesión $\{x_n\}$ como la de la definición. Luego, consideramos el siguiente polinomio de grado $m$: $$P(x)=x^m-a_{m-1}x^{m-1}-\ldots-a_0.$$

Supongamos que $r$ es una raíz de $P$. Afirmamos que la sucesión $\{r^n\}$ satisface la recursión. En efecto, como $r$ es raíz de $P$, tenemos que $$r^m=a_{m-1}r^{m-1}+\ldots+a_0,$$ y multiplicando ambos lados por $r^k$ tenemos que $$r^{m+k}=a_{m-1}r^{m+k-1}+\ldots+a_0r^k,$$ que es justo la recursión lineal (con los sumandos de derecha a izquierda).

Ahora, nota que si $\{x_n\}$ y $\{y_n\}$ satisfacen la recursión lineal, entonces para cualesquiera reales $c$ y $d$ tenemos que $\{cx_n+dy_n\}$ también. Entonces si hacemos combinaciones lineales de potencias de raíces de $P$ también tendremos sucesiones que satisfacen la recursión lineal. Resulta que en varios casos «todas las soluciones se ven así».

La discusión hasta aquí es un poco abstracta, así que hagamos un ejemplo concreto.

Problema. Determina una fórmula cerrada para la sucesión $\{A_n\}$ tal que $A_0=1$, $A_1=5$ y que satisface la recursión lineal de orden 2 $$A_{n+2}=-6A_n+5A_{n+1}.$$

Sugerencia pre-solución. Encuentra el polinomio asociado a la recursión. Si tiene raíces $\alpha$ y $\beta$, muestra que para cualesquiera reales $c$ y $d$ se tiene que $B(c,d)=\{c\alpha^n+d\beta^n\}$ satisface la recursión. Ya que nos dan los dos primeros términos, se puede encontrar los únicos $c$ y $d$ que funcionan para $\{A_n\}$.

Solución. El polinomio asociado a la recursión es $x^2-5x+6$, que tiene raíces $2\,\text{ y }\, 3$. Entonces, para cualesquiera reales $c$ y $d$ se tiene que la sucesión $B(c,d)=\{c2^n+d3^n\}$ satisface la recursión.

Además, necesitamos que los primeros términos sean $1\,\text{ y }\,5$ respectivamente, de donde obtenemos el sistema de ecuaciones para $c$ y $d$ siguiente:

\begin{align*}
1&=c2^0+d3^0=c+d\\
5&=c2^1+d3^1=2c+3d.
\end{align*}

La solución a este sistema es $c=-2$, $d=3$. De esta forma, la fórmula cerrada para $\{A_n\}$ es $$A_n=-2\cdot 2^n+3\cdot 3^n=3^{n+1}-2^{n+1}.$$

$\square$

Todos los pasos que hicimos en el problema anterior son reversibles, pero si quieres asegurarte de que todo va marchando bien, puedes mostrar por inducción que la fórmula dada es correcta.

Teorema para recursiones lineales de orden $m$

Resulta que cuando el polinomio asociado tiene $m$ raíces distintas, entonces el método anterior siempre funciona.

Teorema. Supongamos que la sucesión $\{x_n\}$ satisface la recursión lineal de orden $m$ $$x_{m+k}=a_0x_k+a_1x_{k+1}+\ldots+a_{m-1}x_{m+k-1}$$ para ciertos reales $a_0,\ldots,a_{m-1}$, y que las raíces del polinomio $$P(x)=x^m-a_{m-1}x^{m-1}-\ldots-a_0$$ son todas distintas y son $r_0,\ldots,r_{m-1}$. Entonces, existen únicos números $c_0,\ldots,c_{m-1}$ tales que para todo $n\geq 0$ se tiene $$x_n=c_0r_0^n+\ldots+c_{m-1}r_{m-1}^n,$$ y ellos se pueden encontrar mediante el sistema de $m$ ecuaciones lineales que queda al tomar $n=0,1,\ldots,m-1$.

No veremos la demostración de este teorema, pero aquí abajo lo usaremos para resolver algunos problemas.

Problema. La sucesión $\{B_n\}$ satisface que para toda $n\geq 0$ se tiene que $$B_{n+5}+B_n=-2(B_{n+4}+B_{n+1})-3(B_{n+3}+B_{n+2}).$$ Demuestra que esta sucesión es acotada.

Sugerencia pre-solución. Calcula el polinomio asociado. Factorízalo y muestra que todas sus raíces son diferentes.

Solución. Reacomodando los términos en la hipótesis, obtenemos que $\{B_n\}$ satisface una recursión lineal con polinomio asociado $$P(x)=x^5+2x^4+3x^3+3x^2+2x+1,$$ que se puede factorizar como $$(x^2+x+1)(x^3+x^2+x+1).$$

Las raíces del primer factor son las dos raíces cúbicas de la unidad que no sean uno digamos $w$ y $z$. Las del segundo factor son las $3$ raíces cuartas de la unidad que no sean uno, es decir $i$, $-1$ y $-i$.

Todos estos complejos tienen norma uno y además son distintos. De esta forma, por el teorema de recursiones lineales, existen únicos complejos $a,b,c,d,e$ tales que para toda $n$ se cumple $$B_n=aw^n+bz^n+ci^n+d(-1)^n+e(-i)^n.$$

De aquí podemos proceder de dos formas distintas. Una es simplemente tomando norma de ambos lados y usando la desigualdad del triángulo:

\begin{align*}
|B_n|&=\norm{aw^n+bz^n+ci^n+d(-1)^n+e(-i)^n}\\
&\leq \norm{aw^n}+\norm{bz^n}+\norm{ci^n}+\norm{d(-1)^n}+\norm{e(-i)^n}\\
&= \norm{a}+\norm{b}+\norm{c}+\norm{d}+\norm{e},
\end{align*}

lo cual muestra que $B_n$ está acotada.

La otra es usar que para cada raíz $m$-ésima de la unidad $\alpha$ y cualquier constante $r$ se tiene que $\{r\alpha^n\}$ es periódica de periodo $m$. De esta forma, $\{B_n\}$ es suma de sucesiones periódicas, y por lo tanto es periódica. Como es periódica, entonces es acotada.

$\square$

Existe una forma sistemática para lidiar con recursiones lineales cuando las raíces del polinomio anterior no son diferentes. Sin embargo, ella requiere de un buen entendimiento de matrices y diagonalización, que es un tema no trivial en álgebra lineal. De cualquier forma, el método anterior funciona en una gran variedad de situaciones.

Recursiones lineales y sumas de potencias

Quizás lo más importante del método anterior es que da la siguiente intuición:

«Las sucesiones $\{x_n\}$ que satisfacen una recursión lineal de orden $m$ y las expresiones del estilo $$S_n=c_0r_0^n+\ldots+c_{m-1}r_{m-1}^n$$ están fuertemente relacionadas.»

Así, cuando se tiene una combinación lineal de potencias $n$-ésimas, una de las primeras cosas que hay que hacer es ver si la recursión lineal que satisface nos ayuda para el problema. El siguiente problema es el Problema 1 de la primer Competencia Iberoamericana Interuniversitaria de Matemáticas

Problema. Muestra que para todo entero positivo $n$ se tiene que la expresión $\left(\frac{3+\sqrt{17}}{2}\right)^n+\left(\frac{3-\sqrt{17}}{2}\right)^n $ es un entero impar.

Sugerencia pre-solución. Ya discutimos cómo pasar de una recursión lineal a una suma de potencias. Ahora tienes que trabajar al revés para encontrar una recursión lineal que satisfaga la expresión del problema.

Solución. Sean $\alpha=\frac{3+\sqrt{17}}{2}$ y $\beta=\frac{3-\sqrt{17}}{2}$. El problema pide mostrar que para $n$ entero positivo se tiene que $x_n:=\alpha^n+\beta^n$ es un entero impar.

Como $\alpha$ y $\beta$ son raíces del polinomio
\begin{align*}
P(x)&=(x-\alpha)(x-\beta)\\
&=x^2-(\alpha+\beta)x+\alpha\beta\\
&=x^2-3x-2,
\end{align*}

se tiene que $x_n$ satisface la recursión lineal de orden dos siguiente: $$x_{n+2}=3x_{n+1}+2x_n.$$

Con esto, estamos listos para mostrar inductivamente que $x_n$ es impar para todo entero positivo $n$. Se tiene que $x_0=2$ y $x_1=\alpha+\beta=3$, de modo que por la recursión, $x_2=13$, así que la afirmación es cierta para $n=1,2$.

Si la afirmación es cierta hasta un entero positivo $n-1$, usamos la recursión para mostrar que $x_n=3x_{n-1}+2x_{n-2}$ es la suma de un entero impar y un entero par, de modo que $x_n$ es impar. Esto termina la demostración.

$\square$

Más problemas

Esta entrada es una extensión de la sección 7 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica:

Álgebra Lineal I: Problemas de desigualdades vectoriales

Por Ayax Calderón

Introducción

En esta entrada practicaremos las dos desigualdades vectoriales que hemos visto anteriormente: la desigualdad de Cauchy – Schwarz y con la desigualdad de Minkowski. Veremos que de ellas se obtiene información valiosa sobre los espacios con producto interior.

Como ya se menciono en otras entradas del blog, estos espacios son muy importantes más allá del álgebra lineal, pues también aparecen en otros áreas como el análisis matemático, variable compleja, probabilidad, etc. Así mismo, los espacios vectoriales con producto interior tienen muchas aplicaciones en el mundo real. Por esta razón es muy importante aprender a detectar cuándo podemos usar desigualdades vectoriales.

Problemas resueltos

Comencemos con algunos problemas de desigualdades vectoriales que usan la desigualdad de Cauchy-Schwarz.

Problema 1. Demuestra que si $f:[a,b]\longrightarrow \mathbb{R}$ es una función continua, entonces

$$\left(\int_a ^b f(t)dt\right)^2 \leq (b-a)\int_a ^b f(t)^2 dt.$$

Demostración. Sea $V=\mathcal{C}([a,b],\mathbb{R})$ el espacio de las funciones continuas de $[a,b]$ en los reales.

Veamos que $\langle \cdot , \cdot \rangle: V\times V \longrightarrow \mathbb{R}$ definido por $$\langle f,g \rangle = \int_a^b f(t)g(t) \, dt$$ es una forma bilineal simétrica.

Sea $f\in V$ fija. Veamos que $g\mapsto \langle f,g \rangle$ es lineal.

Sean $g,h \in V$ y $k\in F$, entonces

\begin{align*}
\langle f,g+hk \rangle &= \int_a ^b f(t)(g(t)+kh(t))dt\\
&=\int_a ^b (f(t)g(t)+kf(t)h(t)) dt\\
&=\int_a ^b f(t)g(t)dt +k \int_a ^b f(t)h(t)dt\\
&=\langle f,g \rangle + k \langle f,h \rangle .
\end{align*}

Análogamente se ve que si $g\in V$ fija, entonces $f\mapsto \langle f,g \rangle$ es lineal.

Luego,
\begin{align*}
\langle f,g \rangle &= \int_a ^b f(t)g(t)\, dt\\
&= \int_a ^b g(t)f(t)\, dt\\
&= \langle g,f \rangle.
\end{align*}
Por lo tanto $\langle \cdot, \cdot \rangle$ es una forma bilineal simétrica.

Ahora observemos que $\langle \cdot ,\cdot \rangle$ es positiva.
$$\langle f,f \rangle = \int_a ^b f(t)^2 dt \geq 0$$ pues $f^2 (t)\geq 0$. Aunque no lo necesitaremos, mostremos además que que $\langle \cdot, \cdot \rangle$ es positiva definida. Si $f$ tiene algún valor $c$ en el interior de $[a,b]$ en la que $f(c)\neq 0$, como es continua, hay un $\epsilon>0$ tal que en todo el intervalo $(c-\epsilon,c+\epsilon)$ se cumple que $|f|$ es mayor que $|f(c)|/2$, de modo que
\begin{align*}
\langle f, f \rangle &= \int_a^b f^2(t)\, dt\\
&\geq \int_{c-\epsilon}^{c+\epsilon} f^2(t)\, dt\\
&\geq \int_{c-\epsilon}^{c+\epsilon}\frac{f(c)^2}{4} \, dt\\
&=\frac{\epsilon f(c)^2}{2}>0.
\end{align*}

Así, para que $\langle f, f \rangle$ sea $0$, es necesario que $f$ sea $0$ en todo el intervalo $(a,b)$ y por continuidad, que sea cero en todo $[a,b]$.

Sea $q$ la forma cuadrática asociada a $\langle \cdot, \cdot \rangle$.
En vista de todo lo anterior, podemos aplicar la desigualdad de Cauchy -Schwarz tomando $g$ la función constante $1$, es decir, tal que $g(x)=1$ para todo $x$ en $[a,b]$, la cual claramente es continua.

Entonces, $$\langle f,g \rangle &\leq q(f)q(g),$$ que substituyendo las definiciones es
\begin{align*}
\left( \int_a ^b f(t)\, dt\right)^2 &\leq \left(\int_a ^b f(t)^2 \, dt\right)\left(\int_a ^b 1^2\, dt\right)\\
&= (b-a)\int_a ^b f(t)^2 \, dt
\end{align*}

$\square$

Problema 2. a) Sean $x_1, \dots, x_n \in \mathbb{R}$. Demuestra que
$$ (x_1^2+\dots +x_n^2)\left(\frac{1}{x_1^2} + \dots + \frac{1}{x_n^2}\right) \geq n^2.$$
b) Demuestra que si $f:[a,b]\longrightarrow (0,\infty)$ es una función continua, entonces $$\left ( \int_a^b f(t)dt \right) \left (\int_a^b \frac{1}{f(t)}dt \right) \geq (b-a)^2$$

Demostración. a) Considera $\mathbb{R}^n$ con el producto interior usual. Sean $a,b\in\mathbb{R}^n$ dados por
\begin{align*}
a&=(x_1,\dots,x_n)\\
b&=\left( \frac{1}{x_1},\dots, \frac{1}{x_n}\right ).
\end{align*}

La desigualdad de Cauchy-Schwarz afirma que $\lvert \langle a,b \rangle \rvert \leq \norm{a} \norm{b}$. Se tiene que

\begin{align*}
\langle a,b \rangle &= (x_1,\ldots,x_n)\cdot \left(\frac{1}{x_1},\ldots,\frac{1}{x_n}\right)\\
&=1+1+\ldots+1\\
&=n,
\end{align*}

de modo que
\begin{align*}
|n|&\leq \norm{a} \norm{b}\\
&=\sqrt{(x_1^2+\dots +x_n^2)}\sqrt{\left(\frac{1}{x_1^2}+\dots + \frac{1}{x_n^2}\right )}.
\end{align*}

Si elevamos al cuadrado ambos extremos de esta igualdad, obtenemos la desigualdad deseada.

$\square$

b) En el problema 1 de esta entrada vimos que $$\langle f,g \rangle = \int_a^b f(t)g(t) dt$$ es un producto interior para el espacio de funciones continuas en $[a,b]$, y el espacio de este problema es un subespacio del de funciones continuas, así que también define un producto interior aquí.

Para la función $f$ dada, definamos $\phi (t)=\sqrt{f(t)}$ y $\psi (t)=\frac{1}{\sqrt{f(t)}}$.
Notemos que $\phi$ y $\psi$ son continuas, y además como $\forall t\in [a,b]$ se tiene $f(t)\in(0,\infty)$, también tenemos que $\psi (t), \phi (t)\in (0,\infty)$.

Aplicando la desigualdad de Cauchy-Schwarz $$\langle \phi, \psi \rangle^2 \leq \langle \phi , \phi \rangle \langle \psi , \psi \rangle.$$

Entonces
$$ \left(\int_a^b \phi (t) \psi (t) dt\right)^2 \leq \left(\int_a^b \phi(t)^2 dt \right)\left( \int_a^b\psi (t)^2 dt \right).$$

Luego, substituyendo los valores de $\phi$ y $\psi$:
$$ \left( \int_a^b \sqrt{f(t)}\cdot \frac{1}{\sqrt{f(t)}}dt\right )^2 \leq \left(\int_a^b f(t) dt \right)\left ( \int_a^b\frac{1}{f(t)}dt \right).$$

Finalmente, haciendo la integral a la izquierda:
$$(b-a)^2\leq \left(\int_a^b f(t) dt \right)\left (\int_a^b \frac{1}{f(t)}dt \right).$$

$\square$

Hay algunos problemas de desigualdades en los reales que necesitan que usemos herramientas de desigualdades vectoriales.

Problema 3. Sean $x,y,z$ números mayores que 1, tales que $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}=2$. Muestre que
$$\sqrt{x+y+x} \geq \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$


Demostración. Considera $\mathbb{R}^3$ con el producto interior usual y $u,v\in \mathbb{R}^3$ con
\begin{align*}
u&=\left(\sqrt{\frac{x-1}{x}}, \sqrt{\frac{y-1}{y}},\sqrt{\frac{z-1}{z}}\right),\\
v&=(\sqrt{x},\sqrt{y},\sqrt{z}).
\end{align*}

Aplicamos la desigualdad de Cauchy-Schwarz a $u$ y $v$:

\begin{align*}
\sqrt{x-1} +& \sqrt{y-1} + \sqrt{z-1}\\
&\leq \sqrt{\frac{x-1}{x}+\frac{y-1}{y}+\frac{z-1}{z}}\sqrt{x+y+z}\\
&=\sqrt{(1+1+1)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\sqrt{x+y+z}\\
&=\sqrt{3-2} \cdot \sqrt{x+y+z}\\
&=\sqrt{x+y+z}.
\end{align*}

Por lo tanto, $$\sqrt{x+y+x} \geq \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$

$\square$

Problema 4. Sea $f:[a,b]\longrightarrow (0,\infty)$ una función continua.
Demuestre que $$\int_a^b f(t)dt \leq \left ( (b-a)\int_a^b f(t)^2dt\right)^\frac{1}{2}.$$

Demostración. Ya vimos que $$\langle f,g \rangle = \int_a^b f(t)g(t)dt$$ es un producto interior para el espacio de funciones continuas.
Considera $g$ la función constante $1$.

Aplicando la desigualdad de Minkowski se tiene que
$$\sqrt{\langle f+g,f+g \rangle}\leq \sqrt{\langle f,f \rangle} + \sqrt{\langle g,g \rangle}$$

Tenemos entonces que:

$$\left ( \int_a^b (f(t)+1)^2 dt \right)^\frac{1}{2} \leq \left( \int_a^b f(t)^2 dt \right)^\frac{1}{2} + \left ( \int_a^b dt\right )^\frac{1}{2}.$$

Desarrollando el cuadrado en el lado izquierdo,
$$\left (\int_a^b f(t)^2 dt +2\int_a^b f(t)dt +(b-a) \right )^\frac{1}{2} \leq \left(\int_a^bf(t)^2dt \right)^\frac{1}{2} + (b-a)^\frac{1}{2}$$

Luego, elevando ambos lados de la ecuación al cuadrado
$$\int_a^b f(t)^2 dt + 2\int_a^b f(t) dt +(b-a)$$
$$\leq \int_a^b f(t)^2 dt +2\sqrt{b-a}\left( \int_a^b f(t)^2 dt\right)^\frac{1}{2} +(b-a)$$

Finalmente, cancelando términos igual en ambos lados, obtenemos la desigualdad deseada

$$\int_a^b f(t) dt \leq \left((b-a) \int_a^b f(t)^2 dt\right)^\frac{1}{2}.$$

$\square$

Tarea Moral

  • Resuelve el problema 2.b usando la desigualdad de Minkowski.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Bases ortogonales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Como ya discutimos en las entradas anteriores, si tenemos un espacio vectorial $V$ con producto interior, entonces podemos definir varias nociones geométricas en $V$, como ángulos, norma y distancia. Ahora vamos a definir una noción muy útil en álgebra lineal: la de bases ortogonales. Para ello, combinaremos las nociones de bases y producto interior.

Las bases ortogonales no sólo tienen aplicaciones en álgebra lineal. También son el punto de partida de muchos conceptos matemáticos avanzados. Un primer ejemplo es el análisis de Fourier, que estudia cómo aproximar funciones mediante funciones trigonométricas y que tiene aplicaciones en el mundo real en análisis de señales. Otro ejemplo es la vasta teoría de polinomios ortogonales, con aplicaciones en el mundo real en aproximación e integración numérica.

En estas entradas de bases ortogonales tomaremos espacios vectoriales sobre $\mathbb{R}$ con un producto interior $\langle \cdot,\cdot \rangle$.

Conjuntos ortogonales y ortonormales

Comenzamos con la siguiente definición. Recuerda que $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior, así que induce una norma $\Vert \cdot \Vert$.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Ortogonal si cualquier par de vectores distintos de $S$ es ortogonal, es decir, si para todo $v,w$ en $S$, con $v\neq w$ se tiene que $$\langle v, w \rangle = 0.$$
  • Ortonormal si es ortogonal, y además todo vector de $S$ tiene norma $1$.

En otras palabras, $S$ es ortonormal si para todo $v$ en $S$ se tiene $\langle v, v\rangle =1$ y para $v$ y $w$ en $S$ distintos se tiene $\langle v, w\rangle =0$.

Ejemplo. Si tomamos a $\mathbb{R}^n$ con el producto punto, entonces la base canónica es un conjunto ortonormal pues, en efecto, $e_i\cdot e_i = 1$ y para $i\neq j$ se tiene $e_i\cdot e_j = 0$.

Todo conjunto de un sólo elemento es ortogonal, pues no hay nada que probar. Otro conjunto ortonormal en $\mathbb{R}^2$ es el conjunto que sólo tiene al vector $\left(\frac{3}{5},\frac{4}{5}\right)$, pues este es un vector de norma $1$.

Los vectores $(1,1,0)$, $(1,-1,0)$ y $(0,0,1)$ forman otro conjunto ortogonal en $\mathbb{R}^3$, pues en efecto
\begin{align*}
(1,1,0)\cdot (1,-1,0)&=1-1=0\\
(1,-1,0)\cdot (0,0,1)&=0\\
(0,0,1)\cdot (1,1,0)&=0.
\end{align*}

Sin embargo, este no es un conjunto ortonormal, pues la norma de $(1,1,0)$ es $\sqrt{2}\neq 1$. Si normalizamos a cada vector, es decir, si lo dividimos entre su norma, entonces obtenemos los vectores ortonormales $\left(1/\sqrt{2},1/\sqrt{2},0\right)$, $\left(1/\sqrt{2},-1/\sqrt{2},0\right)$ y $(0,0,1)$.

$\triangle$

Propiedades de conjuntos ortogonales y ortonormales

Todo conjunto ortogonal de vectores no nulos se puede normalizar como en el ejemplo de la sección anterior para obtener un conjunto ortonormal. Es decir, si $S$ es un conjunto de vectores distintos de $0$, entonces $$S’=\left\{\frac{v}{\Vert v \Vert}: v\in S\right\}$$ es un conjunto ortonormal.

Una propiedad fundamental de los conjuntos ortonormales de vectores es que son linealmente independientes. Se puede probar algo un poco más general.

Proposición. Si $S$ es un conjunto ortogonal de vectores no nulos, entonces los elementos de $V$ son linealmente independientes.

Demostración. Tomemos $v_1,\ldots,v_n$ elementos de $S$ y supongamos que existen $\alpha_1,\ldots,\alpha_n$ escalares tales que $$v:=\sum_{i=1}^n \alpha_i v_i =0.$$

Tomemos un índice $j$ en $1,\ldots,n$ y hagamos el producto interior $\langle v, v_j\rangle$. Por un lado, como $v=0$, este produto es $0$. Por otro lado, por linealidad es $$\sum_{i=1}^n \alpha_i \langle v_i,v_j\rangle.$$

Cuando $i\neq j$, el sumando correspondiente es igual a $0$. De este modo, el único sumando no cero es cuando $i=j$, el cual es $\alpha_j \langle v_j,v_j\rangle$. De estos argumentos, deducimos que $$\alpha_j\langle v_j,v_j\rangle =0.$$ Como los vectores son no nulos, se tiene que $\langle v_j,v_j\rangle \neq 0$. Así, $\alpha_j=0$ para todo $j=1,\ldots,n$, lo cual muestra que los vectores son linealmente independientes.

$\square$

Como cada elemento de un conjunto ortonormal tiene norma $1$, entonces no puede ser nulo, así que como corolario de la proposición anterior, todo conjunto ortonormal es linealmente independiente. Otro corolario es el siguiente.

Corolario. En un espacio Euclideano de dimensión $d$, los conjuntos ortogonales sin vectores nulos tienen a lo más $d$ elementos.

Bases ortogonales y ortonormales

Cuando una base de un espacio vectorial es ortogonal (o bien, ortonormal), pasan varias cosas buenas. Esto amerita una definición por separado.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Una base ortogonal si $S$ es una base de $V$ y es un conjunto ortogonal.
  • Una base ortonormal si $S$ una base de $V$ y es un conjunto ortonormal.

Ejemplo. En $\mathbb{R}^n$ la base canónica es una base ortonormal.

En $\mathbb{R}^2$ el conjunto $S=\{(2,3),(9,-6)\}$ es un conjunto ortogonal. Además, se puede verificar fácilmente que son dos vectores linealmente independientes. De este modo, $S$ es una base ortogonal.

Sin embargo, $S$ no es una base ortonormal pues el primero de ellos tiene norma $\sqrt{2^2+3^2}=\sqrt{13}$. Si quisiéramos convertir a $S$ en una base ortonormal, podemos normalizar a cada uno de sus elementos.

$\triangle$

En la sección anterior vimos que los conjuntos ortonormales son linealmente independientes. Otro corolario de este resultado es lo siguiente.

Corolario. En un espacio Euclideano de dimensión $n$, un conjunto ortonormal de $n$ vectores es una base ortonormal.

La importancia de las bases ortogonales yace en que dada una base ortonormal $B$ y un vector $v$, podemos encontrar varias propiedades de $v$ en términos de $B$ fácilmente. Por ejemplo, veremos más adelante que:

  • Las coordenadas de $v$ con respecto a la base $B$ son sencillas.
  • Hay una fórmula simple para la norma de $v$ en términos de sus coordenadas en la base $B.$
  • Si $B$ es una base de un subespacio $W$ de $V$, entonces es fácil encontrar la distancia de $v$ a $W.$

Mejor aún, las bases ortonormales siempre existen.

Teorema. Todo espacio Euclideano tiene una base ortonormal.

Es decir, sin importar qué espacio vectorial real de dimensión finita tomemos, y sin importar qué producto punto le pongamos, podemos dar una base ortogonal. De hecho, veremos un resultado un poco más fuerte, que nos dará un procedimiento para encontrar dicha base, incluso imponiendo restricciones adicionales.

Ejemplo de bases ortogonales en polinomios

Ejemplo. Tomemos $\mathbb{R}_n[x]$ el espacio de polinomios de grado a lo más $n$ con coeficientes reales. Además, tomemos números reales distintos $x_0,\ldots,x_n$. A partir de estos reales podemos definir la operación $$\langle P, Q \rangle = \sum_{j=0}^n P(x_j)Q(x_j),$$ la cual es claramente bilineal y simétrica.

Tenemos que $\langle P,P\rangle$ es una suma de cuadrados, y por lo tanto es no negativa. Además, si $\langle P, P\rangle =0$, es porque $$\sum_{j=0}^n P(x_j)^2=0,$$ y como estamos trabajando en $\mathbb{R}$ esto implica que cada sumando debe ser cero. Pero las igualdades $$P(x_0)=\ldots=P(x_n)=0$$ dicen que los $n+1$ reales distintos $x_i$ son raíces de $P$, y como $P$ es de grado a lo más $n$, tenemos que $P$ es el polinomio $0$. En resumen, $\langle \cdot, \cdot \rangle$ es un producto interior en $\mathbb{R}_n[x]$. Vamos a dar una base ortogonal con respecto a este producto interior.

Para $i=0,\ldots,n$, consideremos los polinomios $$L_i(x)=\prod_{0\leq k \leq n, k\neq i} \frac{x-x_k}{x_i-x_k}.$$ Observa que $L_j(x_j)=1$ y si $j\neq i$, tenemos $L_i(x_j)=0$. Afirmamos que $$B=\{L_j:j=0,\ldots,n+1\}$$ es una base ortonormal de $\mathbb{R}_n[x]$ con el producto interior que definimos. Como consiste de $n+1$ polinomios y $\dim(\mathbb{R}_n[x])=n+1$, basta con que veamos que es un conjunto ortonormal.

Primero, notemos que
\begin{align*}
\langle L_i,L_i \rangle = \sum_{j=0}^n L_i(x_j)^2 = L_i(x_i)^2=1,
\end{align*}

de modo que cada $L_i$ tiene norma $1$.

Luego, notemos que si $i\neq j$, entonces $L_i(x_k)L_j(x_k)=0$ pues $x_k$ no puede ser simultáneamente $x_i$ y $x_j$. De este modo,

\begin{align*}
\langle L_i,L_j \rangle = \sum_{k=0}^n L_i(x_k)L_j(x_k)=0.
\end{align*}

Con esto mostramos que cada par de polinomios distintos es ortogonal. Esto termina la demostración de que $B$ es base ortonormal.

$\square$

Ejemplo de conjuntos ortogonales en funciones periódicas

Ejemplo. Consideremos $V$ el conjunto de funciones $f:\mathbb{R}\to \mathbb{R}$ continuas y periódicas de periodo $2\pi$. Definimos $$\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx.$$ Se puede mostrar que $\langle \cdot, \cdot \rangle$ así definido es un producto interior en $V$.

Para cada entero positivo $n$, definimos
\begin{align*}
C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\
S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.
\end{align*}

Además, definimos $C_0(x)=\frac{1}{\sqrt{2\pi}}$. Afirmamos que $$\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}$$ es un conjunto ortonormal de vectores. Mostremos esto.

Para empezar, notamos que $$\Vert C_0\Vert ^2 = \int_{-\pi}^{\pi} \frac{1}{2\pi}\, dx =1.$$

Luego, tenemos que para $n\geq 1$ que
\begin{align*}
\Vert C_n\Vert ^2 &= \int_{-\pi}^\pi \frac{1}{\pi} \cos^2(nx)\, dx\\
&= \int_{-\pi}^\pi \frac{1+\cos(2nx)}{2\pi}\, dx\\
&= 1,
\end{align*}

ya que para todo entero $m\neq 0$ se tiene que $$\int_{-\pi}^\pi \cos(mx) \, dx=0.$$ De manera similar, usando la identidad $$\sin^2(nx)=\frac{1-\cos(nx)}{2},$$ se puede ver que la norma de $S_n$ es $1$.

Para ver que las parejas de elementos distintas son ortogonales, tenemos varios casos. Si tomamos $n\geq 1$, el resultado para $\langle C_0,C_n\rangle$ ó $\langle C_0,S_n\rangle$ se deduce de que
$$\int_{-\pi}^\pi \cos(mx)\, dx=\int_{-\pi}^\pi \sin(mx)\, dx=0$$ para todo entero $m\neq 0$.

Si tomamos dos $C_i$’s distintos, dos $S_i’s$ distintos o un $C_i$ y un $S_i$, el resultado se deduce de las fórmulas «producto a suma» de las funciones trigonométricas.

$\square$

Más adelante…

En esta entrada combinamos las nociones de bases y el producto interior, estudiadas en entradas anteriores, para definir a las bases ortogonales. Vimos algunas propiedades de conjuntos ortogonales y ortonormales, para extenderlos a bases ortogonales y ortonormales. Vimos unos ejemplos de bases ortogonales de los polinomios y otros ejemplos de conjuntos ortogonales en funciones periódicas.

En la siguiente entrada veremos aplicaciones de estos conceptos, culminando en una descomposición de Fourier.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un conjunto ortogonal de vectores en $\mathbb{R}^4$ tal que ninguna de las entradas de ninguno de sus vectores sea igual a $0$.
  • Escribe las demostraciones de los corolarios enunciados en esta entrada.
  • Muestra que $\langle \cdot, \cdot \rangle$ definido en el ejemplo de funciones periódicas es un producto interior.
  • Termina de mostrar que la familia $\mathcal{F}$ del ejemplo de funciones periódicas es ortonormal. Sugerencia: Usa identidades de suma y resta de ángulos para poner el producto de senos (o cosenos o mixto) como una suma de senos y/o cosenos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Ángulos, norma, distancia y desigualdad de Minkowski

Por Leonardo Ignacio Martínez Sandoval

Introducción

Estamos listos para hablar de varias nociones geométricas como ángulo, norma, distancia y de la desigualdad de Minkowski. Antes de hacer eso, hagamos un breve repaso de qué hemos hecho en estas últimas entradas.

Primero, hablamos de formas bilineales y de su formas cuadráticas asociadas. Segundo, vimos cómo a través de la identidad de polarización podemos asignar una única forma bilineal simétrica a una forma cuadrática. Finalmente, en la última entrada nos enfocamos en las formas bilineales simétricas que cumplían cierta condición de positividad.

En esa misma entrada definimos producto interior, que simplemente es una forma bilineal simétrica y positiva definida. También definimos la norma de un vector en un espacio con producto interior $\langle \cdot, \cdot \rangle$, que era $$\Vert x \Vert = \sqrt{\langle x, x \rangle}.$$

Finalmente, en la entrada anterior probamos la siguiente versión general de la desigualdad de Cauchy-Schwarz:

Teorema (desigualdad de Cauchy-Schwarz). Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica y $q$ su forma cuadrática asociada.

  • Si $b$ es positiva, entonces para todo $x$ y $y$ en $V$ tenemos que $$b(x,y)^2\leq q(x)q(y).$$ Si $x$ y $y$ son linealmente dependientes, se da la igualdad.
  • Además, si $b$ es positiva definida y $x$ y $y$ son linealmente independientes, entonces la desigualdad es estricta.

Ángulos

Fijemos $V$ un espacio vectorial sobre los reales con producto interior. En la entrada anterior vimos que la desigualdad de Cauchy-Schwarz implica que para cualesquiera vectores $x$ y $y$ en $V$ tenemos que $$|\langle x, y \rangle| \leq \Vert x \Vert \cdot \Vert y \Vert.$$

Si $x$ y $y$ son vectores distintos de cero, podemos reescribir la desigualdad anterior como $$-1\leq \frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}\leq 1.$$ Esto justifica la siguiente definición.

Definición. Sean $x$ y $y$ vectores no nulos. Definimos al ángulo entre $x$ y $y$ como el único ángulo $\theta$ en el intervalo $[0,\pi]$ tal que $$\cos \theta = \frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}.$$

Observa que $\theta=\frac{\pi}{2}$ si y sólo si $\frac{\langle x, y \rangle}{\Vert x \Vert \cdot \Vert y \Vert}=0$. Esto ocurre si y sólo si $\langle x, y \rangle=0$. Este caso es particularmente importante, y por ello recibe una definición especial.

Definición. Decimos que $x$ y $y$ son ortogonales si $\langle x, y \rangle=0$.

Para empezar, veamos un ejemplo sencillo de ortogonalidad.

Ejemplo 1. Tomemos $\mathbb{R}^5$ con el producto interior canónico, es decir, el producto punto. Los vectores $u=(1,0,-4,0,5)$ y $v=(0,3,0,-2,0)$ tienen producto punto $$\langle u, v \rangle=1\cdot 0 + 0\cdot 3 + (-4)\cdot 0 + 0 \cdot (-2) + 5 \cdot 0=0,$$ así que son ortogonales.

$\triangle$

Ahora, veamos un ejemplo un poco más elaborado, del cálculo de un ángulo en un espacio vectorial de funciones.

Ejemplo 2. Anteriormente vimos que $\mathcal{C}[0,1]$ tiene un producto interior $$\langle f, g \rangle=\int_0^1 f(x)g(x)\, dx.$$ Calculemos el ángulo entre $f(x)=x^2$ y $g(x)=x^3$ con este producto interior. Primero, calculamos $\Vert f \Vert$ y $\Vert g \Vert$ como sigue
\begin{align*}
\Vert f \Vert^2 &= \int_0^1 x^4 \,dx = \frac{1}{5}\\
\Vert g \Vert^2 &= \int_0^1 x^6 \,dx = \frac{1}{7},
\end{align*}

de donde $\Vert f \Vert = \frac{1}{\sqrt{5}}$ y $\Vert g \Vert = \frac{1}{\sqrt{7}}$.

Luego, calculamos
\begin{align*}
\langle f,g \rangle &=\int_0^1 f(x)g(x) \, dx\\
&=\int_0^1 x^5 \, dx\\
&=\frac{1}{6}.
\end{align*}

Como esperaríamos por la desigualdad de Cauchy-Schwarz, tenemos la siguiente desigualdad:
\begin{align*}
\langle f,g \rangle &= \frac{1}{6}\leq \frac{1}{\sqrt{35}}=\Vert f \Vert \Vert g \Vert.
\end{align*}

El ángulo entre $f$ y $g$ es entonces
\begin{align*}
\theta &= \arccos\left(\frac{\langle f, g \rangle}{\Vert f \Vert \cdot \Vert g \Vert}\right)\\
&=\arccos\left(\frac{1/6}{1/\sqrt{35}}\right)\\
&=\arccos\left(\frac{\sqrt{35}}{6}\right).
\end{align*}

$\triangle$

Desigualdad de Minkowski

Hay una forma un poco distinta de escribir la desigualdad de Cauchy-Schwarz. La enunciamos a continuación.

Teorema (desigualdad de Minkowski). Sean $x$ y $y$ vectores de un espacio vectorial $V$ con una forma cuadrática positiva $q$. Entonces $$\sqrt{q(x)}+\sqrt{q(y)}\geq \sqrt{q(x+y)}.$$

Demostración. Sea $b$ la forma polar de $q$. Recordemos que $$q(x+y)=q(x)+2b(x,y)+q(y).$$

Como $q$ es forma cuadrática positiva, la desigualdad que queremos mostrar es equivalente a la siguiente desigualdad obtenida de elevar ambos lados al cuadrado:

\begin{align*}
q(x)+2\sqrt{q(x)q(y)}+q(y)&\geq q(x+y)\\
&=q(x)+2b(x,y)+q(y).
\end{align*}

Cancelando $q(x)+q(y)$ de ambos lados y dividiendo entre $2$, obtenemos la desigualdad equivalente
\begin{align*}
\sqrt{q(x)q(y)}\geq b(x,y).
\end{align*}

Si $b(x,y)<0$, esta desigualdad es claramente cierta. Si $b(x,y)\geq 0$, esta desigualdad es equivalente a la obtenida de elevarla al cuadrado, es decir, $$q(x)q(y)\geq b(x,y)^2,$$ que es precisamente la desigualdad de Cauchy-Schwarz.

$\square$

De producto interior a norma

Estamos listos para mostrar algunas propiedades importantes de la noción de norma que definimos para espacios vectoriales reales con producto interior.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior con norma asociada $\Vert \cdot \Vert$. Se cumple que

  1. $\Vert v \Vert \geq 0$ para todo $v$ en $V$, con igualdad si y sólo si $v=0$.
  2. $\Vert cv \Vert =|c|\Vert v \Vert$ para todo $v$ en $V$ y real $c$.
  3. (Desigualdad del triángulo) $\Vert v \Vert + \Vert w \Vert \geq \Vert v+w \Vert$ para todo par de vectores $v$ y $w$ en $V$.

Demostración. Sea $b$ el producto interior de $V$. El punto 1 se sigue de que $b$ es positiva definida. El punto 2 se sigue de que $b$ es bilineal, pues $b(cv,cv)=c^2b(v,v)$, de modo que $$\Vert cv \Vert = \sqrt{c^2} \Vert v \Vert =|c| \Vert v \Vert.$$ El punto 3 es la desigualdad de Minkowski.

$\square$

En general, si tenemos un espacio vectorial $V$ sobre los reales y una función $\Vert \cdot \Vert:V \to \mathbb{R}$ que satisface los puntos 1 a 3 de la proposición anterior, decimos que $\Vert \cdot \Vert$ es una norma para $V$. Hay algunas normas que no se pueden obtener a través de un producto interior.

Ejemplo. Consideremos $V=M_n(\mathbb{R})$. El producto de Frobenius de las matrices $A$ y $B$ está dado por $$\langle A,B\rangle = \text{tr}(^tA B).$$ Se puede mostrar que el producto de Frobenius es un producto interior. La norma de Frobenius es la norma inducida por este producto, es decir, $$\Vert A \Vert = \sqrt{\text{tr}(^tAA)}.$$

Por la desigualdad de Minkowski, tenemos que para cualesquiera dos matrices $A$ y $B$ tenemos que $$\sqrt{\text{tr}(^t(A+B)(A+B))}\leq \sqrt{\text{tr}(^tAA)} + \sqrt{\text{tr}(^tBB)}.$$

En particular, si tomamos a la identidad $I$, tenemos que su norma de Frobenius es $\sqrt{n}$. Esto muestra la siguiente desigualdad, válida para cualquier matriz $A$ en $M_n(\mathbb{R})$:

$$\sqrt{\text{tr}((^tA+I)(A+I))}\leq \sqrt{\text{tr}(^tAA)}+ \sqrt{n}.$$

$\triangle$

De norma a distancia

Podemos pensar a la norma de un vector $v$ como qué tan lejos está del vector $0$. También nos gustaría poder hablar de qué tan lejos están cualesquiera dos vectores de un espacio vectorial con producto interior. Por esta razón, introducimos la siguiente definición.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior de norma $\Vert \cdot \Vert$. La distancia asociada a este producto interior es la función $d:V\times V\to \mathbb{R}$ tal que $d(x,y)=\Vert x-y\Vert.$ A $d(x,y)$ le llamamos la distancia entre $x$ y $y$.

El siguiente resultado se sigue de las propiedades de la norma de un producto interior. Su demostración queda como tarea moral.

Proposición. Si $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior de distancia $d$, entonces:

  1. $d(x,y)\geq 0$ para todos $x$ y $y$ en $V$ y es igual a $0$ si y sólo si $x=y$.
  2. $d(x,y)=d(y,x)$ para todos $x$ y $y$ en $V$.
  3. $d(x,z)+d(z,y)\geq d(x,y)$ para todos $x$, $y$ y $z$ en $V$.

En general, si tenemos cualquier conjunto $X$ (no hace falta que sea un espacio vectorial), a una función $d$ que satisface los puntos 1 a 3 de la proposición anterior se le conoce como una métrica para $X$. Cualquier norma en un espacio vectorial $V$ (no sólo las de producto interior) induce una métrica en $V$. Sin embargo, hay métricas de espacios vectoriales que no vienen de una norma.

Más adelante…

Retomando conceptos ya definidos como la norma de un vector, en esta entrada vimos cómo encontrar el ángulo entre dos vectores no-nulos y se llegó a una forma natural de introducir la ortogonalidad entre dos vectores. Así mismo, se demostraron algunas propiedades de la norma asociada a un producto interior, siendo la última una forma distinta de expresar la desigualdad de Cauchy-Schwarz, usando la desigualdad de Minkowski. Finalmente, se definió el concepto de distancia entre dos vectores.

En entradas posteriores, usaremos estos conceptos para estudiar bases ortogonales, que tienen usos en conceptos matemáticos más avanzados como el análisis de Fourier o la teoría de polinomios ortogonales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Toma $\mathbb{R}^4$ con el producto interior canónico (producto punto). Determina la norma de $(3,4,0,1)$. Encuentra el ángulo entre los vectores $(1,0,2,5)$ y $(4,5,0,-3)$.
  • Muestra que el producto de Frobenius es un producto interior en $M_n(\mathbb{R})$.
  • Demuestra la proposición de propiedades de la distancia

Considera $V=\mathbb{R}_3[x]$ el espacio vectorial de polinomios con coeficientes reales y grado a lo más $3$. Definimos $$\langle p,q \rangle = \sum_{j=1}^5 p(j)q(j).$$

  • Muestra que $\langle \cdot, \cdot \rangle$ así definido es un producto interior.
  • Encuentra el ángulo entre los polinomios $1+x^2$ y $2x-3x^3$.
  • Para cada entero positivo $n$, determina la norma del polinomio $1+nx^3$.
  • Determina la distancia entre los polinomios $1$ y $1+x+x^2+x^3$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de formas cuadráticas y producto interior

Por Blanca Radillo

Introducción

En las últimas sesiones, hemos introducido el tema de formas bilineales y formas cuadráticas. Más adelante, hablamos de positividad de formas cuadráticas y de producto interior. Ahora veremos algunos problemas de formas cuadráticas y producto interior.

Problemas resueltos de formas cuadráticas

Sabemos que si $T:V\times V\rightarrow \mathbb{R}$ es una transformación lineal, $T$ no necesariamente es una forma bilineal (durante la clase del viernes se discutió un ejemplo), entonces una pregunta interesante es ¿qué información tenemos sobre el núcleo de una forma cuadrática? Es fácil ver que una forma cuadrática no es una transformación lineal, pero está asociada a una forma bilineal. Interesadas en esta pregunta, analizaremos algunas propiedades del núcleo de una forma bilineal y de una forma cuadrática.

Problema 1. a) Si $q$ es una forma cuadrática en $\mathbb{R}^n$, ¿el conjunto $\{ x\in \mathbb{R}^n: q(x)=0 \}$ es un subespacio de $\mathbb{R}^n$?
b) Describe ${ x\in \mathbb{R}^n:q(x)=0}$ si:
1) $q(x,y)=x^2+y^2$,
2) $q(x,y,z)=xy+yz+zx$
3) $q(x,y,z)=(x-y)^2+(y-z)^2+(z-x)^2$.

Solución. a) La respuesta es: no, el conjunto $\{ x\in \mathbb{R}^n: q(x)=0 \}$ no necesariamente es un subespacio, ya que no necesariamente es cerrado bajo la suma. Daremos un ejemplo.

Sea $q:\mathbb{R}^2\rightarrow \mathbb{R}$ definido como $q((x,y))=x^2-y^2$. Sabemos que ésta es una forma cuadrática. Notemos que para todo $x,y \in\mathbb{R}$, si $v_1=(x,x),v_2=(y,-y)$, entonces $q(v_1)=x^2-x^2=0$ y $q(v_2)=y^2-(-y)^2=0$, entonces $v_1,v_2 \in \{ x\in \mathbb{R}^n: q(x)=0 \}$. Pero $v_1+v_2=(x+y,x-y)$ no pertenecen al núcleo de $q$, ya que $q(v_1+v_2)=q((x+y,x-y))=(x+y)^2-(x-y)^2=4xy\neq 0$ si $x,y\neq 0$.

b.1) Sea $(x,y)\in\mathbb{R}^2$ tal que $q((x,y))=x^2+y^2=0$. Como $x,y\in\mathbb{R}$, sabemos que la única posibilidad en que la suma de dos cuadrados sea cero es que ambos sean cero, por lo tanto $\{ x\in \mathbb{R}^2: q(x)=0 \}=\{(0,0)\}$.

b.2) Sea $(x,y,z)\in\mathbb{R}^3$ tal que $q((x,y,z))=xy+yz+zx=0$. Si $x=0$ entonces $yz=0$, esto es posible sólo si $y=0$ o $z=0$. Entonces el núcleo contiene a los ejes $(x,0,0)$, $(0,y,0)$ y $(0,0,z)$. Ahora, si $x=-y$, entonces $xy+yz+zx=-x^2-xz+zx=-x^2=0$, por lo tanto $x=0=y$, obteniendo nuevamente a los ejes. Ahora suponemos que $x+y\neq 0$. Entonces $xy+yz+zx=xy+z(x+y)=0$, obteniendo que $z=-\frac{xy}{x+y}$ (el cono elíptico). Por lo tanto el núcleo de $q$ son los ejes y el cono elíptico.

b.3) Sea $(x,y,z)\in\mathbb{R}^3$ tal que $q((x,y,z))=(x-y)^2+(y-z)^2+(z-x)^2=0$. Al igual que en el inciso (b.1), esto sólo es posible si $x-y=y-z=z-x=0$, entonces $x=y=z$. Por lo tanto, $\{ x\in \mathbb{R}^n: q(x)=0 \}=\{(x,x,x):x\in\mathbb{R}\}$.

$\triangle$

Problema 2. Sea $V=P_2(\mathbb{R})$ el espacio de polinomios en $[-1,1]$ con coeficientes reales de grado a lo más 2 y considera el mapeo $b:V\times V\rightarrow \mathbb{R}$ definido como

$b(f,g)=\int_{-1}^1 tf(t)g(t) dt.$

Prueba que $b$ es una forma bilineal simétrica de $V$. Si $q$ es la forma cuadrática asociada, encuentra las $f$ en $V$ tales que $q(f)=0$.

Solución. Mostrar que $b$ es bilineal es sencillo, y queda como tarea moral. Es fácil ver que es simétrica, ya que

\begin{align*}
b(f,g)&=\int_{-1}^1 tf(t)g(t) dt \\
&=\int_{-1}^1 tg(t)f(t)dt=b(g,f).
\end{align*}

Ahora, queremos encontrar las funciones $f$ tales que $q(f)=b(f,f)=\int_{-1}^1 tf^2(t)dt=0$. Como $f$ es un polinomio de grado $2$, es de la forma $f(x)=ax^2+bx+c$ para reales $a,b,c$ y entonces

\begin{align*}
0&=q(f)\\
&=\int_{-1}^1 tf^2(t)dt \\
&=\int_{-1}^1 t(at^2+bt+c)^2dt \\
& = \int_{-1}^1 t(a^2t^4+2abt^3+(b^2+2ac)t^2+2bct+c^2)dt \\
&=\int_{-1}^1 (a^2t^5+2abt^4+(b^2+2ac)t^3+2bct^2+c^2t)dt \\
&=\frac{4ab}{5}+\frac{4bc}{3}=0
\end{align*}

Esto implica que $4b(3a+5c)=0$, entonces $b=0$ o $3a+5c=0$. Por lo tanto $$\{f\in V:q(f)=0\}=\{ax^2+c \}\cup \{ax^2+bx-\frac{3a}{5}\}.$$

$\square$

Problemas resueltos de producto interior

Ahora recordemos que en la clase de ayer, definimos formas bilineales y cuadráticas positivas y definidas positivas, y a partir de ello, definimos qué es un producto interior. Así, en los siguientes problemas, veremos algunos ejemplos de estas definiciones.

Problema 3. Determina cuáles de las siguientes formas cuadráticas son positivas. ¿Cuáles también son definidas positivas?

  1. $q(x,y,z)=xy+yz+zx$.
  2. $q(x,y,z)=(x-y)^2+(y-z)^2+(z-x)^2$.
  3. $q(x,y,z)=x^2-y^2+z^2-xy+2yz-3zx$.

Solución. Sea $v=(x,y,z)\in\mathbb{R}^3$, recordemos que para cada uno de los incisos $q$ es positiva si $q(v)\geq 0$ para toda $v$ y es definida positiva si es positiva y $q(v)=0$ si y sólo si $v=0$.

1) Si escogemos a $v$ como $v=(1,-2,1)$ tenemos que
\begin{align*}q(v)&=q(1,-2,1)\\&=1(-2)+(-2)(1)+1(1)\\&=-2-2+1\\&=-3.\end{align*} Por lo tanto no es positiva ni definida positiva.

2) Dado que para todo $x,y,z$, tenemos que $(x-y)^2,(y-z)^2,(z-x)^2\geq 0$, entonces $q(v)\geq 0$ para todo $v\in\mathbb{R}^3$. Pero si $q(v)=0$, entonces $x=y=z$, pero no necesariamente son iguales a cero. Por lo tanto, $q$ es positiva pero no es definida positiva.

3) Si tomamos $v=(3,0,3)$, obtenemos que \begin{align*}q(v)&=(3)^2+(3)^2-3(3)(3)\\&=9+9-27\\&=-9\\&<0.\end{align*} Por lo tanto no es positiva ni definida positiva.

$\triangle$

Problema 4. Sea $V=C([a,b],\mathbb{R})$. Prueba que el mapeo $\langle \cdot , \cdot \rangle$ definido por $$\langle f,g \rangle = \int_a^b f(x)g(x) dx$$ es un producto interior en $V$.

Solución. Por lo visto en la clase de ayer, tenemos que un producto interior es una forma bilineal simétrica y definida positiva.
Es fácil ver que es forma bilineal simétrica. Basta con probar que es una forma definida positiva. Entonces $\langle f,f\rangle=\int_0^1 f^2(x)dx \geq 0$ ya que $f^2(x)\geq 0$ para toda $x$. Por lo tanto $\langle \cdot, \cdot \rangle$ es positiva. Como $f^2$ es continua y positiva, si $\int_0^1 f^2(x)dx=0$, implica que $f^2=0$, entonces $f=0$. Por lo tanto, $\langle \cdot , \cdot \rangle$ es definida positiva, y por ende, es un producto interior.

$\triangle$

Para finalizar, el siguiente problema es un ejemplo que pareciera ser producto interior, pero resulta que no serlo.

Problema 5. Sea $C^\infty([0,1],\mathbb{R})$ es el espacio de funciones suaves (funciones continuas cuyas derivadas de cualquier orden existen y son continuas). Definimos el espacio $V={ f\in C^\infty([0,1],\mathbb{R}): f(0)=f(1)=0 }$. Si definimos $$\langle f,g \rangle:=\int_0^1 (f(x)g'(x)+f'(x)g(x))dx,$$ ¿es $\langle \cdot , \cdot \rangle$ un producto interior en $V$?

Solución. Es claro ver que $\langle \cdot, \cdot \rangle$ es bilineal y simétrica, entonces falta demostrar si es o no es una forma definida positiva. Para $f\in V$, tenemos que $\langle f,f \rangle=\int_0^1 2f(x)f'(x)dx.$

Notemos que, por la regla de la cadena, $\frac{d}{dx}f^2(x)=2f(x)f'(x)$, entonces \begin{align*}\langle f,f \rangle&=\int_0^1 \frac{d}{dx} f^2(x) dx\\&=f^2(1)-f^2(0)\\&=0.\end{align*}

Por lo tanto $\langle f,f\rangle=0$ para toda $f$. Esto implica que no es definida positiva, y como consecuencia, no es producto interior de $V$.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»