Archivo de la etiqueta: independencia

Álgebra Lineal I: Transformaciones multilineales antisimétricas y alternantes

Introducción

En la entrada anterior hablamos de la importancia que tiene poder diagonalizar una matriz: nos ayuda a elevarla a potencias y a encontrar varias de sus propiedades fácilmente. En esa entrada discutimos a grandes rasgos el caso de matrices en $M_2(\mathbb{R})$. Dijimos que para dimensiones más altas, lo primero que tenemos que hacer es generalizar la noción de determinante de una manera que nos permita probar varias de sus propiedades fácilmente. Es por eso que introdujimos a las funciones multilineales y dimos una introducción a permutaciones. Tras definir las clases de transformaciones multilineales alternantes y antisimétricas, podremos finalmente hablar de determinantes.

Antes de entrar con el tema, haremos un pequeño recordatorio. Para $d$ un entero positivo y $V$, $W$ espacios vectoriales sobre un mismo campo, una transformación $d$-lineal es una transformación multilineal de $V^d$ a $W$, es decir, una tal que al fijar cualesquiera $d-1$ coordenadas, la función que queda en la entrada restante es lineal.

Con $[n]$ nos referimos al conjunto $\{1,2,\ldots,n\}$. Una permutación en $S_n$ es una función biyectiva $\sigma:[n]\to [n]$. Una permutación invierte a la pareja $i<j$ si $\sigma(i)>\sigma(j)$. Si una permutación $\sigma$ invierte una cantidad impar de parejas, decimos que es impar y que tiene signo $\text{sign}(\sigma)=-1$. Si invierte a una cantidad par de parejas (tal vez cero), entonces es par y tiene signo $\text{sign}(\sigma)=1$.

Transformaciones $n$-lineales antisimétricas y alternantes

Tomemos $d$ un entero positivo, $V$, $W$ espacios vectoriales sobre el mismo campo y $\sigma$ una permutación en $S_d$. Si $T:V^d\to W$ es una transformación $d$-lineal, entonces la función $(\sigma T):V^d\to W$ dada por $$(\sigma T)(v_1,\ldots,v_d)=T(v_{\sigma(1)},v_{\sigma(2)},\ldots,v_{\sigma(d)})$$ también lo es. Esto es ya que sólo se cambia el lugar al que se lleva cada vector. Como $T$ es lineal en cualquier entrada (al fijar las demás), entonces $\sigma T$ también.

Definición. Decimos que $T$ es antisimétrica si $\sigma T = \text{sign}(\sigma) T$ para cualquier permutación $\sigma$ en $S_d$. En otras palabras, $T$ es antisimétrica si $\sigma T=T$ para las permutaciones pares y $\sigma T = -T$ para las permutaciones impares.

Definición. Decimos que $T$ es alternante si $T(v_1,\ldots,v_d)=0$ cuando hay dos $v_i$ que sean iguales.

Ejemplo. Consideremos la función $T:(\mathbb{R}^2)^2\to\mathbb{R}$ dada por $$T((a,b),(c,d))=ad-bc.$$ Afirmamos que ésta es una transformación $2$-lineal alternante y antisimétrica. La parte de mostrar que es $2$-lineal es sencilla y se queda como tarea moral.

Veamos primero que es una función alternante. Tenemos que mostrar que si $(a,b)=(c,d)$, entonces $T((a,b),(c,d))=0$. Para ello, basta usar la definición: $$T((a,b),(a,b))=ab-ab=0.$$

Ahora veamos que es una función antisimétrica. Afortunadamente, sólo hay dos permutaciones en $S_2$, la identidad $\text{id}$ y la permutación $\sigma$ que intercambia a $1$ y $2$. La primera tiene signo $1$ y la segunda signo $-1$.

Para la identidad, tenemos $(\text{id}T)((a,b),(c,d))=\sigma((a,b),(c,d))$, así que $(\text{id}T)=T=\text{sign}(\text{id})T$, como queremos.

Para $\sigma$, tenemos que $\sigma T$ es aplicar $T$ pero «con las entradas intercambiadas». De este modo:
\begin{align*}
(\sigma T)((a,b),(c,d))&=T((c,d),(a,b))\\
&=cb-da\\
&=-(ad-bc)\\
&=-T((a,b),(c,d)).
\end{align*}

Esto muestra que $(\sigma T) = -T = \text{sign}(\sigma)T$.

$\square$

Equivalencia entre alternancia y antisimetría

Resulta que ambas definiciones son prácticamente la misma. Las transformaciones alternantes siempre son antisimétricas. Lo único que necesitamos para que las transformaciones antisimétricas sean alternantes es que en el campo $F$ en el que estamos trabajando la ecuación $2x=0$ sólo tenga la solución $x=0$. Esto no pasa, por ejemplo, en $\matbb{Z}_2$. Pero sí pasa en $\mathbb{Q}$, $\mathbb{R}$ y $\mathbb{C}$.

Proposición. Sean $V$ y $W$ espacios vectoriales sobre un campo donde $2x=0$ sólo tiene la solución $x=0$. Sea $d$ un entero positivo. Una transformación $d$-lineal $T:V^d\to W$ es antisimétrica si y sólo si es alternante.

Demostración. Supongamos primero que $T$ es antisimétrica. Mostremos que es alternante. Para ello, supongamos que para $i\neq j$ tenemos que $x_i=x_j$.

Tomemos la permutación $\sigma:[d]\to [d]$ tal que $\sigma(i)=j$, $\sigma(j)=i$ y $\sigma(k)=k$ para todo $k$ distinto de $i$ y $j$. A esta permutación se le llama la transposición $(i,j)$. Es fácil mostrar (y queda como tarea moral), que cualquier transposición tiene signo $-1$.

Usando la hipótesis de que $T$ es antisimétrica con la transposición $(i,j)$, tenemos que
\begin{align*}
T(x_1,&\ldots, x_i,\ldots,x_j,\ldots,x_n)\\
&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n)\\
&=-T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n),
\end{align*}

en donde en la segunda igualdad estamos usando que $x_i=x_j$. De este modo, $$2T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0,$$ y por la hipótesis sobre el campo, tenemos que $$T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0.$$ Así, cuando dos entradas son iguales, la imagen es $0$, de modo que la transformación es alternante.

Hagamos el otro lado de la demostración. Observa que este otro lado no usará la hipótesis del campo. Supongamos que $T$ es alternante.

Como toda permutación es producto de transposiciones y el signo de un producto de permutaciones es el producto de los signos de los factores, basta con mostrar la afirmación para transposiciones. Tomemos entonces $\sigma$ la transposición $(i,j)$. Tenemos que mostrar que $\sigma T = \text{sign}(\sigma) T = -T$.

Usemos que $T$ es alternante. Pondremos en las entradas $i$ y $j$ a la suma de vectores $x_i+x_j$, de modo que $$T(x_1,\ldots,x_i+x_j,\ldots,x_i+x_j,\ldots,x_n)=0.$$ Usando la $n$-linealidad de $T$ en las entradas $i$ y $j$ para abrir el término a la izquierda, tenemos que
\begin{align*}
0=T(x_1&,\ldots,x_i,\ldots,x_i,\ldots,x_n) + \\
&T(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)+\\
&T(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)+\\
&T(x_1,\ldots,x_j,\ldots,x_j,\ldots,x_n).
\end{align*}

Usando de nuevo que $T$ es alternante, el primero y último sumando son cero. Así, \begin{align*}
T(x_1&,\ldots, x_i,\ldots,x_j,\ldots,x_n)\\
&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n).
\end{align*}

En otras palabras, al intercambiar las entradas $i$ y $j$ se cambia el signo de $T$, que precisamente quiere decir que $(\sigma T) = \text{sign}(\sigma)T$.

$\square$

Las transformaciones alternantes se anulan en linealmente dependientes

Una propiedad bastante importante de las transformaciones alternantes es que ayudan a detectar a conjuntos de vectores linealmente dependientes.

Teorema. Sea $T:V^d\to W$ una transformación $d$-lineal y alternante. Supongamos que $v_1,\ldots,v_d$ son linealmente dependientes. Entonces $$T(v_1,v_2,\ldots,v_d)=0.$$

Demostración. Como los vectores son linealmente dependientes, hay uno que está generado por los demás. Sin perder generalidad, podemos suponer que es $v_d$ y que tenemos $$v_d=\alpha_1v_1+\ldots+\alpha_{d-1}v_{d-1}$$ para ciertos escalares $\alpha_1,\ldots, \alpha_{d-1}$.

Usando la $d$-linealidad de $T$, tenemos que
\begin{align*}
T\left(v_1,v_2,\ldots,v_{d-1},v_d\right)&=T\left(v_1,\ldots,v_{d-1},\sum_{i=1}^{d-1} \alpha_i v_i\right)\\
&=\sum_{i=1}^{d-1} \alpha_i T(v_1,\ldots,v_{d-1}, v_i).
\end{align*}

Usando que $T$ es alternante, cada uno de los sumandos del lado derecho es $0$, pues en el $i$-ésimo sumando tenemos que aparece dos veces el vector $v_i$ entre las entradas de $T$. Esto muestra que $$T(v_1,\ldots,v_d)=0,$$ como queríamos mostrar.

$\square$

Introducción a definiciones de determinantes

En la siguiente entrada daremos tres definiciones de determinante. Una es para un conjunto de vectores. Otra es para transformaciones lineales. La última es para matrices. Todas ellas se motivan entre sí, y las propiedades de una nos ayudan a probar propiedades de otras. En esa entrada daremos las definiciones formales. Por ahora sólo hablaremos de ellas de manera intuitiva.

Para definir el determinante para un conjunto de vectores, empezamos con un espacio vectorial $V$ de dimensión $n$ y tomamos una base $B=(b_1,\ldots,b_n)$. Definiremos el determinante con respecto a $B$ de un conjunto de vectores $(v_1,v_2,\ldots,v_n)$ , al cual denotaremos por $\det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)$de $V$ de la manera siguiente.

A cada vector $v_i$ lo ponemos como combinación lineal de elementos de la base: $$v_i=\sum_{j=1}^n a_{ji}b_j.$$ El determinante $$\det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)$$ es $$\sum_{\sigma \in S(n)} \text{sign}(\sigma) a_{1\sigma(1)} \cdot a_{2\sigma(1)}\cdot \ldots\cdot a_{n\sigma(n)}.$$

Observa que esta suma tiene tantos sumandos como elementos en $S_n$, es decir, como permutaciones de $[n]$. Hay $n!$ permutaciones, así que esta suma tiene muchos términos incluso si $n$ no es tan grande.

Veremos que para cualquier base $B$, el determinante con respecto a $B$ es una forma $d$-lineal alternante, y que de hecho las únicas formas $d$-lineales alternantes en $V$ «son determinantes», salvo una constante multiplicativa.

Luego, para una transformación $T:V\to V$ definiremos al determinante de $T$ como el determinante $$\det_{(b_1,\ldots,b_n)}(T(b_1),\ldots,T(b_n)),$$ y veremos que esta definición no depende de la elección de base.

Finalmente, para una matriz $A$ en $M_n(F)$, definiremos su determinante como el determinante de la transformación $T_A:F^n\to F^n$ tal que $T_A(X)=AX$. Veremos que se recupera una fórmula parecida a la de determinante para un conjunto de vectores.

Los teoremas que veremos en la siguiente entrada nos ayudarán a mostrar más adelante de manera muy sencilla que el determinante para funciones o para matrices es multiplicativo, es decir, que para $T:V\to V$, $S:V\to V$ y para matrices $A,B$ en $M_n(F)$ se tiene que

\begin{align*}
\det(T\circ S)&=\det(T)\cdot \det(S)\\
\det(AB)&=\det(A)\cdot \det(B).
\end{align*}

También mostraremos que los determinantes nos ayudan a caracterizar conjuntos linealmente independientes, matrices invertibles y transformaciones biyectivas.

Tarea moral

  • Prueba que la función $T:(\mathbb{R}^2)^2\to\mathbb{R}$ dada por $$T((a,b),(c,d))=ad-bc$$ es $2$-lineal. Para esto, tienes que fijar $(a,b)$ y ver que es lineal en la segunda entrada, y luego fijar $(c,d)$ y ver que es lineal en la primera.
  • Muestra que las transposiciones tienen signo $-1$. Ojo: sólo se intercambia el par $(i,j)$, pero puede ser que eso haga que otros pares se inviertan.
  • Muestra que cualquier permutación se puede expresar como producto de transposiciones.
  • Muestra que la suma de dos transformaciones $n$-lineales es una transformación $n$-lineal. Muestra que al multiplicar por un escalar una transformación $n$-lineal, también se obtiene una transformación $n$-lineal.
  • ¿Es cierto que la suma de transformaciones $n$-lineales alternantes es alternante?

Al final del libro Essential Linear Algebra with Applications de Titu Andreescu hay un apéndice en el que se habla de permutaciones. Ahí puedes aprender o repasar este tema.

Más Adelante…

En esta entrada hemos definido las clases de transformaciones lineales alternantes y antisimétricas; esto con la finalidad de introducir el concepto de determinantes. Además hemos dado una definición intuitiva del concepto de determinante.

En las siguientes entrada estudiaremos diferentes definiciones de determinante: para un conjunto de vectores, para una transformación lineal y finalmente para una matriz. Veremos cómo el uso de determinantes nos ayuda a determinar si un conjunto es linealmente independiente, si una matriz es invertible o si una transformación es biyectiva; además de otras aplicaciones.

Entradas relacionadas

Álgebra Lineal I: Rango de transformaciones lineales y matrices

Introducción

En entradas anteriores hablamos de transformaciones lineales, cómo actúan en conjuntos especiales de vectores y de cómo se pueden representar con matrices. Hablamos también de cómo cambiar de una base a otra y cómo usar esto para entender transformaciones en varias bases. Estamos listos para introducir un concepto fundamental de álgebra lineal, el de rango de una transformación lineal y de una matriz.

Antes de entrar en las definiciones formales, vale la pena hablar un poco de rango de manera intuitiva. Supongamos que $V$ es un espacio vectorial de dimensión $n$ y que $W$ es un espacio vectorial sobre el mismo campo que $V$. Una transformación lineal $T:V\to W$ puede «guardar mucha independencia lineal» o «muy poquita». Si $T$ es inyectiva, ya vimos antes que $T$ manda linealmente independientes a linealmente independientes. Si $T$ es la transformación $0$, entonces se «pierde toda la independencia».

El rango mide algo intermedio entre estos dos extremos. Mientras mayor sea el rango, más independencia lineal se preserva y viceversa. Si mantienes esta intuición en mente, varias de las proposiciones te resultarán más naturales.

Otro buen ejemplo para tener en mente es tomar una transformación lineal $T:\mathbb{R}^3\to \mathbb{R}^3$. Si es la transformación identidad, la base canónica se preserva. Si es la proyección al plano $xy$, entonces «perdemos» al vector $(0,0,1)$, pues se va al $(0,0,0)$. Si es la proyección al eje $x$, «perdemos» al $(0,1,0)$ y al $(0,0,1)$ pues ambos se van a $(0,0,0)$. Y si es la transformación $0$, perdemos a todos. El rango precisamente va a medir esto, y para estos ejemplos tendremos rango $3$, $2$, $1$ y $0$ respectivamente.

Rango para transformaciones lineales

Como en otras ocasiones, cuando hablemos de transformaciones lineales entre espacios vectoriales, serán sobre un mismo campo $F$.

Definición. Sean $V$ y $W$ espacios de dimensión finita. El rango de una transformación lineal $T:V\to W$ es la dimensión de la imagen de $T$, es decir, $$\rank(T)=\dim\Ima T.$$

Si $B$ es una base de $V$, entonces genera a $V$. La transformación $T$ es suprayectiva de $V$ a $\Ima T$, de modo que $T(B)$ es generador de $\Ima T$. De esta forma, para encontrar el rango de una transformación lineal $T:V\to W$ basta:

  • Tomar una base $B$ de $V$
  • Aplicar $T$ a cada elemento de $B$
  • Determinar un conjunto linealmente independiente máximo en $T(B)$

Para hacer este último paso, podemos poner a los vectores coordenada de $T(B)$ con respecto a una base de $W$ como los vectores fila de una matriz $A$ y usar reducción gaussiana. Las operaciones elementales no cambian el espacio generado por las filas, así que el rango de $T$ es el número de vectores fila no cero en la forma escalonada reducida $A_{\text{red}}$ de $A$.

Ejemplo. Encuentra el rango de la transformación lineal $T:\mathbb{R}^3\to M_{2}(\mathbb{R})$ que manda $(x,y,z)$ a $$\begin{pmatrix}x+y-z & 2x \\ 2y-2z & x+z-y\end{pmatrix}.$$

Solución. Tomemos $e_1,e_2,e_3$ la base canónica de $\mathbb{R}^3$. Tenemos que $T(e_1)=\begin{pmatrix}1 & 2\\ 0 & 1\end{pmatrix}$, $T(e_2)=\begin{pmatrix} 1 & 0 \\ 2 & -1\end{pmatrix}$ y $T(e_3)=\begin{pmatrix}-1 & 0\\ -2 & 1\end{pmatrix}$.

Tomando la base canónica $E_{11},E_{12},E_{21},E_{22}$ de $M_2(\mathbb{R})$, podemos entonces poner a las coordenadas de $T(e_1),T(e_2),T(e_2)$ como vectores fila de una matriz $$\begin{pmatrix}1 & 2 & 0 & 1\\ 1 & 0 & 2 & -1\\ -1& 0 & -2 & 1\end{pmatrix}.$$ Sumando la segunda fila a la tercera, y después restando la primera a la segunda,obtenemos la matriz $$\begin{pmatrix}1 & 2 & 0 & 1\\ 0 & -2 & 2 & -2\\ 0& 0 & 0 & 0\end{pmatrix}.$$ De aquí, sin necesidad de terminar la reducción gaussiana, podemos ver que habrá exactamente dos filas no cero. De este modo, el rango de la transformación es $2$.

$\square$

Propiedades del rango

Demostremos ahora algunas propiedades teóricas importantes acerca del rango de una transfromación lineal.

Proposición. Sean $U$, $V$ y $W$ espacios de dimensión finita. Sean $S:U\to V$, $T:V\to W$, $T’:V\to W$ transformaciones lineales. Entonces:

  1. $\rank(T)\leq \dim V$
  2. $\rank(T)\leq \dim W$
  3. $\rank(T\circ S)\leq \rank(T)$
  4. $\rank(T\circ S)\leq \rank(S)$
  5. $\rank(T+T’)\leq \rank(T) + \rank(T’)$

Demostración. (1) Pensemos a $T$ como una transformación $T:V\to \Ima(T)$. Haciendo esto, $T$ resulta ser suprayectiva, y por un resultado anterior tenemos que $\dim V\geq \dim \Ima T = \rank (T)$.

(2) Sabemos que $\Ima (T)$ es un subespacio de $W$, así que $\rank(T)=\dim \Ima T \leq \dim W$.

(3) La imagen de $T$ contiene a la imagen de $T\circ S$, pues cada vector de la forma $T(S(v))$ es de la forma $T(w)$ (para $w=S(v)$). Así, \begin{align*}\rank(T) &=\dim \Ima T \geq \dim \ima T\circ S\\ &= \rank (T\circ S).\end{align*}

(4) La función $T\circ S$ coincide con la restricción $T_{\Ima S}$ de $T$ a $\Ima S$. Por el inciso (1), $\rank(T_{\Ima S})\leq \dim \Ima S = \rank(S)$, así que $\rank (T\circ S) \leq \rank(S)$.

(5) Tenemos que $\Ima (T+T’) \subseteq \Ima T + \Ima T’$. Además, por un corolario de la fórmula de Grassman, sabemos que
\begin{align*}
\dim (\Ima T + \Ima T’)&\leq \dim \Ima T + \dim \Ima T’\\
&= \rank(T) + \rank(T’).
\end{align*}

Así,
\begin{align*}
\rank(T+T’)&\leq \rank(\Ima T + \Ima T’)\\
&\leq \rank(T)+\rank(T’).
\end{align*}

$\square$

Proposición. Sean $R:U\to V$, $T:V\to W$ y $S:W\to Z$ transformaciones lineales con $R$ suprayectiva y $S$ inyectiva. Entonces $$\rank(S\circ T\circ R)=\rank (T).$$

Dicho de otra forma «composición por la izquierda con transformaciones inyectivas no cambia el rango» y «composición por la derecha con transformaciones suprayectivas no cambia el rango». Un corolario es «composición con transformaciones invertibles no cambia el rango».

Demostración. De la proposición anterior, tenemos que $\rank(S\circ T)\leq \rank (T)$. La restricción $S_{\Ima T}$ de $S$ a la imagen de $T$ es una transformación lineal de $\Ima T$ a $\Ima (S\circ T)$ que es inyectiva, de modo que $\dim \Ima T \leq \dim \Ima (S\circ T)$, que es justo $\rank(T)\leq \rank(S\circ T)$, de modo que tenemos la igualdad $\rank(S\circ T)=\rank (T)$.

Como $R$ es suprayectiva, $\Ima R= V$, de modo que $\Ima(S\circ T \circ R)=\Ima(S\circ T)$. Así, \begin{align*}\rank (S\circ T \circ R) &= \rank (S\circ T)\\&=\rank(T).\end{align*}

$\square$

Teorema de rango-nulidad

Una transformación lineal $T:V\to W$ determina automáticamente dos subespacios de manera natural: el kernel $\ker T$ y la imagen $\Ima T$. Resulta que las dimensiones de $\ker T$, de $\Ima T$ y de $V$ están fuertemente relacionadas entre sí.

Teorema. Sean $V$ y $W$ espacios de dimensión finita. Sea $T:V\to W$ una transformación lineal. Entonces $$\dim\ker T + \rank(T) = \dim V.$$

Demostración. Supongamos que $\dim V=n$ y $\dim \ker T = k$. Queremos mostrar que $\rank(T)=n-k$. Para ello, tomemos una base $B$ de $\ker T$ y tomemos $B’=\{v_1,\ldots,v_{n-k}\}$ tal que $B\cup B’$ sea base de $V$. Basta mostrar que $T(B’)=\{T(v_1),\ldots,T(v_{n-k})\}\subset \Ima T$ es base de $\Ima T$. Sea $U$ el generado por $B’$, de modo que $V=U \oplus \ker T$.

Veamos que $T(B’)$ es generador de $\Ima T$. Tomemos $T(v)$ en $\Ima T$. Podemos escribir $v=z+u$ con $z\in \ker T$ y $u\in U$. Así, $T(v)=T(z)+T(u)=T(u)$, y este último está en el generado por $T(B’)$.

Ahora veamos que $T(B’)$ es linealmente independiente. Si $$\alpha_1T(v_1)+\ldots+\alpha_{n-k}T(v_{n-k})=0,$$ entonces $T(\alpha_1v_1+\ldots+\alpha_{n-k}v_{n-k})=0$, de modo que $\alpha_1v_1+\ldots+\alpha_{n-k}v_{n-k}$ está en $U$ y en $\ker T$, pero la intersección de estos espacios es $\{0\}$. Como esta combinación lineal es $0$ y $B’$ es linealmente independiente, $\alpha_1=\ldots=\alpha_n=0$.

De esta forma, $T(B’)$ es linealmente independiente y genera a $\Ima T$, de modo que $\rank(T) =|B’|=n-k$.

$\square$

Ejemplo. Consideremos de nuevo la transformación lineal $T:\mathbb{R}^3\to M_{2}(\mathbb{R})$ que manda $(x,y,z)$ a $$\begin{pmatrix}x+y-z & 2x \\ 2y-2z & x+z-y\end{pmatrix}.$$ Muestra que $T$ no es inyectiva.

Solución. Ya determinamos previamente que esta transformación tiene rango $2$. Por el teorema de rango-nulidad, su kernel tiene dimensión $1$. Así, hay un vector $v\neq (0,0,0)$ en el kernel, para el cual $T(v)=0=T(0)$, de modo que $T$ no es inyectiva.

$\square$

Problema. Demuestra que para cualquier entero $n$ existe una terna $(a,b,c)\neq (0,0,0)$ con $a+b+c=0$ y tal que $$\int_0^1 at^{2n}+bt^n+c \,dt = 0.$$

Solución. Podríamos hacer la integral y plantear dos ecuaciones lineales. Sin embargo, daremos argumentos dimensionales para evitar la integral. Consideremos las transformaciones lineales $T:\mathbb{R}^3\to \mathbb{R}$ y $S:\mathbb{R}^3\to \mathbb{R}$ dadas por
\begin{align*}
T(x,y,z)&=\int_0^1 xt^{2n}+yt^n+z \,dt\\
S(x,y,z)&=x+y+z.
\end{align*}
Notemos que $T(0,0,1)=\int_0^1 1\, dt = 1=S(0,0,1)$, de modo que ni $T$ ni $S$ son la transformación $0$. Como su rango puede ser a lo más $\dim\mathbb{R}=1$, entonces su rango es $1$. Por el teorema de rango-nulidad, $\dim \ker S= \dim \ker T = 2$. Como ambos son subespacios de $\mathbb{R}^3$, es imposible que $\ker S \cap \ker T=\{0\}$, de modo que existe $(a,b,c)$ no cero tal que $T(a,b,c)=S(a,b,c)=0$. Esto es justo lo que buscábamos.

$\square$

Rango para matrices

Definición. El rango de una matriz $A$ en $M_{m,n}(F)$ es el rango de la transformación lineal asociada de $F^n$ a $F^m$ dada por $X\mapsto AX$. Lo denotamos por $\rank(A)$.

A partir de esta definición y de las propiedades de rango para transformaciones lineales obtenemos directamente las siguientes propiedades para rango de matrices.

Proposición. Sean $m$, $n$ y $p$ enteros. Sea $B$ una matriz en $M_{n,p}(F)$ y $A$, $A’$ matrices en $M_{m,n}(F)$. Sea $P$ una matriz en $M_{n,p}(F)$ cuya transformación lineal asociada es suprayectiva y $Q$ una matriz en $M_{r,m}(F)$ cuya transformación lineal asociada es inyectiva. Entonces:

  1. $\rank(A)\leq \min(m,n)$
  2. $\rank(AB)\leq \min(\rank(A),\rank(B))$
  3. $\rank(A+A’)\leq \rank(A) + \rank(A’)$
  4. $\rank(QAP) = \rank(A)$

Como discutimos anteriormente, el rango de una transformación se puede obtener aplicando la transformación a una base y viendo cuál es el máximo subconjunto de imágenes de elementos de la base que sea linealmente independiente. Si tomamos una matriz $A$ en $M_{m,n}(F)$, podemos aplicar esta idea con los vectores $e_1,\ldots,e_n$ de la base canónica de $F^{n}$. Como hemos visto con anterioridad, para cada $i=1,\ldots, n$ tenemos que el vector $Ae_i$ es exactamente la $i$-ésima columna de $A$. Esto nos permite determinar el rango de una matriz en términos de sus vectores columna.

Proposición. El rango de una matriz en $M_{m,n}(F)$ es igual a la dimensión del subespacio de $F^m$ generado por sus vectores columna.

Problema. Determina el rango de la matriz $$\begin{pmatrix} 3 & 1 & 0 & 5 & 0\\ 0 & 8 & 2 & -9 & 0\\ 0 & -1 & 0 & 4 & -2\end{pmatrix}.$$

Solución. Como es una matriz con $3$ filas, el rango es a lo más $3$. Notemos que entre las columnas están los vectores $(3,0,0)$, $(0,2,0)$ y $(0,0,-2)$, que son linealmente independientes. De esta forma, el rango de la matriz es $3$.

$\square$

A veces queremos ver que el rango de un producto de matrices es grande. Una herramienta que puede servir en estos casos es la desigualdad de Sylvester.

Problema (Desigualdad de Sylvester). Muestra que para todas las matrices $A$, $B$ en $M_n(F)$ se tiene que $$\rank(AB)\geq \rank(A)+\rank(B)-n.$$

Solución. Tomemos $T_1:F^n\to F^n$ y $T_2:F^n\to F^n$ tales que $T_1(X)=AX$ y $T_2(X)=BX$. Lo que tenemos que probar es que $$\rank(T_1\circ T_2) \geq \rank(T_1) + \rank(T_2) – n.$$

Consideremos $S_1$ como la restricción de $T_1$ a $\Ima T_2$. Tenemos que $\ker S_1 \subset \ker T_1$, así que $\dim \ker S_1 \leq \dim \ker T_1$. Por el teorema de rango-nulidad en $S_1$, tenemos que
\begin{align*}
rank(T_2) &= \dim \Ima T_2 \\
&= \dim \ker S_1 + \rank(S_1) \\
&= \dim \ker S_1 + \rank(T_1\circ T_2)\\
&\leq \dim \ker T_1 + \rank(T_1\circ T_2),
\end{align*} así que $$\rank(T_2)\leq \dim \ker T_1 + \rank(T_1\circ T_2).$$

Por el teorema de rango-nulidad en $T_1$ tenemos que $$\dim \ker T_1 + \rank(T_1)=n.$$

Sumando la desigualdad anterior con esta igualdad obtenemos el resultado.

$\square$

El teorema $PJQ$ (opcional)

El siguiente resultado no se encuentra en el temario usual de Álgebra Lineal I. Si bien no formará parte de la evaluación del curso, recomendamos fuertemente conocerlo y acostumbrarse a usarlo pues tiene amplias aplicaciones a través del álgebra lineal.

Teorema (Teorema PJQ). Sea $A$ una matriz en $M_{m,n}(F)$ y $r$ un entero en $\{0,\ldots,\min(m,n)\}$. El rango de $A$ es igual a $r$ si y sólo si existen matrices invertibles $P\in M_m(F)$ y $Q\in M_n(F)$ tales que $A=PJ_rQ$, en donde $J_r$ es la matriz en $M_{m,n}$ cuyas primeras $r$ entradas de su diagonal principal son $1$ y todas las demás entradas son cero, es decir, en términos de matrices de bloque, $$J_r=\begin{pmatrix}
I_r & 0 \\
0 & 0
\end{pmatrix}.$$

No damos la demostración aquí. Se puede encontrar en el libro de Titu Andreescu, Teorema 5.68. Veamos algunas aplicaciones de este teorema.

Problema. Muestra que una matriz tiene el mismo rango que su transpuesta.

Solución. Llamemos $r$ al rango de $A$. Escribimos $A=PJ_rQ$ usando el teorema $PJQ$, con $P$ y $Q$ matrices invertibles. Tenemos que $^tA=^tQ\, ^tJ_r \,^tP$, con $^tQ$ y $^tP$ matrices invertibles. Además, $^t J_r$ es de nuevo de la forma de $J_r$. Así, por el teorema $PJQ$, tenemos que $^t A$ es de rango $r$.

Combinando el problema anterior con el resultado del rango de una matriz en términos de sus vectores columna obtenemos lo siguiente.

Proposición. El rango de una matriz en $M_{m,n}(F)$ es igual a la dimensión del subespacio de $F^n$ generado por sus vectores renglón.

Terminamos esta entrada con una aplicación más del teorema $PJQ$.

Problema. Muestra que una matriz $A$ de rango $r$ se puede escribir como suma de $r$ matrices de rango $1$. Muestra que es imposible hacerlo con menos matrices.

Solución. Expresamos $A=PJ_rQ$ usando el teorema $PJQ$. Si definimos $A_i=PE_{ii}Q$ para $i=1,\ldots,r$, donde $E_{ii}$ es la matriz cuya entrada $(i,i)$ es uno y las demás cero, claramente tenemos que $J_r=E_{11}+E_{22}+\ldots+E_{rr}$, por lo que $$A=PJ_rQ=A_1+A_2+\ldots+A_r.$$ Además, como $E_{ii}$ es de rango $1$, por el teorema $PJQ$ cada matriz $A_i$ es de rango $1$.

Veamos que es imposible con menos. Si $B_1,\ldots,B_s$ son matrices de rango $1$, como el rango es subaditivo tenemos que $\rank (B_1+\ldots+B_s)\leq s$. Así, si sumamos menos de $r$ matrices, no podemos obtener a $A$.

$\square$

Tarea moral

  • Termina de hacer la reducción gaussiana del primer ejemplo.
  • Sea $T$ una transformación de un espacio vectorial $V$ de dimensión finita a si mismo. Usa el teorema de rango-nulidad para mostrar que si $T$ es inyectiva o suprayectiva, entonces es biyectiva.
  • Determina el rango de la matriz $$\begin{pmatrix} 0 & 0 & 0 & 8 & 3\\ 7 & 8 & -1 & -2 & 0\\ 3 & -1 & 4 & 4 & -9\end{pmatrix}.$$
  • Demuestra que aplicar operaciones elementales a una matriz no cambia su rango.
  • Demuestra que matrices similares tienen el mismo rango.
  • Demuestra por inducción que para matrices $A_1,\ldots, A_n$ del mismo tamaño tenemos que $$\rank (A_1+\ldots+A_n)\leq \sum_{i=1}^n \rank(A_i).$$
  • Escribe la demostración de la última proposición de la sección del teorema $PJQ$
  • Revisa la demostración del teorema de descomposición $PJQ$ en el libro de Titu Andreescu.

Más adelante…

Esta entrada es solamente una breve introducción al concepto de rango y a algunas propiedades que pueden ser de utilidad al momento de calcular el rango de una matriz o una transformación lineal. Más adelante, veremos que el rango de una matriz está también relacionado con las soluciones de su sistema lineal homogéneo asociado.

El teorema de rango-nulidad es fundamental para el álgebra lineal. Muchas veces necesitamos calcular el rango de la imagen de una transformación lineal, pero es mucho más fácil calcular la dimensión de su kernel. O viceversa. En estas situaciones es muy importante recordar la forma en la que dicho teorema las relaciona.

Con este tema termina la segunda unidad del curso. Ahora estudiaremos aspectos un poco más geométricos de espacios vectoriales. En la siguiente unidad, hablaremos de dualidad, ortogonalidad, formas bilineales y productos interiores.

Entradas relacionadas

El lema de intercambio de Steinitz

Introducción

En esta entrada platicaré de un lema muy útil en álgebra lineal, sobre todo cuando se están definiendo las nociones de base y de dimensión para espacios vectoriales de dimensión finita. Se trata del lema de intercambio de Steinitz.

Supondré que el lector ya sabe un poco de álgebra lineal, pero muy poquito. Basta con saber la definición de espacio vectorial. Lo demás lo definiremos sobre el camino.

El nombre del lema es en honor al matemático alemán Ernst Steinitz. Sin embargo, personalmente a mi me gusta pensarlo como el lema del «regalo de vectores», por razones que ahorita platicaremos. El enunciado es el siguiente:

Teorema (Lema de intercambio de Steinitz). Sea $V$ un espacio vectorial. Tomemos un conjunto finito y linealmente independiente $L$ de $V$, y un conjunto finito y generador $S$ de $V$. Supongamos que $L$ tiene $m$ elementos y que $S$ tiene $n$ elementos. Entonces:

  • $m\leq n$
  • Se puede tomar un subconjunto $T$ de $S$ de tamaño $n-m$ tal que $L\cup T$ sea generador de $V$.

En pocas palabras, «cualquier conjunto linealmente independiente tiene a lo mucho tantos elementos como cualquier conjunto generador y, además, cualquier generador le puede regalar vectores al linealmente independiente para volverlo generador».

De manera esquemática, está pasando lo siguiente:

Diagrama del lema de intercambio de Steinitz
Diagrama del lema de intercambio de Steinitz

Lo que haremos es hablar de las definiciones necesarias para entender el lema, hablar de la intuición detrás, dar un par de ejemplos y luego dar la demostración. La presentación está ligeramente basada en el libro de álgebra lineal de Titu Andreescu.

Definiciones e intuición

Sea $V$ un espacio vectorial sobre un campo $F$.

Si tenemos vectores $v_1,\ldots,v_n$ de $V$ y escalares $a_1,\ldots,a_n$ en $F$, podemos considerar al vector formado por multiplicar los vectores por los escalares correspondientes y sumarlos todos, es decir al vector $v$ dado por la expresión $a_1v_1+\cdots+a_nv_n$ . En este caso, decimos que $v$ es una combinación lineal de $v_1,\ldots,v_n$, o a veces que $v_1,\ldots,v_n$ generan a $v$.

Un conjunto $S=\{v_1,v_2,\ldots,v_n\}$ de vectores de $V$ es generador si para cualquier $v$ de $V$ existen escalares $a_1,\ldots,a_n$ en $F$ para los cuales $v=a_1v_1+\cdots+a_nv_n$. Dicho de otra forma, «$S$ es generador si cualquier vector del espacio vectorial es combinación lineal de vectores de $S$».

De esta definición es fácil ver que si $S$ es un conjunto generador y $T$ es un conjunto que contiene a $S$ (es decir, $T\supset S$), entonces $T$ también es generador: simplemente para cualquier $v$ usamos la combinación lineal que tenemos en $S$ y al resto de los vectores (los de $T\setminus S$) les ponemos coeficientes cero.

Un conjunto $L=\{w_1,w_2,\ldots,w_m\}$ de vectores de $V$ es linealmente independiente si la única combinación lineal de vectores de $L$ que da $0$ es aquella en la que todos los escalares son $0$. Dicho de otra forma, «$L$ es linealmente independiente si $a_1w_1+\ldots+a_mw_m=0$ implica que $a_1=a_2=\ldots=a_m=0$.»

Con los conjuntos linealmente independientes pasa lo contrario a lo de los generadores. Si $L$ es un conjunto linealmente independiente y $M$ está contenido en $L$ (es decir, ahora $M\subset L$), entonces $M$ es linealmente independiente. Esto sucede pues cualquier combinación lineal de $M$ también es una combinación lineal de $L$. Como no hay ninguna combinación lineal no trivial de elementos de $L$ que sea igual a cero, entonces tampoco la hay para $M$.

Los párrafos anteriores dejan la idea de que «los conjuntos generadores tienen que ser grandes» y que «los conjuntos linealmente independientes tienen que ser chiquitos». El lema de intercambio de Steinitz es una manera en la que podemos formalizar esta intuición.

Como los conjuntos generadores son «grandes», entonces son bien buena onda y bien generosos. Tienen muchos elementos. Como los conjuntos linealmente independientes son «chiquitos», entonces necesitan elementos. Lo que dice el lema de intercambio de Steinitz es que si tenemos a un generador $S$ y a un linealmente independiente $L$, entonces $S$ tiene más elementos y que puede regalar al linealmente independiente $L$ algunos elementos $T$ para que ahora $L\cup T$ tenga tantos elementos como tenía $S$ y además se vuelva generador. Una cosa importante es que no cualquier subconjunto $T$ funciona. Este tiene que estar bien elegido.

Ejemplo concreto del lema de intercamio de Steinitz

Veamos un ejemplo muy concreto. Supongamos que nuestro espacio vectorial es $\mathbb{R}^3$, osea, los vectores con $3$ entradas reales. Tomemos a los siguientes conjuntos de vectores:

  • $L=\{(1,2,3), (0,3,0)\}$
  • $S=\{(0,1,0), (1,0,0), (0,0,-1), (2,4,6)\}$

Por un lado, el conjunto $L$ es linealmente idependiente. Una combinación lineal $a(1,2,3)+b(0,3,0)=(0,0,0)$ implica de manera directa que $a=0$ (por la primer o tercer coordenadas) y de ahí $b=0$ (por la segunda coordenada).

Por otro lado, el conjunto $S$ es generador, pues con $(0,0,-1)$ podemos obtener a $(0,0,1)$ como combinación lineal, de modo que $S$ genera a los tres de la base canónica y por tanto genera a todo $\mathbb{R}^3$.

Notemos que en efecto $L$ tiene menos elementos que $S$. Además, el lema de intercambio de Steinitz garantiza que $S$ puede pasarle $|S|-|L|=4-2=2$ elementos a $L$ para volverlo generador. Pero hay que ser cuidadosos. Si le regala los elementos $(0,1,0)$ y $(2,4,6)$, entonces no funciona (se puede verificar que este conjunto no genera a $\mathbb{R}^3$). Pero si le regala, por ejemplo, los elementos $(1,0,0)$ y $(0,0,-1)$ entonces ahora sí generará (se puede argumentar viendo que entonces ahora genera a los tres de la base canónica).

Demostración del lema de intercambio de Steinitz

Pasemos ahora a la demostración del lema de Steinitz. Lo demostraremos por inducción en la cantidad de elementos que tiene $L$, el linealmente independiente. Si $|L|=m=0$, entonces claramente $m=0\leq n$, y además $S$ le puede pasar $n-0=n$ elementos (todos) a $L$ y volverlo generador.

Supongamos entonces que es cierta la siguiente afirmación.

Hipótesis inductiva Sea $V$ un espacio vectorial. Tomemos un conjunto finito y linealmente independiente $L$ de $V$, y un conjunto finito y generador $S$ de $V$. Supongamos que $L$ tiene $m$ elementos y que $S$ tiene $n$ elementos. Entonces:

  • $m\leq n$
  • Se puede tomar un subconjunto $T$ de $S$ de tamaño $n-m$ tal que $L\cup T$ sea generador de $V$.

Para el paso inductivo, tomemos $L=\{w_1,w_2,\ldots,w_m,w_{m+1}\}$ un linealmente independiente de $V$ y $S=\{v_1,v_2,\ldots,v_n\}$ un generador de $V$. Aplicándole la hipótesis inductiva al linealmente independiente $L’=L\setminus \{w_{m+1}\}=\{w_1,\ldots,w_m\}$ y al generador $S$, tenemos que:

  • $m\leq n$
  • Se puede tomar un subconjunto $T’=\{s_1,s_2,\ldots,s_{n-m}\}$ de $S$ tal que $L’\cup T’= \{w_1,w_2,\ldots,w_m,s_1,\ldots,s_{n-m}\}$ sea generador de $V$.

Como $L’\cup T’$ es generador, entonces podemos poner a $w_{m+1}$ como combinación lineal de elementos de $L’\cup T’$, es decir, existen $a_1,\ldots, a_m, b_1,\ldots,b_{n-m}$ tales que $$w_{m+1}=a_1w_1+\ldots+a_mw_m+b_1s_1+\ldots+b_{n-m}s_{n-m}.$$

Ya sabemos que $m\leq n$. Si $m=n$, la combinación lineal anterior no tendría ningún $s_i$, y entonces sería una combinación lineal no trivial para los elementos de $L$, lo cual es una contradicción pues $L$ es linealmente independiente. Entonces $m\neq n$ y $m\leq n$, así que $m+1\leq n$, que era el primer punto que queríamos probar.

También, como $L$ es linealmente independiente, no se vale que todos los $b_i$ sean iguales a cero. Sin perder generalidad, podemos suponer que $b_1\neq 0$. Así, $s_1$ se puede despejar como combinación lineal en términos de $w_1,\ldots,w_n,w_{n+1}, s_2,\ldots,s_{n-m}$ y por lo tanto $L\cup (T’\setminus \{s_1\})$ genera lo mismo que $L’\cup T’$, que era todo $V$. Así, $T:=T’\setminus \{s_1\}$ es el subconjunto de $S$ de tamaño $n-(m+1)$ tal que $L\cup T$ es generador. Esto termina la prueba del lema.

Algunas aplicaciones

El lema de intecambio de Steinitz se puede utilizar para probar varias afirmaciones con respecto a bases de un espacio vectorial de dimensión finita.

Un espacio vectorial es de dimensión finita si tiene un conjunto generador con una cantidad finita de elementos. Una base de un espacio vectorial es un conjunto que sea simultáneamente generador y linealmente independiente.

Las siguientes afirmaciones se siguen directamente del lema de Steinitz.

  1. Todas las bases de un espacio vectorial finito tienen la misma cantidad de elementos.
  2. En un espacio vectorial de dimensión $d$:
    • Todo conjunto linealmente independiente tiene a lo más $d$ elementos.
    • Todo conjunto generador tiene al menos $d$ elementos.
  3. Si $S$ es un conjunto con $n$ vectores de un espacio vectorial de dimensión $n$, entonces las siguientes tres afirmaciones son equivalentes:
    • El conjunto $S$ es base.
    • $S$ es linealmente independiente.
    • $S$ es generador.

Como primer ejemplo, haremos (1). Tomemos $B_1$ y $B_2$ bases de un espacio vectorial de dimensión finita $B$. Pensando a $B_1$ como linealmente independiente y a $B_2$ como generador, tenemos $|B_1|\leq |B_2|$. Pensando a $B_2$ como linealmente independiente y a $B_1$ como generador, tenemos $|B_2|\leq |B_1|$. Así, $|B_1|=|B_2|$.

Como segundo ejemplo, haremos una parte de (3). Suponiendo que $S$ es un conjunto de $n$ vectores de un espacio vectorial de dimensión $n$, veremos que su independencia lineal implica $S$ es base. Sea $B$ una base de $V$. Por el lema de Steinitz, podemos pasar $|B|-|S|=n-n=0$ elementos de $B$ a $S$ para volverlo generador. Es decir, $S$ ya es generador. Como además es linealmente independiente, entonces es base.

El resto de las demostraciones son igual de sencillas, como puedes verificar.

Tarea moral

  • Replica por tu cuenta la demostración del lema de Steinitz hasta que te sientas cómodo con los argumentos.
  • En el ejemplo que se dio de la aplicación del lema de Steinitz, ¿cuáles son todas las posibilidades de $2$ elementos que se pueden pasar para que $L$ se convierta en generador?
  • Usa el lema de Steinitz para demostrar el resto de consecuencias que mencionamos.
  • ¿Qué te dice el lema de Steinitz cuando $L$ y $S$ son inicialmente del mismo tamaño?
  • Muestra que en el lema de Steinitz la hipótesis de que $L$ sea finito no es necesaria, es decir, que incluso sin esta hipótesis se pueden mostrar todas las conclusiones.

Más adelante…

El lema de Steinitz es la herramienta clave para definir dar la definición de dimensión de espacios vectoriales en el caso de dimensión finita. Lo usaremos una y otra vez. Por esta razón, es muy recomendable repasar su demostración y entender a profundidad qué dice.

Entradas relacionadas

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Dependencia, independencia e interdependencia

Sigo con los temas del libro Los 7 hábitos de la gente altamente efectiva. La vez pasada platiqué un poco acerca de los círculos de acción y preocupación.

En esta ocasión escribiré acerca de una de las ideas fundamentales del texto. De hecho, básicamente da la estructura a los capítulos. Esta idea es la distinción entre dependencia, independencia e interdependencia. Seguir leyendo