Archivo de la etiqueta: álgebra

Álgebra Superior II: Problemas de ecuaciones lineales y cambios de coordenadas en los complejos

Por Claudia Silva

Introducción

En las entradas anteriores platicamos de cómo resolver sistemas de ecuaciones lineales complejos, y de como pasar de coordenadas polares a rectangulares y viceversa. Ahora veremos un método más para resolver problemas de ecuaciones lineales en los complejos en tres variables. Además, haremos problemas de práctica de estos temas.

La regla de Kramer para tres variables

Cuando platicamos de resolver problemas de ecuaciones lineales complejas en dos variables, vimos que si el determinante no era $0$, entonces podíamos dar la solución de manera explícita. A esto se le conoce como la regla de Kramer. Veremos ahora cuál es la versión de esta regla para tres variables. A continuación enunciamos el método, y más abajo, en el video, se explica un poco más a detalle.

Proposición. Consideremos el siguiente sistema lineal de ecuaciones complejas en variables $x$, $y$ y $z$.
\begin{align*}
ax+by+cz&=j\\
dx+ey+fz&=k\\
gx+hy+iz&=l.
\end{align*}

Supongamos que el determinante $\Delta=\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}$ no es $0$. Entonces, el sistema tiene una única solución, dada por
\begin{align*}
x&=\frac{\begin{vmatrix} j & b & c\\ k & e & f\\ l & h & i \end{vmatrix}}{\Delta},\\
y&=\frac{\begin{vmatrix} a & j & c\\ d & k & f\\ g & l & i \end{vmatrix}}{\Delta},\\
z&=\frac{\begin{vmatrix} a & b & j\\ d & e & k\\ g & h & l \end{vmatrix}}{\Delta}.
\end{align*}

No veremos la demostración de esta técnica, pues es uno de los temas que estudiarás en álgebra lineal con más generalidad. Sin embargo, veremos algunos ejemplos de cómo se aplica.

Problemas de ecuaciones lineales

Para comenzar, resolveremos un sistema de ecuaciones de dos variables.

Problema. Resuelve en $\mathbb{C}$ el siguiente sistema de ecuaciones:
\begin{align*}
iz+2w&=3+4i\\
2z-iw&=6-3i.
\end{align*}

Pasemos ahora a un ejemplo con tres variables. El el ejemplo 328 del libro Álgebra Superior de Bravo, Rincón, Rincón.

Problema. Resuelve en $\mathbb{C}$ el siguiente sistema de ecuaciones.
\begin{align*}
z_1+z_2+z_3&=6+4i\\
iz_1+(1+i)z_2+(1-i)z_3&=7+4i\\
z_i+iz_2-z_3&=2i.
\end{align*}

El problema está resuelto en los siguientes dos videos.

Problemas de cambio de coordenadas

Finalmente, veremos algunos problemas de cambio entre coordenadas polares y coordenadas rectangulares. Recordemos que la figura clave para cambiar entre coordenadas es la siguiente:

Cambios entre coordenadas polares y rectangulares
Cambio entre coordenadas polares y rectangulares

Problema. Calcula las coordenadas rectangulares del complejo cuyas coordenadas polares son $r=\sqrt{2}$ y $s=45^\circ$, y del complejo cuyas coordenadas polares son $r=3$ y $s=90^\circ$.

Problema. Expresa $7+7i$ y $4+2i$ en coordenadas polares.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Factorización de polinomios

Por Fabian Ferrari

Introducción

En la entradas anteriores se trataron algunos temas de identidades algebraicas y se profundizó en el binomio de Newton y la identidad de Gauss. En esta y la siguiente entrada hablaremos de polinomios. Por ahora, comenzaremos recordando las nociones básicas de la aritmética de polinomios y hablando un poco de la factorización de polinomios. Más adelante hablaremos del poderoso teorema de la identidad.

Recordatorio de polinomios

Tenemos que un polinomio de grado $n$, donde $n$ es un número entero no negativo, es una expresión algebraica de la forma

\begin{equation*}
a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0.
\end{equation*}

Dicha expresión también podemos denotarla como

\begin{equation*}
P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0,
\end{equation*}

en donde $a_n$ es distinto de $0$.

Los elementos $\left\{ a_n, a_{n-1}, … , a_0\right\}$ se conocen como coeficientes. Si $a_n=1$, decimos que el polinomio es mónico.

Nota: El polinomio cuyos coeficientes son todos ceros, se le conoce como el polinomio cero y no tiene grado.

Si dos polinomios son idénticos coeficiente por coeficiente, decimos que dichos polinomios son iguales. Esta noción será de utilidad más adelante en la entrada del teorema de la identidad.

Si todos los coeficientes de un polinomio son enteros, decimos que es un polinomio sobre los enteros. Si los coeficientes son números reales, entonces es un polinomio sobre los reales. De manera similar definimos a los polinomios sobre los racionales, los complejos o incluso sobre $\mathbb{Z}_n$. Aunque parezca irrelevante, conocer las características de los coeficientes de un polinomio, nos da mucha información sobre su constitución. Hay resultados que, por ejemplo, se valen para los polinomios sobre los complejos, pero no para los polinomios sobre los reales.

Otra cosa que es de nuestro interés son las operaciones en los polinomios, y es que al igual que los números enteros, podemos sumar, multiplicar y dividir polinomios.

Algoritmo de la división para polinomios

Para los polinomios, al igual que en los números enteros, existe un algoritmo de la división. Este nos ayudará posteriormente para cuando queramos hacer factorización en polinomios.

Teorema. Sean los polinomios $P(x)$ y $Q(x)$ definidos sobre un campo $\mathbb{K}$ con $Q(x)$ distinto de cero. Entonces existen dos únicos polinomios $C(x)$ y $R(x)$ tales que

\begin{equation*}
P(x)=C(x)Q(x)+R(x),
\end{equation*}

donde $C(x)$ y $R(x)$ son el coeficiente y el residuo respectivamente, resultado de dividir $P(x)$ entre $Q(x)$, y se tiene que $R(x)$ es el polinomio $0$ o bien tiene grado menor o igual al grado de $C(x)$.

Ejemplo. Dados los polinomios $P(x)=x^2-3x-28$ y $Q(x)=x-5$, tenemos que $C(x)=x+2$ y $R(x)=-18$.

En efecto,

\begin{equation*}
x^2-3x-28=(x+2)(x-5)-18.
\end{equation*}

$\square$

Algoritmo de Euclides para polinomios

Al igual que en los enteros, el algoritmo de la división es de ayuda para determinar el máximo común divisor entre dos polinomios: simplemente seguimos los pasos del algoritmo de Euclides. Es por ello que tenemos el siguiente resultado.

Teorema. Si tenemos dos polinomios $P(x)$ y $Q(x)$ sobre un campo $\mathbb{K}$, tenemos que existen polinomios $S(x)$ y $T(x)$ tales que

\begin{equation*}
\MCD{P, Q}= PS+QT.
\end{equation*}

Aquí $\MCD{P, Q}$ es el máximo común divisor de $P(x)$ y $Q(x)$.

Otra forma de ver o de entender el máximo común divisor entre dos polinomios es como el producto de todos aquellos factores que tienen en común.

Problema: Encuentra polinomios $F(x)$ y $G(x)$ tales que

\begin{equation*}
(x^8-1)F(x)+(x^5-1)G(x)=x-1.
\end{equation*}

Sugerencia pre-solución. Recuerda cómo encontrar el máximo común divisor de dos enteros usando el algoritmo de Euclides. Además, usa una factorización para cancelar el factor $x-1$ de la derecha.

Solución. Definamos

\begin{align*}
A(x)&=x^7+x^6+x^5+x^4+x^3+x^2+x+1\\
B(x)&=x^4+x^3+x^2+x+1.
\end{align*}

Notemos que la ecuación es equivalente a

\begin{equation*}
A(x)F(x)+B(x)G(x)=1.
\end{equation*}

Tendría que suceder entonces que $A(x)$ y $B(x)$ sean primos relativos.

Aplicando el algoritmo de la división repetidamente, tenemos lo siguiente:

\begin{align*}
A(x)&=x^3B(x)+(x^2+x+1)\\
B(x)&=x^2(x^2+x+1)+(x+1)\\
x^2+x+1&=x(x+1)+1.
\end{align*}

Esto muestra que $A(x)$ y $B(x)$ son primos relativos, así que la combinación lineal que buscamos debe existir. Para encontrarla de manera explícita, invertimos los pasos. Trabajando hacia atrás, tenemos que

\begin{equation*}
\begin{split}
1 & =(x^2+x+1)-x(x+1)\\
& =(x^2+x+1)-x(B(x)-x^2(x^2+x+1))\\
& =(x^2+x+1)(x^3+1)-xB(x)\\
& =(x^3+1)(A(x)-x^3(B(x))-xB(x)\\
& =(x^3+1)A(x)-x^3(x^3+1)B(x)-xB(x)\\
& =(x^3+1)A(x)+(-x^6-x^3-x)B(x)
\end{split}
\end{equation*}

Así que podemos tomar a $F(x)=x^3+1$ y $G(x)=-x^6-x^3-x$.

$\square$

El teorema del factor

Sea $P(x)$ un polinomio sobre un dominio entero $D$. Decimos que un elemento $a$ de $D$ es raíz del polinomio $P(x)$ si $P(a)=0$. Si aplicamos el algoritmo de la división en los polinomios $P(x)$ y $x-a$ obtenemos el siguiente teorema, que es fundamental en la factorización de polinomios.

Teorema El elemento $a$ es raíz de $P(x)$ si y solo si $(x-a)$ es factor de $P(x)$.

Veamos cómo aplicar este teorema en un ejemplo concreto.

Problema. Dado $\omega=\cos\left(\frac{2\pi}{n}\right)+i\sin\left(\frac{2\pi}{n}\right)$, prueba que

\begin{equation*}
x^{n-1}+\ldots+x+1=(x-\omega)(x-\omega^2)\cdot\ldots\cdot(x-\omega^{n-1}).
\end{equation*}

Sugerencia pre-solución. Recuerda los resultados básicos de aritmética de los números complejos.

Solución. Por De Moivre tenemos que si

\begin{equation*}
\omega=\cos\left(\frac{2\pi}{n}\right)+i\sin\left(\frac{2\pi}{n}\right)=e^{\frac{2\pi i}{n}}
\end{equation*}

entonces $ \{1, \omega, \omega^2,…,\omega^{n-1}\}$ son raíces de $x^n-1=0$. Además, como $e^{\pi i}=-1$, tenemos que $\omega^n=1$.

Así, tenemos que $\omega^{n+1}=\omega$ y de manera general $\omega^{n+k}=\omega^k$.

Por otro lado,

\begin{equation*}
x^n-1=(x-1)(x^{n-1}+\ldots+x+1)
\end{equation*}

Y como $ \{1, \omega, \omega^2,\ldots,\omega^{n-1}\}$ son raíces de $x^n-1$, tenemos entonces que $\{\omega, \omega^2,\ldots,\omega^{n-1}\}$ deben de ser las raíces de $$x^{n-1}+\ldots+x+1.$$

Aplicando repetidamente el teorema del factor, tenemos que

\begin{equation*}
x^{n-1}+\ldots+x+1=(x-\omega)(x-\omega^2)\cdot\ldots\cdot(x-\omega^{n-1}).
\end{equation*}

$\square$

Un problema para números algebraicos

Un número real es algebraico si es raíz de un polinomio sobre los números enteros.

Problema. Prueba que $\sqrt{2}+\sqrt{3}$ es un número algebraico.

Sugerencia pre-solución. Realiza operaciones de suma, resta y producto con $\sqrt{2}+\sqrt{3}$ y con enteros. Ve si puedes encontrar un patrón de cómo se comportan.

Solución. Tenemos que encontrar un polinomio $P(x)$ sobre los número enteros de tal forma que $P(\sqrt{2}+\sqrt{3})=0$.

Si consideramos $x=\sqrt{2}+\sqrt{3}$, entonces $x^2=5+2\sqrt{6}$

Para $P(x)=x^2-5$, tenemos que $P(\sqrt{2}+\sqrt{3})=2\sqrt{6}$

Así,

\begin{equation*}
(P(\sqrt{2}+\sqrt{3}))^2=(2\sqrt{6})^2=144.
\end{equation*}

Ahora, si consideramos el polinomio

\begin{equation*}
Q(x)=(P(x))^2-144.
\end{equation*}

Tenemos que

\begin{equation*}
Q(\sqrt{2}+\sqrt{3})=(P(\sqrt{2}+\sqrt{3}))^2-144=0.
\end{equation*}

Por lo tanto como el polinomio $Q(x)=x^4-10x^2-119$ es un polinomio sobre los enteros, y como $Q(\sqrt{2}+\sqrt{3})=0$ concluimos que $\sqrt{2}+\sqrt{3}$ es un número algebraico.

$\square$

Más problemas

Puedes encontrar más problemas de aritmética y factorización de polinomios en la Sección 4.2 del libro Problem Solving through Problems de Loren Larson.

Álgebra Lineal I: Producto interior y desigualdad de Cauchy-Schwarz

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, platicamos acerca de formas bilineales y de formas cuadráticas. Ahora veremos un tipo de formas bilineales especiales: las positivas y las positivas definidas. Las formas positivas definidas nos ayudan a definir qué es un producto interior. Esta es una noción fundamental que más adelante nos ayudará a definir distancias y ángulos.

Formas bilineales positivas y positivas definidas

Para hablar de geometría en espacios vectoriales, la siguiente noción es fundamental. Es importante notar que es una definición únicamente para formas bilineales simétricas.

Definición. Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica.

  • Diremos que $b$ es positiva si $b(x,x)\geq 0$ para todo vector $x$ de $V$.
  • Diremos que $b$ es positiva definida si $b(x,x)>0$ para todo vector $x\neq 0$ de $v$.

Tenemos una noción análoga para formas cuadráticas.

Definición. Sea $q:V\to \mathbb{R}$ una forma cuadrática con forma polar $b$. Diremos que $q$ es positiva si $b$ lo es, y diremos que es positiva definida si $b$ lo es.

Ejemplo 1. Como ya vimos antes, el producto punto de $\mathbb{R}^n$ es una forma bilineal simétrica. También es positiva definida, pues si tenemos $x=(x_1,\ldots,x_n)$, tenemos que $$x\cdot x = x_1^2+\ldots+x_n^2\geq 0,$$ y esta es una igualdad si y sólo si $x_1=\ldots=x_n=0$, lo cual sucede si y sólo si $x=0$.

$\triangle$

Ejemplo 2. Considera $V=\mathbb{R}_2[x]$ y consideremos la forma bilineal $b$ dada por $$b(p,q)=p(0)q(1)+p(1)q(0).$$ Esta es una forma bilineal simétrica pues \begin{align*}b(p,q)&=p(0)q(1)+p(1)q(0)\\&=q(0)p(1)+q(1)p(0)\\&=b(q,p).\end{align*} Notemos que $$b(p,p)=2p(0)p(1),$$ que no necesariamente es positivo. Por ejemplo, si tomamos el polinomio $p(x)=x-\frac{1}{2}$, tenemos que \begin{align*}b(p,p)&=2p(0)p(1)\\&=-2\cdot\frac{1}{2}\cdot\frac{1}{2}\\&=-\frac{1}{2}.\end{align*} Así, esta es una forma bilineal simétrica, pero no es positiva (y por lo tanto tampoco es positiva definida).

$\triangle$

Problema. Considera la forma cuadrática $Q$ en $M_{2}(\mathbb{R})$ que suma el cuadrado de las entradas de la diagonal de una matriz, es decir, aquella dada por $$Q\begin{pmatrix} a & b\\c & d\end{pmatrix}=a^2+d^2.$$ Determina su forma polar y si es positiva o positiva definida.

Solución. Para encontrar la forma polar $B$ de $Q$, usamos la identidad de polarización
\begin{align*}
B&\left(\begin{pmatrix}a&b\\c&d\end{pmatrix},\begin{pmatrix} e & f\\ g & h \end{pmatrix}\right)\\
&=\frac{(a+e)^2+(d+h)^2-a^2-e^2-d^2-h^2}{2}\\
&=\frac{2ae+2dh}{2}\\
&=ae+dh.
\end{align*}

Como $Q\begin{pmatrix}a&b\\c&d\end{pmatrix}=a^2+d^2\geq 0$, tenemos que $Q$ (y $B$) son positivas. Sin embargo, $Q$ no es positiva definida (ni $B$), pues por ejemplo, $$Q\begin{pmatrix}0&1\\1&0\end{pmatrix} = 0.$$

Producto interior

Estamos listos para definir aquellos espacios sobre los que podemos hacer geometría.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$

  • Un producto interior en $V$ es una forma bilineal simétrica y positiva definida.
  • Decimos que $V$ es un espacio Euclideano si es de dimensión finita y está equipado con un producto interior.

Estamos siguiendo la convención del libro de Titu Andreescu, en donde es importante pedir que $V$ sea de dimensión finita para ser Euclideano.

Cuando estamos hablando de espacios con producto interior, o de espacios Euclideanos, tenemos una forma bilineal simétrica y positiva definida $b$. Sin embargo, en vez de usar constantemente $b(x,y)$, para simplificar la notación usaremos simplemente $\langle x, y\rangle$.

Definición. Si $V$ es un espacio con producto interior $\langle \cdot,\cdot \rangle$, definimos la norma de un vector $x$ como $$\Vert x \Vert =\sqrt{\langle x, x \rangle}.$$

Ejemplo. Como dijimos arriba, el producto punto en $\mathbb{R}^n$ es una forma bilineal simétrica, así que es un producto interior. Como $\mathbb{R}^n$ es de dimensión finita, entonces es un espacio Euclideano.

La norma de un vector $x=(x_1,\ldots,x_n)$ está dada por $\Vert x \Vert = \sqrt{x_1^2+\ldots+x_n^2},$ y geométricamente se interpreta como la distancia de $x$ al origen.

Un ejemplo más concreto es $\mathbb{R}^4$, en donde la norma del vector $(1,2,3,1)$ es $\sqrt{1^2+2^2+3^2+1^2}=\sqrt{15}$.

$\triangle$

La notación de producto interior quizás te recuerde la notación que se usa cuando hablamos de dualidad. Sin embargo, es muy importante que distingas los contextos. En el caso de dualidad, tenemos $$\langle \cdot, \cdot \rangle: V^\ast\times V \to \mathbb{R},$$ y en este contexto de producto interior tenemos $$\langle \cdot, \cdot \rangle: V\times V \to \mathbb{R}.$$ Más adelante, puede que te encuentres en tu preparación matemática con el teorema de representación de Riesz, a partir del cual tendrá sentido que se use la misma notación.

Desigualdad de Cauchy-Schwarz

A continuación presentamos un resultado fundamental es espacios con formas bilineales positivas y positivas definidas.

Teorema (desigualdad de Cauchy-Schwarz). Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica y $q$ su forma cuadrática asociada.

  • Si $b$ es positiva, entonces para todo $x$ y $y$ en $V$ tenemos que $$b(x,y)^2\leq q(x)q(y).$$ Si $x$ y $y$ son linealmente dependientes, se alcanza la igualdad.
  • Además, si $b$ es positiva definida y $x$ y $y$ son linealmente independientes, entonces la desigualdad es estricta.

Demostración. Supongamos primero solamente que $b$ es positiva. Consideremos la función $f:\mathbb{R}\to \mathbb{R}$ dada por $f(t)=q(x+ty)$. Como $q$ es forma cuadrática positiva, tenemos que $f(t)\geq 0$ para todo real $t$. Por otro lado, expandiendo y usando que $b$ es simétrica, tenemos que
\begin{align*}
f(t)&=q(x+ty)\\
&=b(x+ty,x+ty)\\
&=b(x,x)+2b(x,y)\cdot t + b(y,y) \cdot t^2\\
&=q(x) + 2b(x,y)\cdot t + q(y) \cdot t^2.
\end{align*}

En esta expresión, $q(x)$, $2b(x,y)$ y $q(y)$ son reales, así que $f(t)$ es un polinomio cuadrático en $t$. Como $f(t)\geq 0$ para todo $t$ en $\mathbb{R}$, el discriminante de este polinomio es no positivo, en otras palabras, $$(2b(x,y))^2-4q(x)q(y)\leq 0.$$

Sumando $4q(x)q(y)$ y dividiendo entre $4$ ambos lados de la desigualdad, obtenemos que $$b(x,y)^2\leq q(x)q(y),$$ la cual es la desigualdad que queremos.

Si $x$ y $y$ son linealmente dependientes, podemos despejar a uno en términos del otro. Sin perder generalidad, podemos suponer que $x=\alpha y$. En este caso, $$b(\alpha y,y)^2=\alpha^2 b(y,y)=q(\alpha(y))q(y),$$ así que se da la igualdad.

Ahora, supongamos además que $b$ es positiva definida y que se da la igualdad. Si esto sucede, el discriminante del polinomio cuadrático de arriba es igual a $0$ y por lo tanto el polinomio tiene una raíz $t$. En otras palabras, $q(x+ty)=0$. Pero como $q$ es positiva definida, esto implica que $x+ty=0$, de donde $x$ y $y$ son linealmente dependientes. Así, si $x$ y $y$ son linealmente independientes, tenemos que la desigualdad es estricta.

$\square$

El siguiente caso particular es uno de los más importantes y los más usados, por lo cual amerita que lo enunciemos separadamente.

Corolario. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ equipado con un producto interior $\langle \cdot, \cdot \rangle$. Para cualesquiera $x,y$ en $V$ se cumple $|\langle x, y \rangle| \leq \Vert x \Vert \cdot \Vert y \Vert$.

Puede que te preguntes por qué enfatizamos los resultados de desigualdades. En varias partes de tu formación matemática trabajarás con espacios vectoriales en donde quieres hacer cálculo. Ahí, se define la convergencia y los límites en términos de una norma. Las desigualdades que probemos para espacios vectoriales son útiles para cuando se quiere demostrar la validez de ciertos límites. Más adelante mencionaremos algunas cosas adicionales al respecto.

Más adelante…

En esta entrada definimos el concepto de producto interior y vimos cómo el producto interior induce una norma en el espacio vectorial. El concepto de norma nos permite generalizar la noción de distancia y esto nos permitirá ver cómo se puede hacer cálculo en espacios vectoriales.

En las siguientes entradas veremos cómo se define esta norma para diferentes espacios vectoriales con diferentes productos interiores. Podremos ver entonces cómo se generalizan otras nociones que ya hemos visto en cursos anteriores; como el concepto de ángulo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Considera la función $q(w,x,y,z)=wx+yz$. Muestra que es una forma cuadrática en $\mathbb{R}^4$. Encuentra su forma polar y determina si es una forma cuadrática positiva y/o positiva definida.
  • Muestra que $$q(w,x,y,z)=x^2+y^2+z^2+xy+yz+zx$$ es una forma cuadrática en $\mathbb{R}^4$ y determina si es positiva y/o positiva definida.
  • Considera $V=\mathcal{C}[0,1]$ el espacio vectorial de funciones continuas en el intervalo $[0,1]$. Muestra que $$\langle f,g\rangle = \int_0^1 f(x)g(x)\, dx$$ define un producto interior en $V$. ¿Es $V$ un espacio Euclideano? Determina la norma de la función $f(x)=x^3$.
  • Sea $V=\mathbb{R}_2[x]$ el espacio vectorial de polinomios con coeficientes reales y de grado a lo más $1$. Muestra que $$\langle p,q\rangle = p(0)q(0)+p(1)q(1)+p(2)q(2)$$ hace a $V$ un espacio Euclideano.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»