Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Ecuaciones Diferenciales I – Videos: Método de la transformada de Laplace

Por Eduardo Vera Rosales

Introducción

Bienvenidos a la última entrada de la segunda unidad del curso, donde revisaremos el método de la transformada de Laplace para resolver problemas de condición inicial de la forma $$ay^{\prime \prime}+by’+cy=f(t); \,\,\, y(0)=y_{0}, \,\,\, y'(0)=y_{1}$$ con $a$, $b$ y $c$ constantes.

Este método nos permite transformar el problema de resolver la ecuación diferencial por los métodos estudiados en esta misma unidad, por un problema algebraico donde encontraremos la expresión de la transformada de Laplace $\mathscr{L} \{y(t)\}$ de la función solución, y debemos hallar quién es la función $y(t)$ cuya transformada de Laplace es $\mathscr{L} \{y(t)\}$.

Comenzaremos definiendo la transformada de Laplace de una función cuyo dominio es el intervalo $[0, \infty)$, y demostraremos algunas de las propiedades más importantes que cumple esta transformada y que utilizaremos para nuestros propósitos.

Posteriormente resolveremos el problema de condición inicial de manera general, mencionaremos el problema de hallar la transformada inversa de Laplace de una función con ayuda de una tabla de transformadas y transformadas inversas, y revisaremos dos ejemplos particulares donde mostraremos cómo se utiliza el método en la práctica.

Para finalizar consideraremos nuevamente el problema de condición inicial $$ay^{\prime \prime}+by’+cy=f(t); \,\,\, y(0)=y_{0}, \,\,\, y'(0)=y_{1}$$ donde ahora la función $f(t)$ es una función continua por pedazos. Este tipo de problemas suele aparecer con frecuencia en la física, y con la ayuda de la transformada de Laplace vamos a resolver un ejemplo particular, con ayuda de una función auxiliar y un teorema que enunciaremos y probaremos previamente.

Como te podrás dar cuenta, hicimos un cambio en la notación de la derivada de una función. Durante el curso hemos utilizado la notación de Leibniz $\frac{dy}{dt}$, $\frac{d^{2}y}{dt^{2}}$,…, para denotar a las derivadas de la función $y(t)$. Sin embargo, en esta entrada utilizaremos la notación $y'(t)$, $y^{\prime \prime}(t)$,…, para simplificar la escritura.

Transformada de Laplace y sus propiedades

En el primer video de esta entrada definimos la transformada de Laplace $\mathscr{L} \{y(t)\}$ de una función cuyo dominio es el intervalo $[0, \infty)$, y probamos algunas propiedades que cumple esta transformada y que nos servirán para resolver problemas de condición inicial.

Solución a problemas de condición inicial por método de la transformada de Laplace

En el primer video de esta sección resolvemos el problema de condición inicial $$ay^{\prime \prime}+by’+cy=f(t); \,\,\, y(0)=y_{0}, \,\,\, y'(0)=y_{1}$$ por el método de la transformada de Laplace.

En el segundo video resolvemos un par de problemas de condición inicial particulares.

Te presentamos una tabla de transformadas y transformadas inversas de Laplace, que aparece en el libro Elementary Differential Equations and Boundary Value Problems, William E. Boyce y Richard C. DiPrima, para que puedas realizar los cálculos presentados en los videos. Esta tabla no es única, por lo que puedes buscar en textos o en internet tablas diferentes según lo requieras.

Tabla de transformadas de Laplace y transformadas inversas
Tabla de transformadas y transformadas inversas de Laplace. Boyce y DiPrima (2012).

Solución a problemas de condición inicial con funciones discontinuas por método de transformada de Laplace

En el último video de esta entrada resolvemos un problema de condición inicial de la forma $$ay^{\prime \prime}+by’+cy=f(t); \,\,\, y(0)=y_{0}, \,\,\, y'(0)=y_{1}$$ donde $f(t)$ es una función continua por pedazos. Previamente definimos la función auxiliar $$H_{c}(t)= \begin{cases} 1 & 0 \leq t < c \\ 1 & t \geq c \ \end{cases} $$ y probamos un teorema que nos ayudan a resolver el problema de condición inicial.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la transformada de Laplace de la función $f(t)=t$.
  • Encuentra la transformada de Laplace de la función $f(t)=\cos{\beta t}$, $\beta$ constante.
  • Prueba que $$\mathscr{L} \{f ^{\prime \prime} (t)\}=s^{2}\mathscr{L}\{f(t)\}-sf(0)-f^{\prime}(0)$$ bajo las hipótesis del último teorema del primer video.
  • Resuelve el problema de condición inicial $$y^{\prime \prime}-2y’+2y=\cos{t}; \,\,\,\,\, y(0)=1, \,\,\,\,\, y'(0)=0$$ por el método de la transformada de Laplace.
  • Prueba que bajo las condiciones del primer teorema enunciado en el primer video, se cumplen las siguiente propiedad: $$F^{(n)}(s)=\mathscr{L}\{(-t)^{n}f(t)\}$$ donde $F^{(n)}$ denota a la $n$-ésima derivada de $F$.
  • Resuelve el problema de condiciones iniciales $$y^{\prime \prime}+2y’+2y=f(t); \,\,\,\,\, y(0)=0, \,\,\,\,\, y'(0)=1$$ donde $$f(t)= \begin{cases} 1 & \pi \leq t < 2\pi \\ 0 & 0 \leq t < \pi \ , t \geq 2\pi. \end{cases} $$

Más adelante

Con esta entrada concluimos el estudio a las ecuaciones diferenciales de segundo orden. Como mencionamos en esta entrada, toda la teoría desarrollada en la segunda unidad se puede extender a ecuaciones de orden $n>2$. Sin embargo, a partir de la tercera unidad utilizaremos un método distinto para resolver ecuaciones de orden $n\geq2$.

Lo primero que haremos en la siguiente entrada será transformar una ecuación diferencial que orden $n\geq2$ en un sistema de $n$ ecuaciones diferenciales de primer orden, hablaremos de las ventajas de hacer esta transformación y daremos una introducción a los sistemas de ecuaciones diferenciales de primer orden, que será el objeto de estudio de la tercera unidad del curso.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior I: Parejas ordenadas y producto cartesiano de conjuntos

Por Guillermo Oswaldo Cota Martínez

Introducción

En la primera unidad revisamos los conceptos básicos de la teoría de conjuntos. Estos nos permitirán a partir de ahora manejar conjuntos con los operadores que vimos y nos permitirán armar nueva teoría a partir de ellos. En esta unidad nos enfocaremos en las relaciones y funciones. Estas son maneras de «agrupar» unos conjuntos con otros y serán útiles no solo en este curso, sino que en muchos otros que se basan en la idea de las funciones entre conjuntos.

Agrupando zapatos

Empecemos considerando una tienda de zapatos muy disfuncional, pues no se preocupa por hacer coincidir sus zapatos derechos con los izquierdos. Describimos al conjunto $D = \{d_1,d_2, \dots, d_n\}$ como los $n$ zapatos derechos que tiene la tienda, y por $I = \{ i_1, i_2, \dots i_m\}$ como los $m$ zapatos izquierdos. Nota que al ser una tienda poco organizada, puede ser que haya distinto número de zapatos derechos que de izquierdos (puede pasar que $m \neq n$). Cuando un cliente llega a la tienda, el mismo cliente tiene la posibilidad de elegir su par de zapatos. El primer cliente llega y elige el zapato derecho $d_3$ con el zapato izquierdo $i_2$, y eso está permitido, pues la tienda deja que los clientes eligan sus pares como quieran. Llamemos a este par de zapatos, el par $(d_3,i_2)$. Esto es lo que nos va a dar una idea intuitiva de lo que llamaremos parejas ordenadas, que en términos simples es considerar elementos de dos conjuntos y agruparlos en una misma expresión. A continuación damos su definición conjuntista.

Definición. Sean $X$ y $Y$ dos conjuntos. Una pareja ordenada de $X$ y $Y$ es una pareja de dos términos $x \in X$ y $y \in Y$ escrita mediante la expresión $(x,y)$. En términos de conjuntos se define como: $$(x,y) = \{ \{ x\}, \{x,y \} \} $$

El nombre de pareja ordenada viene del hecho de que los dos elementos a considerar respetan un orden de conjuntos, esto quiere decir a que si nos referimos a la pareja ordenada $(x,y)$ de $X$ con $Y$, eso significa que $x \in X \land y \in Y$. Por lo que la pareja $(y,x)$ no es la misma, puesto que esta es una pareja de $Y$ con $X$. Además nota que hay un «orden», pues en su expresión conjuntista, el término $x$ aparece en los dos conjuntos que conforman $(x,y)$, mientras que $y$ solo aparece una vez.

Digamos ahora que $n=4$ y $m=2$, de manera que los zapatos derechos son $D = \{ d_1,d_2,d_3,d_4 \}$ y los izquierdos son $I = \{ i_1,i_2 \}$. Entonces los zapatos que se pueden formar de estos conjuntos son:

$$\{ (d_1,i_1), (d_1,i_2), (d_2,i_1), (d_2,i_2), (d_3,i_1), (d_3,i_2), (d_4,i_1), (d_4,i_2) \} $$

Y como posiblemente te habrás imaginado, los distintos zapatos que se pueden formar con esos conjuntos, corresponden a las distintas parejas ordenadas entre $X$ y $Y$.

Igualdad entre parejas ordenadas

Ahora vamos a definir cuándo diremos que dos pares de parejas ordenadas (zapatos) son el mismo. Para esto observa que en la vida cotidiana, diríamos que dos pares son iguales si el zapato derecho de un par es exactamente el mismo que el zapato derecho del otro par, de la misma manera que el izquierdo de uno será el mismo izquierdo del otro. Anotemos eso como una proposición que habrá que demostrar.

Proposición. Sean $X$ y $Y$ dos conjuntos y $(x,y),(x’, y’)$ dos parejas ordenadas de $X$ con $Y$. Entonces las parejas son la misma ($(x,y)=(x’,y’)$) si y solo si $(x=x’) \land (y=y’)$.

Demostración. $\Rightarrow)$ Para demostrar la primera implicación, notemos que por hipótesis $(x,y)=(x’,y’)$. Esto quiere decir que $$\{\{ x\} ,\{x,y \} \} = \{\{ x’\} ,\{x’,y’ \} \} $$. Para $x$ tenemos dos casos:

Caso 1. $x =y$

En este caso, notemos que $\{\{ x\} ,\{x,y \} \} = \{\{x\}\}$. Al tener este conjunto un único elemento, entonces $\{\{ x’\} ,\{x’,y’ \} \}$ también tiene un único elemento, ya que de otra manera no serían el mismo conjunto. Enseguida, se sigue que $\{\{x\}\} = \{\{x’\}\}$. Donde se tiene que $x=x’$. Ahora notemos que al ser $x=y$, entonces $x’=y’$ y puesto que $\{\{x’\}\} = \{\{ x’\} ,\{x’,y’ \} \}$ entonces $x’=y’$.

Caso 2. $x \neq y$

Ahora, si son distintos, tenemos que $$(x,y) = \{ \{x\}, \{ x,y\} \}$$. Notemos ahora que $\{ \{x\}, \{ x,y\} \} = \{ \{x’\}, \{ x’,y’\} \}$ son conjuntos con ambos dos elementos. Al ser estos conjuntos iguales, entonces cada elemento de un conjunto está en el otro, es decir $\{x\} \in \{ \{x’\}, \{ x’,y’\} \}$ y $\{x,y\} \in \{ \{x’\}, \{ x’,y’\} \}$. Ahora, como $\{x\} \in \{ \{x’\}, \{ x’,y’\} \}$ entonces $(\{x\} = \{x’\} ) \lor (\{x\} = \{x’,y’\})$, al ser $\{x’\}$ el único elemento con un elemento, entonces deducimos que $\{x\} = \{x’\}$. De manera análoga $\{x,y\} = \{x’,y’\}$.

Ahora, como $\{x\} = \{x’\}$ entonces $x=x’$. Y después como $\{x,y\} = \{x’,y’\}$, podemos sustituir $x$ por $x’$, pues son el mismo elemento. Así, $\{x’,y\} = \{x’,y’\}$. Y nota que esto significa que $y=y’$, pues tenemos la igualdad de conjuntos. De esta manera $x=x’$ y $y=y’$ como se quería demostrar.

$\Leftarrow)$. Ahora supongamos que $x=x’$ y $y=y’$. Al tener esta igualdad, entonces $\{x\}=\{x’\}$ y además $\{x,y\} = \{ x’,y’\}$ pues tienen los mismos elementos. De esta forma, los siguientes conjuntos son iguales:$$ \{\{ x\} ,\{x,y \} \} = \{\{ x’\} ,\{x’,y’ \} \}.$$ Por lo tanto $(x,y)=(x’,y’)$

$\square$

Algunos ejemplos de parejas ordenadas que sí son la misma:

  • $(1,4) = (1,4) $
  • $(\frac{1}{2}, 0) = (1- \frac{1}{2}, 9 -9) $
  • $(\{x:P(x)\}, \{x: R(x) \land \neg R(x) \}) = (\{x: P(x) \land P(x) \}, \emptyset) $

Algunos ejemplos de parejas ordenadas que no son la misma:

  • $(1,4) \neq (4,1)$
  • $(1,0) \neq (1, \{0\})$
  • $(\{x: P(x)\}, \{x: P(x) \}) \neq (\{x: P(x) \land R(x)\}, \{x: \neg P(x) \})$

Producto Cartesiano

Hemos hablado ya de las parejas ordenadas particulares entre dos conjuntos. Sin embargo, al estar hablando de parejas ordenadas entre dos conjuntos, realmente el término que usaremos de ahora en adelante será el de producto cartesiano.

Definición. Sean $X$ y $Y$ dos conjuntos. El producto cartesiano $X \times Y$ entre $X$ y $Y$ es el conjunto: $$X \times Y = \{(x,y): (x \in X) \land (y \in Y) \}. $$

De esta manera, volviendo al ejemplo de los zapatos, en párrafos anteriores mencionamos un caso particular en donde $D = \{ d_1,d_2,d_3,d_4 \}$ y $I = \{ i_1,i_2 \}$, entonces:

$$D \times I = \{ (d_1,i_1), (d_1,i_2), (d_2,i_1), (d_2,i_2), (d_3,i_1), (d_3,i_2), (d_4,i_1), (d_4,i_2) \}. $$

Otro ejemplo, podríamos considerarlo tomando $X = \{1, \{1,2\} \}, Y = \{\emptyset, \text{perro}, 1\}$. Entonces:

\begin{align*}
&X \times Y = \{ (1,\emptyset), (1,\text{perro}),(1,1),(\{1,2\},\emptyset),(\{1,2\},\text{perro}), (\{1,2\},1)\} \\
&Y \times X = \{ (\emptyset,1), (\text{perro},1),(1,1),(\emptyset,\{1,2\}),(\text{perro},\{1,2\}), (1,\{1,2\}) \} \\
\end{align*}

Como puedes observar, aquí vemos que no es lo mismo $X \times Y$ que $Y \times X$, de hecho no coinciden en casi ningún elemento, salvo uno:

$(X \times Y) \cap (Y \times X) = \{ (1,1)\}.$

Así que hay que tener cuidado en el orden del producto cartesiano, pues como pudiste ver, no conmutan.

Otra cosa que podemos observar es que tampoco es asociativo el producto cartesiano. Esto quiere decir que no es lo mismo por ejemplo $\mathbb{Z} \times (\mathbb{Z} \times \mathbb{Z})$ que $(\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z}$. Para convencerte de esto, observa cómo son los elementos del primer conjunto y del segundo conjunto. Para empezar, un elemento de $\mathbb{Z} \times (\mathbb{Z} \times \mathbb{Z})$ es $(1,(1,1))$ mientras que un elemento del segundo es $((1,1),1)$, que no son el mismo elemento. Y de manera general, no es lo mismo para $a,b,c \in \mathbb{Z}$ la pareja $(a,(b,c))$ que la pareja $((a,b),c)$ pues siempre la primera componente de la primera pareja es un número, mientras que de la segunda, es una pareja ordenada.

Más adelante…

En la siguiente entrada, vamos a ver algunas propiedades del producto cartesiano. Algunas de las cuales ya hemos revisado en esta entrada, añadiendo otras sobre cómo se comportan con los conectores entre conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Cuántas parejas ordenadas hay en el producto cartesiano de $X \times Y$ si $X$ y $Y$ tienen un número finito de elementos?
  2. Demuestra que si $X,Y$ son dos conjuntos no vacíos, entonces $X \times Y = Y \times X$ si y solo si $X=Y$
  3. ¿Cómo es $ \emptyset \times Y$? ¿Cuántos elementos tiene?
  4. Encuentra el producto cartesiano $X \times X$ donde $X = \{x \in \mathbb{Z} : (x \leq 20)\land (x \ \text{es un número primo)} \}$
  5. Encuentra el producto cartesiano de $X \times Y$ donde $X= \{1, 5, 10 \}$ y $Y = X \times X$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Ecuaciones Diferenciales I: Soluciones a ecuaciones diferenciales de orden superior

Por Omar González Franco

Las matemáticas son la música de la razón.
– James Joseph Sylvester

Introducción

En la entrada anterior comenzamos a estudiar los problemas con valores iniciales (PVI) y problemas con valores en la frontera (PVF), ambos para el caso de las ecuaciones diferenciales lineales de orden superior. Vimos también que si $y_{1}, y_{2}, \cdots, y_{k}$ son $k$ soluciones de una ecuación homogénea de $n$-ésimo orden en un intervalo $\delta$, entonces la combinación lineal

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{k}y_{k}(x) \label{1} \tag{1}$$

donde las $c_{i}$, $i = 1, 2, \cdots, k$ son constantes, también es solución en el intervalo $\delta$, este resultado es conocido como principio de superposición y nuestro propósito en esta entrada es estudiar las propiedades de todas estas soluciones donde la independencia lineal de las funciones jugará un papel muy importante en la construcción del conjunto fundamental de soluciones y de la solución general.

Es importante tener presente el concepto de conjunto fundamental de soluciones presentado en la entrada anterior.

Soluciones a ecuaciones diferenciales lineales de orden superior

Estamos interesados en soluciones linealmente independientes de una ecuación diferencial lineal homogénea de orden superior de la forma

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n-1}(x) \dfrac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = 0 \label{2} \tag{2}$$

Al intentar responder la pregunta de si el conjunto de $n$ soluciones $\{y_{1}, y_{2}, \cdots, y_{n}\}$ de (\ref{2}) es linealmente independiente podemos apelar directamente a la definición de independencia lineal, sin embargo esta pregunta se puede responder de una forma mecánica usando un determinante llamado el Wronskiano.

El Wronskiano es una herramienta que podemos utilizar para determinar si el conjunto de soluciones de la ecuación diferencial (\ref{2}) es un conjunto linealmente independiente y la forma de hacerlo es a través del siguiente teorema conocido como criterio para soluciones linealmente independientes.

Este teorema nos dice que sólo basta mostrar que el Wronskiano es distinto de cero para garantizar que el conjunto de soluciones $\{y_{1}, y_{2}, \cdots, y_{n}\}$ es linealmente independiente y por tanto formará un conjunto fundamental de soluciones.

Al conjunto de soluciones linealmente independiente $\{y_{1}, y_{2}, \cdots, y_{n}\}$ de la ecuación (\ref{2}) se le denomina fundamental porque, así como cualquier vector en $\mathbb{R}^{3}$ se puede expresar como una combinación lineal de los vectores linealmente independientes $\hat{i}, \hat{j}$ y $\hat{k}$, cualquier solución de una ecuación diferencial de la forma (\ref{2}) se puede expresar como una combinación lineal de las $n$ soluciones del conjunto fundamental, podemos decir que las soluciones $\{y_{1}, y_{2}, \cdots, y_{n}\}$ son los bloques básicos para la solución general de la ecuación.

En el siguiente teorema se enuncia la forma general de la solución de la ecuación diferencial (\ref{2}).

Aterricemos estas ideas generales al caso de las ecuaciones diferenciales lineales homogéneas de segundo orden.

Ecuaciones lineales homogéneas de segundo orden

Una ecuación diferencial lineal homogénea de segundo orden es de la forma

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = 0 \label{6} \tag{6}$$

Sobre esta ecuación desarrollaremos la siguiente teoría. Primero definamos el Wronskiano para el caso $n = 2$.

Ahora que conocemos la forma del Wronskiano para $n = 2$, demostremos el teorema de la solución general para el caso $n = 2$.

Demostración: Sea $y(x)$ una solución de la ecuación diferencial (\ref{6}) en el intervalo $\delta$ y sea $x_{0} \in \delta$, tal que

$y(x_{0}) = \alpha \hspace{1cm} y \hspace{1cm} \dfrac{dy}{dx}(x_{0}) = \beta$$

con $\alpha$ y $\beta$ constantes. Supongamos que existen $c_{1}$ y $c_{2}$ constantes tales que

$$\alpha = c_{1}y_{1}(x_{0}) + c_{2}y_{2}(x_{0}) \label{8} \tag{8}$$

y

$$\beta = c_{1} \dfrac{dy_{1}}{dx}(x_{0}) + c_{2} \dfrac{dy_{2}}{dx}(x_{0}) \label{9} \tag{9}$$

esto debido a que por hipótesis $y_{1}(x)$ y $y_{2}(x)$ son soluciones de la ecuación diferencial y por tanto la combinación lineal también lo será. Aplicando el teorema de existencia y unicidad obtenemos que la solución $y(x)$ tiene que ser de la forma

$$y(x) = c_{1}y_{1} + c_{2}y_{2}$$

por lo que nuestro problema se reduce a demostrar que las constantes $c_{1}$ y $c_{2}$ existen.

Si multiplicamos a la ecuación (\ref{8}) por $\dfrac{dy_{2}}{dx}(x_{0})$ y a la ecuación (\ref{9}) por $y_{2}(x_{0})$ obtenemos lo siguiente, respectivamente.

$$\alpha \dfrac{dy_{2}}{dx}(x_{0}) = c_{1}y_{1}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) + c_{2}y_{2}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) \label{10} \tag{10}$$

y

$$\beta y_{2}(x_{0}) = c_{1} y_{2}(x_{0}) \dfrac{dy_{1}}{dx}(x_{0}) + c_{2} y_{2}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) \label{11} \tag{11}$$

Restémosle a la ecuación (\ref{10}) la ecuación (\ref{11}).

\begin{align*}
\alpha \dfrac{dy_{2}}{dx}(x_{0}) -\beta y_{2}(x_{0}) &= c_{1} y_{1}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) -c_{1} y_{2}(x_{0}) \dfrac{dy_{1}}{dx}(x_{0}) \\
&= c_{1} \left( y_{1}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) -y_{2}(x_{0}) \dfrac{dy_{1}}{dx}(x_{0}) \right) \label{12} \tag{12}
\end{align*}

Sabemos que el Wronskiano, en $x = x_{0}$, está definido como

$$W(y_{1}(x_{0}), y_{2}(x_{0})) = y_{1}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) -y_{2}(x_{0}) \dfrac{dy_{1}}{dx}(x_{0}) \label{13} \tag{13}$$

Por comodidad denotaremos a $W(y_{1}(x_{0}), y_{2}(x_{0}))$ como $W(x_{0})$. Entonces la ecuación (\ref{12}) se puede escribir de la siguiente manera.

$$\alpha \dfrac{dy_{2}}{dx}(x_{0}) -\beta y_{2}(x_{0}) = c_{1} W(x_{0}) \label{14} \tag{14}$$

Debido a que por hipótesis $W(y_{1}, y_{2}) \neq 0$ para toda $x \in \delta$, en particular lo es en $x = x_{0}$, por tanto podemos despejar a la constante $c_{1}$ y así obtener un valor para dicha constante lo que muestra su existencia.

Para obtener la expresión de $c_{2}$ hacemos algo similar, multiplicamos a la ecuación (\ref{8}) por $\dfrac{dy_{1}}{dx}(x_{0})$ y a la ecuación (\ref{9}) por $y_{1}(x_{0})$ y repetimos el mismo procedimiento demostrando así que existe un valor para la constante $c_{2}$.

Como hemos encontrado valores para $c_{1}$ y $c_{2}$, entonces existen y por lo tanto la solución general a la ecuación (\ref{4}) es

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) \label{15} \tag{15}$$

$\square$

Ya hemos definido lo que es el conjunto fundamental de soluciones de una ecuación diferencial de orden $n$, para el caso $n = 2$ lo podemos definir de la siguiente manera.

Así, si encontramos un conjunto fundamental de soluciones $\{ y_{1}(x), y_{2}(x) \}$, entonces

$$W(y_{1}, y_{2}) \neq 0$$

para toda $x \in \delta$ y por tanto

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x)$$

será la solución general de la ecuación diferencial (\ref{4}).

Del criterio para soluciones linealmente independientes se puede hacer notar que cuando $y_{1}, y_{2}, \cdots, y_{n}$ son $n$ soluciones de la ecuación diferencial (\ref{2}) en un intervalo $\delta$, el Wronskiano $W(y_{1}, y_{2}, \cdots, y_{n})$ es siempre igual a cero o nunca es cero en todo $\delta$. Vamos a demostrar este hecho para el caso $n = 2$.

Demostración: Como $y_{1}(x)$ y $y_{2}(x)$ son soluciones de la ecuación (\ref{6}), entonces

$$a_{2}(x) \dfrac{d^{2}y_{1}}{dx^{2}} + a_{1}(x) \dfrac{dy_{1}}{dx} + a_{0}(x)y_{1} = 0 \label{16} \tag{16}$$

y

$$a_{2}(x) \dfrac{d^{2}y_{2}}{dx^{2}} + a_{1}(x) \dfrac{dy_{2}}{dx} + a_{0}(x)y_{2} = 0 \label{17} \tag{17}$$

Si multiplicamos a la ecuación (\ref{16}) por $y_{2}$ y a la ecuación (\ref{17}) por $y_{1}$ obtenemos lo siguiente, respectivamente.

$$y_{2}a_{2}(x) \dfrac{d^{2}y_{1}}{dx^{2}} + y_{2} a_{1}(x) \dfrac{dy_{1}}{dx} + y_{2}a_{0}(x)y_{1} = 0 \label{18} \tag{18}$$

y

$$y_{1}a_{2}(x) \dfrac{d^{2}y_{2}}{dx^{2}} + y_{1}a_{1}(x) \dfrac{dy_{2}}{dx} + y_{1}a_{0}(x)y_{2} = 0 \label{19} \tag{19}$$

A la ecuación (\ref{19}) vamos a restarle la ecuación (\ref{18}).

$$a_{2}(x) \left( y_{1} \dfrac{d^{2}y_{2}}{dx^{2}} -y_{2}\dfrac{d^{2}y_{1}}{dx^{2}} \right) + a_{1}(x) \left( y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx}\right) = 0 \label{20} \tag{20}$$

Sabemos que

$$W(y_{1}, y_{2}) = y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx}$$

y notemos lo siguiente

\begin{align*}
\dfrac{dW}{dx} &= \dfrac{d}{dx} \left( y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx}\right) \\
&= \dfrac{dy_{1}}{dx} \dfrac{dy_{2}}{dx} + y_{1} \dfrac{d^{2}y_{2}}{dx^{2}} -\dfrac{dy_{2}}{dx} \dfrac{dy_{1}}{dx} -y_{2} \dfrac{d^{2}y_{1}}{dx^{2}} \\
&= y_{1} \dfrac{d^{2}y_{2}}{dx^{2}} -y_{2}\dfrac{d^{2}y_{1}}{dx^{2}}
\end{align*}

Es decir,

$$\dfrac{dW}{dx} = y_{1} \dfrac{d^{2}y_{2}}{dx^{2}} -y_{2}\dfrac{d^{2}y_{1}}{dx^{2}} \label{21} \tag{21}$$

En términos del Wronskiano la ecuación (\ref{20}) se puede escribir como

$$a_{2}(x) \dfrac{dW}{dx} + a_{1}(x) W = 0 \label{22} \tag{22}$$

Como $a_{2}(x) \neq 0$ para toda $x \in \delta$, entonces podemos definir la función

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)}$$

tal que la ecuación (\ref{22}) se pueda escribir como

$$\dfrac{dW}{dx} + P(x) W = 0 \label{23} \tag{23}$$

Esta resultado corresponde a una ecuación diferencial lineal homogénea de primer orden y ya sabemos que la solución es de la forma

$$W(x) = ke^{-\int{P(x)} dx}$$

de manera que hay dos posibilidades:

  • Si $k = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} W(x) = 0, \hspace{0.5cm} \forall x \in \delta$
  • Si $k \neq 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} W(x) \neq 0, \hspace{0.5cm} \forall x \in \delta$

$\square$

El criterio para soluciones linealmente independientes nos garantiza que si el Wronskiano es distinto de cero, entonces el conjunto de soluciones es linealmente independiente en $\delta$, lo opuesto es cierto bajo ciertas condiciones, si el Wronskiano es igual a cero, entonces el conjunto de soluciones es linealmente dependiente. Demostremos este hecho.

Demostración: Por hipótesis

$$W(y_{1}(x), y_{2}(x)) = 0$$

$\forall x \in \delta$, es decir

$$y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx} = 0 \label{24} \tag{24}$$

Consideremos el siguiente resultado.

$$\dfrac{d}{dx} \left( -\dfrac{y_{1}}{y_{2}} \right) = \dfrac{1}{y^{2}_{2}} \left( y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx} \right) \label{25} \tag{25}$$

Donde hemos considerado la hipótesis $y_{2} \neq 0$. Si usamos la hipótesis (\ref{24}) obtenemos que

$$\dfrac{d}{dx} \left( -\dfrac{y_{1}}{y_{2}} \right) = 0$$

$\forall x \in \delta$, integrando esta ecuación obtenemos que

$$-\dfrac{y_{1}}{y_{2}} = -k$$

O bien,

$$y_{1}(x) = k y_{2}(x) \label{26} \tag{26}$$

con $k$ una constante. Esto demuestra que $y_{1}$ y $y_{2}$ son linealmente dependientes.

$\square$

Hay que tener muy presentes las hipótesis de este teorema, pues es posible que el Wronskiano sea cero aún cuando las funciones consideradas en un cierto intervalo sean linealmente independientes en él.

Como consecuencia del teorema anterior podemos establecer el criterio para soluciones linealmente independientes en el caso $n = 2$.

Realicemos un ejemplo.

Ejemplo: En la entrada anterior de tarea moral tenías que verificar que las funciones

$$y_{1}(x) = e^{-3x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{4x}$$

forman un conjunto fundamental de soluciones de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} -12y = 0$$

en $\delta = (-\infty, \infty)$. Demostremos esto mismo usando los teoremas vistos anteriormente.

Solución: Consideremos las soluciones

$$y_{1}(x) = e^{-3x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{4x}$$

y sus respectivas derivadas

$$\dfrac{dy_{1}}{dx} = -3e^{-3x} \hspace{1cm} y \hspace{1cm} \dfrac{dy_{2}}{dx} = 4e^{4x}$$

Calculemos el Wronskiano.

\begin{align*}
W(y_{1}, y_{2}) = \begin{vmatrix}
e^{-3x} & e^{4x} \\
-3e^{-3x} & 4e^{4x} \\
\end{vmatrix} = e^{-3x}(4e^{4x}) -e^{4x}(-3e^{-3x}) = 7e^{-x} \neq 0
\end{align*}

Como

$$W(y_{1}, y_{2}) = 7 e^{-x} \neq 0$$

entonces $\{ y_{1}(x) = e^{-3x}, y_{2}(x) = e^{4x}\}$ forma un conjunto fundamental de soluciones y la solución general está dada por

$$y(x) = c_{1}e^{-3x} + c_{2}e^{4x}$$

$\square$

Con esto concluimos el estudio de algunas propiedades importantes de las soluciones a la ecuación diferencial lineal homogénea de orden superior, terminemos esta entrada con el estudio del caso no homogéneo.

Ecuaciones no homogéneas

La ecuación diferencial lineal no homogénea de $n$-ésimo orden es

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n-1}(x) \dfrac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x) \label{27} \tag{27}$$

Nuestro objetivo es obtener la forma general de la solución de la ecuación no homogénea (\ref{27}) y estudiar algunas propiedades de las soluciones.

Si recordamos al operador polinomial

$$\mathcal{L} = a_{n}(x)D^{n} + a_{n -1}(x)D^{n -1} + \cdots + a_{1}(x)D + a_{0}(x) \label{28} \tag{28}$$

la definición anterior implica que

$$\mathcal{L}\{y_{p}\} = g(x) \label{29} \tag{29}$$

Veamos el siguiente resultado.

Demostración: Sea $y(x)$ la combinación lineal

$$y(x) = c_{1}y_{1} + c_{2}y_{2} + \cdots + c_{n}y_{n} + y_{p}$$

si aplicamos el operador polinomial, tenemos

\begin{align*}
\mathcal{L} \{y(x)\} &= \mathcal{L} \{c_{1}y_{1} + c_{2}y_{2} + \cdots + c_{n}y_{n} + y_{p}\} \\
&= c_{1}\mathcal{L}\{y_{1}\} + c_{2}\mathcal{L}\{y_{2}\} + \cdots + c_{n}\mathcal{L}\{y_{n}\} + \mathcal{L}\{y_{p}\} \\
&= 0 + g(x) \\
&= g(x)
\end{align*}

Ya que $\mathcal{L}\{y_{i}\} = 0$ para cada $i = 1, 2, \cdots, n$ por ser cada $y_{i}$ solución de la ecuación homogénea, mientras que $\mathcal{L}\{y_{p}\} = g(x)$ por ser solución de la ecuación no homogénea. Entonces, como

$$\mathcal{L} \{y(x)\} = g(x)$$

concluimos que la combinación lineal

$$y(x) = c_{1}y_{1} + c_{2}y_{2} + \cdots + c_{n}y_{n} + y_{p}$$

es solución de la ecuación diferencial no homogénea.

$\square$

¿Y qué ocurre si las soluciones $y_{1}, y_{2}, \cdots, y_{n}$ forman un conjunto fundamental de soluciones?. La respuesta es que la combinación lineal

$$y(x) = c_{1}y_{1} + c_{2}y_{2} + \cdots + c_{n}y_{n} + y_{p}$$

sería la solución general de la ecuación diferencial no homogénea (\ref{27}). Demostremos este resultado.

Demostración: Sea $y(x)$ la solución general de la ecuación no homogénea (\ref{27}) y sea $y_{p}(x)$ una solución particular de la misma ecuación, ambas definidas en el intervalo $\delta$, de manera que

$$\mathcal{L} \{ y(x)\} = \mathcal{L} \{ y_{p}(x)\} = g(x)$$

con $\mathcal{L}$ el operador polinomial (\ref{28}). Nuestro objetivo es encontrar la forma explícita de $y(x)$.

Definamos la función

$$h(x) = y(x) -y_{p}(x) \label{32} \tag{32}$$

y notemos lo siguiente.

\begin{align*}
\mathcal{L} \{ h(x) \} &= \mathcal{L} \{ y(x) -y_{p}(x) \} \\
&= \mathcal{L} \{ y(x) \} -\mathcal{L} \{ y_{p}(x) \} \\
&= g(x) -g(x) \\
&= 0
\end{align*}

Esto es,

$$\mathcal{L} \{ h(x) \} = 0$$

lo que significa que la función $h(x)$ es solución de la ecuación homogénea (\ref{2}) y por el teorema de la solución general de ecuaciones homogéneas podemos establecer que la función $h(x)$ tiene la siguiente forma.

$$h(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x) \label{33} \tag{33}$$

Con $\{ y_{1}, y_{2}, \cdots, y_{n} \}$ un conjunto fundamental de soluciones. Sustituyendo (\ref{33}) en (\ref{32}) y despejando a la solución general $y(x)$ obtenemos finalmente que

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x) + y_{p}(x)$$

que es lo que queríamos demostrar.

$\square$

La diferencia entre las soluciones $(\ref{30})$ y $(\ref{31})$ es que en $(\ref{31})$ las $y_{i}, i = 1, 2, \cdots, n$ forman un conjunto fundamental de soluciones, es decir, son linealmente independientes entre sí, mientras que en (\ref{30}) no necesariamente forman una conjunto fundamental y sin embargo, también son solución de la ecuación (\ref{27}).

En el caso de las ecuaciones no homogéneas vemos que la solución general corresponde a la suma de la solución general de la ecuación homogénea asociada más una solución particular de la ecuación no homogénea. En este caso no homogéneo la solución general de la ecuación homogénea tiene un nombre particular.

Por tanto, resolver una ecuación lineal no homogénea implica resolver primero la ecuación homogénea asociada para obtener la función complementaria $y_{c}(x)$ y luego se encuentra una solución particular $y_{p}(x)$ de la ecuación no homogénea para finalmente sumarlas

$$y(x) = y_{c}(x) + y_{p}(x) \label{34} \tag{34}$$

Realicemos un ejemplo.

Ejemplo: Probar que la función

$$y(x) = c_{1} e^{2x} + c_{2}x e^{2x} + x^{2} e^{2x} + x -2$$

definida en el intervalo $\delta = (-\infty, \infty)$, es la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 2 e^{2x} + 4x -12$$

Solución: Primero probemos que las funciones

$$y_{1} = e^{2x} \hspace{1cm} y \hspace{1cm} y_{2} = x e^{2x}$$

forman un conjunto fundamental de soluciones de la ecuación homogénea asociada

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 0$$

Para ello veamos que $y_{1}$ y $y_{2}$ son soluciones de la ecuación homogénea y que son linealmente independientes, es decir, que $W(y_{1}, y_{2}) \neq 0$. Calculemos las derivadas.

$$y_{1} = e^{2x} \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{dy_{1}}{dx} = 2 e^{2x} \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{d^{2}y_{1}}{dx^{2}} = 4 e^{2x}$$

$$y_{2} = xe^{2x} \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{dy_{2}}{dx} = e^{2x} + 2x e^{2x} \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} = 4 e^{2x} + 4x e^{2x}$$

De tarea moral muestra que ambas funciones son solución de la ecuación homogénea asociada, es decir, que

$$\dfrac{d^{2}y_{1}}{dx^{2}} -4 \dfrac{dy_{1}}{dx} + 4y_{1} = 0 \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} -4 \dfrac{dy_{2}}{dx} + 4y_{2} = 0$$

Ahora probemos que forman un conjunto fundamental de soluciones, para ello calculemos el Wronskiano.

\begin{align*}
W(y_{1}, y_{2}) = \begin{vmatrix}
e^{2x} & xe^{2x} \\
2 e^{2x} & e^{2x} + 2x e^{2x} \\
\end{vmatrix} = e^{2x}(e^{2x} + 2x e^{2x}) -xe^{2x}(2e^{2x}) = e^{4x} \neq 0
\end{align*}

Como $W(y_{1}, y_{2}) \neq 0$, $\forall x \in \delta$, por los teoremas vistos anteriormente concluimos que $\{y_{1} = e^{2x}, y_{2} = x e^{2x} \}$ forma un conjunto fundamental de soluciones de la ecuación homogénea asociada y que la solución general a dicha ecuación es

$$y_{c}(x) = c_{1} e^{2x} + c_{2}x e^{2x}$$

donde el subíndice $c$ indica que es la función complementaria.

Ahora verifiquemos que la función

$$y_{p}(x) = x^{2} e^{2x} + x -2$$

es una solución particular de la ecuación no homogénea. Calculemos la primera y segunda derivada.

$$\dfrac{dy_{p}}{dx} = 2x e^{2x} + 2x^{2} e^{2x} + 1$$

$$\dfrac{d^{2}y_{p}}{dx^{2}} = 2 e^{2x} + 8x e^{2x} + 4x^{2} e^{2x}$$

Sustituyamos en la ecuación diferencial.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y &= (2 e^{2x} + 8x e^{2x} + 4x^{2} e^{2x}) -4(2x e^{2x} + 2x^{2} e^{2x} + 1) +4(x^{2} e^{2x} + x -2) \\
&= 2e^{2x} + (8x e^{2x} -8x e^{2x}) + (4x^{2} e^{2x} -8x^{2} e^{2x} + 4x^{2} e^{2x}) + 4x -12 \\
&= 2e^{2x} +4x -12
\end{align*}

Esto es,

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 2e^{2x} +4x -12$$

que justo corresponde a la ecuación diferencial no homogénea, por lo tanto, efectivamente $y_{p}$ es una solución particular.

Como $\{y_{1} = e^{2x}, y_{2} = x e^{2x} \}$ es un conjunto fundamental de soluciones de la ecuación homogénea asociada y

$$y_{p}(x) = x^{2} e^{2x} + x -2$$

es una solución particular de la ecuación no homogénea, por el teorema de la solución general de ecuaciones no homogéneas concluimos que la función

$$y(x) = c_{1} e^{2x} + c_{2}x e^{2x} + x^{2} e^{2x} + x -2$$

es la solución general de la ecuación no homogénea.

$\square$

Hay algo muy interesante que ocurre en el ejemplo anterior. Mostramos que la función

$$y_{p}(x) = x^{2} e^{2x} + x -2$$

es una solución particular de la ecuación no homogénea

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 2e^{2x} +4x -12 = g(x)$$

Sin embargo, si haces los cálculos correspondientes notarás que la función

$$y_{p1}(x) = x^{2} e^{2x}$$

es una solución particular de la ecuación

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 2e^{2x} = g_{1}(x)$$

mientras que la función

$$y_{p2}(x) = x -2$$

es una solución particular de la ecuación

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 4x -12 = g_{2}(x)$$

Así, si superponemos las soluciones particulares

$$y_{p}(x) = y_{p1}(x) + y_{p2}(x)$$

obtenemos en la ecuación diferencial la superposición de la funciones

$$g(x) = g_{1}(x) + g_{2}(x)$$

Lo anterior es efecto del principio de superposición para ecuaciones no homogéneas.

Demostración: Sea $\mathcal{L}$ el operador polinomial (\ref{28}) y sean $y_{pi}(x)$, $i = 1, 2, \cdots, k$, soluciones particulares de las ecuaciones no homogéneas

$$\mathcal{L} \{ y_{pi}(x) \} = g_{i}(x)$$

$i = 1, 2, \cdots, k$ respectivamente. Definamos la función

$$y_{p}(x) = y_{p1}(x) + y_{p2}(x) + \cdots + y_{pk}(x)$$

Nuestro objetivo es demostrar que la función $y_{p}(x)$ es una solución particular de la ecuación (\ref{37}), es decir, que se cumple que

$$\mathcal{L} \{ y_{p}(x) \} = g_{1}(x) + g_{2}(x) + \cdots + g_{k}(x)$$

En efecto

\begin{align*}
\mathcal{L} \{ y_{p}(x)\} &= \mathcal{L} \{ y_{p1}(x) + y_{p2}(x) + \cdots + y_{pk}(x) \} \\
&= \mathcal{L} \{ y_{p1}(x) \} + \mathcal{L} \{ y_{p2}(x) \} + \cdots + \mathcal{L} \{ y_{pk}(x) \} \\
&= g_{1}(x) + g_{2}(x) + \cdots + g_{k}(x)
\end{align*}

Con esto queda probado que

$$y_{p}(x) = y_{p1}(x) + y_{p2}(x) + \cdots + y_{pk}(x)$$

es solución de (\ref{37}).

$\square$

Realicemos un último ejemplo.

Ejemplo: Probar que

  • $y_{p1}(x) = -4x^{2} \hspace{0.5cm}$ es solución particular de $\hspace{0.5cm} \dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = -16x^{2} + 24x -8$,
  • $y_{p2}(x) = e^{2x} \hspace{0.9cm}$ es solución particular de $\hspace{0.5cm} \dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = 2e^{2x}$,
  • $y_{p3}(x) = xe^{x} \hspace{0.9cm}$ es solución particular de $\hspace{0.5cm} \dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = 2x e^{x} -e^{x}$.

y probar que la superposición

$$y(x) = y_{p1}(x) + y_{p2}(x) + y_{p3}(x) = -4x^{2} + e^{2x} + xe^{x}$$

es una solución de

$$\dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = -16x^{2} + 24x -8 + 2e^{2x} + 2xe^{x} -e^{x}$$

Solución: Sean

$$g_{1}(x) = -16x^{2} + 24x -8, \hspace{1cm} g_{2}(x) = 2e^{2x} \hspace{1cm} y \hspace{1cm} g_{3}(x) = 2x e^{x} -e^{x}$$

De tarea moral muestra que efectivamente,

$$\dfrac{d^{2}y_{p1}}{dx^{2}} -3\dfrac{dy_{p1}}{dx} + 4y_{p1} = g_{1}(x)$$

$$\dfrac{d^{2}y_{p2}}{dx^{2}} -3\dfrac{dy_{p2}}{dx} + 4y_{p2} = g_{2}(x)$$

$$\dfrac{d^{2}y_{p3}}{dx^{2}} -3\dfrac{dy_{p3}}{dx} + 4y_{p3} = g_{3}(x)$$

Por el principio de superposición para ecuaciones no homogéneas sabemos que la función

$$y(x) = y_{p1}(x) + y_{p2}(x) + y_{p3}(x)$$

es solución de la ecuación

$$\dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = g_{1}(x) + g_{2}(x) + g_{3}(x)$$

Por lo tanto, la función

$$y(x) = -4x^{2} + e^{2x} + xe^{x}$$

es solución de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = -16x^{2} + 24x -8 + 2e^{2x} + 2xe^{x} -e^{x}$$

Si gustas puedes calcular la primera y segunda derivada de $y(x)$ y verificar la ecuación anterior para asegurarte del resultado.

$\square$

Con esto concluimos nuestro estudio sobre algunas propiedades de las ecuaciones diferenciales lineales de orden superior. En la siguiente entrada conoceremos un primer método para resolver ecuaciones diferenciales de segundo orden.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Dadas las soluciones de las siguientes ecuaciones diferenciales lineales homogéneas de orden superior en el intervalo dado, calcular el Wronskiano para determinar si es un conjunto fundamental de soluciones y en caso de serlo dar la solución general.
  • $x^{3} \dfrac{d^{3}y}{dx^{3}} + 6x^{2} \dfrac{d^{2}y}{dx^{2}} + 4x \dfrac{dy}{dx} -4y = 0$, con soluciones

$\hspace{1cm} y_{1} = x, \hspace{0.6cm} y_{2} = \dfrac{1}{x^{2}}, \hspace{0.6cm} y_{3} = \dfrac{1}{x^{2}} \ln(x); \hspace{1cm} \delta = (0, \infty)$.

  • $\dfrac{d^{4}y}{dx^{4}} + \dfrac{d^{2}y}{dx^{2}} = 0$, con soluciones

$\hspace{1cm} y_{1} = 1, \hspace{0.6cm} y_{2} = x, \hspace{0.6cm} y_{3} = \cos(x), \hspace{0.6cm} y_{4} = \sin(x); \hspace{1cm} \delta = (\infty, \infty)$.

  1. Dadas las soluciones de las siguientes ecuaciones diferenciales lineales no homogéneas de orden superior en el intervalo dado, probar que se trata de la solución general de la ecuación.
  • $\dfrac{d^{2}y}{dx^{2}} -7 \dfrac{dy}{dx} + 10y = 24 e^{x}$, con solución

$\hspace{1cm} y(x) = c_{1} e^{2x} + c_{2} e^{5x} + 6 e^{x}; \hspace{1cm} \delta = (\infty, \infty)$.

  • $2x^{2} \dfrac{d^{2}y}{dx^{2}} + 5x \dfrac{dy}{dx} + y = x^{2} -x$, con solución

$\hspace{1cm} y(x) = c_{1} \dfrac{1}{\sqrt{x}} + c_{2} \dfrac{1}{x} + \dfrac{1}{15}x^{2} -\dfrac{1}{6}x; \hspace{1cm} \delta = (0, \infty)$.

  1. Comprobar que las funciones $$y_{p1}(x) = 3 e^{2x} \hspace{1cm} y \hspace{1cm} y_{p2}(x) = x^{2} + 3x$$ son, respectivamente, soluciones particulares de $$\dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + 5y = -9 e^{2x} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + 5y = 5x^{2} + 3x -16$$
  1. Usando el ejercicio anterior, encontrar la solución particular de las siguientes ecuaciones.
  • $\dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + 5y = 5x^{2} + 3x -16 -9 e^{2x}$
  • $\dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + 5y = -10x^{2} -6x +32 + e^{2x}$

Más adelante…

Ahora que ya conocemos algunas propiedades de las ecuaciones diferenciales de orden superior y sus soluciones, en particular de las ecuaciones lineales de segundo orden, es momento de comenzar a desarrollar los distintos métodos de resolución de estas ecuaciones diferenciales.

En la siguiente entrada comenzaremos con un método que permite reducir una ecuación de segundo orden en una ecuación de primer orden, de tal manera que podremos resolverla aplicando alguno de los métodos vistos en la unidad anterior. No es casualidad que dicho método se conozca como método de reducción de orden.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior I: Leyes de De Morgan y diferencia simétrica de conjuntos

Por Guillermo Oswaldo Cota Martínez

Introducción

Hasta ahora ya hemos visto cómo juntar dos conjuntos (unión), cómo encontrar elementos en común entre dos conjuntos (intersección), y hemos considerado cualquier elemento excepto los que están dentro de un conjunto (complemento). Ahora vamos a hablar de otros dos conectores: La diferencia y la diferencia simétrica. Estos dos nos permitirán a hablar de los elementos de un conjunto $A$ sin considerar los elementos de otro conjunto $B$, así como de la unión de ambos conjuntos a excepción de su intersección. Después hablaremos de algunas propiedades conocidas como las leyes de De Morgan.

La Diferencia

Habrá ocasiones en que nos interesará diferencias algunos conjuntos de otros. Por ejemplo, imagina que quieres comprar una chamarra, visitando un sitio web te das cuenta de que hay una promoción en algunas prendas, incluidas las chamarras, entonces decides que compraras una chamarra solo si tiene descuento. Considera los conjuntos que describen artículos de la página web:

$$A = \{x : x \text{ es chamarra} \} $$

$$B = \{x : x \text{ no tiene descuento} \} $$

Si solo pudiéramos distinguir entre esos dos conjuntos, a nosotros nos gustaría encontrar una chamarra $x$ del conjunto $A$ que no esté en el conjunto $B$. Esto puede describirse como:

$$\{ x: x \in A \land x \not \in B \} = \{x: x \in A \land x \in B^c \} $$

Nota ahora que esto se puede escribir como:

$$ A \cap B^c =\{x: x \in A \land x \in B^c \} $$

Esto es justamente a lo que nosotros llamamos diferencia entre conjuntos, que representa la idea de «restar conjuntos», es decir, considerar los elementos de un conjunto exceptuando los elementos que también están en otro conjunto específico.

Definición. Sean $X$ y $Y$ dos conjuntos. Definimos la diferencia de conjuntos $X/Y$ como:

$$X \setminus Y = X \cap Y^c .$$

Y gráficamente se ve de la siguiente manera:

Diferencia simétrica

Ahora imagina que en una universidad se ofrece el curso de Lógica y el curso de Teoría de Conjuntos. La universidad quiere ver cuántos alumnos se interesan únicamente por la materia de Lógica sin la Teoría de Conjuntos y viceversa para ver cuántos grupos abrir.

Puesto que la universidad piensa abrir un curso que abarca Conjuntos y Lógica para los alumnos que quieren tomar los dos cursos a la vez, por ahora no nos interesan los alumnos que estén en la intersección del conjunto de alumnos que quieren tomar el curso de Lógica con el conjunto de alumnos que quieren tomar el curso de Teoría de Conjuntos. Dicho de otra manera, si el conjunto de los alumnos interesados en un curso de Lógica lo representamos por $L$ y al conjunto de los alumnos interesados en un curso de Teoría de Conjuntos lo representamos por $C$, entonces los alumnos que están interesados en un curso de Lógica y no de Conjuntos es $L \setminus C$ y el conjunto de alumnos que están interesados en un curso de Conjuntos y no de Lógica es $C \setminus L$.

Nota ahora que entre los dos conjuntos, hay $(L \setminus C) \cup (C \setminus L)$ alumnos que no tomarán el curso de Conjuntos y Lógica pero si una materia en alguna de esas dos disciplinas. A este conjunto lo llamamos la diferencia simétrica o unión disyuntiva entre conjuntos.

Definición . Sean $X$ y $Y$ dos conjuntos. La diferencia simétrica o unión disyuntiva de los conjuntos $X$ y $Y$ se define como:

$$X \vartriangle Y = (X \setminus Y) \cup (Y \setminus X) $$

Y gráficamente se ve como:

Leyes de De Morgan

Una vez que ya definimos los operadores que vamos a usar en la teoría de conjuntos, vamos a anotar una propiedad importante de los conjuntos que tiene su contraparte en la lógica proposicional. Y nos habla de cómo encontrar el complemento de la unión y la intersección.

Teorema (Leyes de De Morgan). Sean $X$ y $Y$ dos conjuntos dentro del conjunto universal $U$. Entonces:

  1. $(X \cap Y)^c = X^c \cup Y^c$
  2. $(X \cup Y)^c = X^c \cap Y^c$

Demostración. En esta entrada, solo demostraremos la primera parte, la segunda parte tendrá un argumento muy similar a la demostración que presentaremos a continuación.

Para demostrar que $(X \cup Y)^c = X^c \cap Y^c$, necesitaremos considerar un elemento $x$ y probar que $x \in (X \cup Y)^c$ si y solo si $ x\in X^c \cap Y^c$. Para ello, nota lo siguiente:

\begin{align*}
x \in (X \cap Y)^c &\Leftrightarrow x \in \{x \in U : \neg(x \in X \cap Y) \} \\
&\Leftrightarrow x \in \{x \in U: \neg (x \in X \land x \in Y) \} \\
&\Leftrightarrow x \in \{x \in U: \neg( x \in X ) \lor \neg (x \in Y) \} \ \ \ \ \text{ ( Por las leyes de De Morgan de la lógica)} \\
&\Leftrightarrow x \in \{x \in U: x \in X^c \lor x \in Y^c \}\\
&\Leftrightarrow x \in X^c \cup Y^c
\end{align*}

De esta manera, $(X \cap Y)^c = X^c \cup Y^c$. De manera análoga se cumple la otra proposición.

$\square$

Este teorema lo que nos quiere decir es que la forma de encontrar el complemento de la unión es intersectando el complemento de los conjuntos, y el complemento de la intersección es la unión de los complementos.

Corolario. Las siguientes proposiciones se cumplen con $X,Y,Z$ tres conjuntos:

  1. $(X \cup Y \cup Z)^c = X^c \cap Y^c \cap Z^c $
  2. $(X \cap Y \cap Z)^c = X^c \cup Y^c \cup Z^c$

Demostración. De manera similar al teorema anterior, solo demostraremos el primer inciso.

Para esto, notemos que:

\begin{align*}
(X \cup Y \cup Z)^c &= (X \cup Y)^c \cap Z^c \\
&= X^c \cap Y^c \cap Z^c
\end{align*}

De manera análoga se cumple la segunda proposición.

$\square$

Más adelante, tendremos herramienta matemática para demostrar que las leyes no solo se cumplen para la dos o tres variables, sino que para una cantidad arbitraria de términos. En otras palabras, podremos demostrar que:

Proposición. Sea $X = \{X_1,X_2,\dots,X_n\}$ una colección finita de conjuntos. Entonces:

  1. $(X_1 \cup X_2 \cup \dots \cup X_n)^c = X_1^c \cap X_2^c \cap \dots \cap X_n^c $
  2. $(X_1 \cap X_2 \cap \dots \cap X_n)^c = X_1^c \cup X_2^c \cup \dots \cup X_n^c$

Por ahora, nos quedaremos únicamente en el caso de tres variables. A este punto, conviene también decir que a veces encontrarás en la literatura la el término $X_1 \cup X_2 \cup \dots \cup X_n$ escrito como $\bigcup_{i=1}^nX_i$ y esta es únicamente una forma de notación que representa la unión de una colección de conjuntos. De manera similar, $X_1 \cap X_2 \cap \dots \cap X_n = \bigcap_{i=1}^nX_i $. De esta manera, la proposición anterior se resume en:

  1. $\big( \bigcup_{i=1}^n X_i \big)^c = \bigcap_{i=1}^n X_i^c$
  2. $\big( \bigcap_{i=1}^n X_i \big)^c = \bigcup_{i=1}^n X_i^c$

Otras propiedades de los conjuntos

A continuación anotamos otras propiedades que tienen los conjuntos, algunas de las cuales ya hemos revisado. Sean $X,Y$ y $Z$ tres conjuntos en el conjunto universal $U$, la siguiente tabla resume algunas propiedades que se cumplen.

Propiedad
Asociatividad de los conjuntos\begin{align*}
X \cup (Y \cup Z) &= (X \cup Y) \cup Z \\
X \cap (Y \cap Z) &= (X \cap Y) \cap Z
\end{align*}
Distributividad de la unión y la intersección\begin{align*}
X \cap (Y \cup Z) &= (X \cap Y) \cup (X \cap Z) \\
X \cup (Y \cap Z) &= (X \cup Y) \cap (X \cup Z)
\end{align*}
Idempotencia de la unión e intersección\begin{align*}
X \cup X = X = X \cap X
\end{align*}
Conmutatividad de unión e intersección\begin{align*}
X \cup Y = Y \cup X \\
X \cap Y = Y \cap X
\end{align*}
Leyes de identidad de unión\begin{align*}
X \cup \emptyset &= X \\
X \cup U &= U
\end{align*}
Leyes de identidad de intersección\begin{align*}
X \cap \emptyset &= \emptyset \\
X \cap U &= X
\end{align*}
Unión de complementos\begin{align*}
X \cup X^c = U
\end{align*}
Intersección de complementos\begin{align*}
X \cap X^c = \emptyset
\end{align*}
\begin{align*}
(X^c)^c = X
\end{align*}
Leyes de De Morgan\begin{align*}
(X \cap Y)^c &= X^c \cup Y^c\\
(X \cup Y)^c &= X^c \cap Y^c
\end{align*}

Y para resumir los operadores entre conjuntos, se encuentra la siguiente imagen:

Notas

*: En la literatura, también puedes encontrar la diferencia entre dos conjuntos $X$ y $Y$ escrita como $X – Y$ en lugar de $X \setminus Y$.

Más adelante…

Con esta entrada acabamos la primer unidad. Hasta ahora hemos sentado las bases matemáticas de la teoría de conjuntos, en la siguiente unidad vamos a seguir hablando de conjuntos, pero introduciremos un nuevo concepto: las relaciones entre conjuntos. Estas nos permitirán empezar a hablar de funciones, un recurso muy utilizado en todas las áreas de las matemáticas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean $P, Q, R, S$ cuatro proposiciones y $A = \{x: (P(x) \land Q(x)) \lor R(x) \}$, $B = \{x: (R(x) \land \neg P(x)) \lor S(x) \}$, $C = \{ x: S(x)\}$. Encuentra:
    • $A \cup B$
    • $B^c$
    • $A \setminus B$
    • $A \cap (B \cap C)$
    • $A \vartriangle C$
  2. Demuestra que $(X \cup Y)^c = X^c \cap Y^c$
  3. Demuestra que $(X^c)^c = X$
  4. Describe al conjunto $(X \vartriangle Y)^c \setminus (X \setminus Y)^c$ en términos de complementos, la unión y la intersección.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Ecuaciones Diferenciales I – Videos: Ecuaciones de Chebyshev e hipergeométrica

Por Eduardo Vera Rosales

Introducción

En las entradas anteriores hemos estudiado y encontrado soluciones en forma de series a algunas ecuaciones especiales de segundo orden. Hasta el momento hemos revisado las ecuaciones de Hermite, Laguerre, Bessel y Legendre, y para finalizar esta serie de entradas, echaremos un vistazo a la ecuación de Chebyshev que debe su nombre al matemático Pafnuty Chebyshev, y a la ecuación hipergeométrica.

Primero encontraremos la solución general a la ecuación de Chebyshev, la cual tiene la forma $$(1-t^{2})\frac{d^{2}y}{dt^{2}}-t\frac{dy}{dt}+\lambda^{2}y=0$$ con $\lambda$ constante y $|t|<1$, alrededor del punto ordinario $t_{0}=0$. Como hicimos para las ecuaciones de Hermite y Legendre, haremos mención de la relación que guarda la solución general con los polinomios de Chebyshev.

Posteriormente revisaremos la ecuación hipergeométrica que es de la forma $$t(1-t)\frac{d^{2}y}{dt^{2}}+(\gamma-(1+\alpha+\beta)t)\frac{dy}{dt}-\alpha \beta y=0$$ con $\alpha$, $\beta$ constantes. Veremos que $t_{0}=0$ es un punto singular regular, encontraremos la ecuación indicial de manera general, es decir, para cualesquiera $\alpha$, $\beta$ y $\gamma$, y para finalizar resolveremos la ecuación para valores fijos de las constantes antes mencionadas.

Con este par de ecuaciones diferenciales finalizaremos la revisión de estas ecuaciones especiales, y entraremos a la recta final de la segunda unidad.

Ecuación de Chebyshev

En el video encontramos la solución general a la ecuación de Chebyshev alrededor del punto ordinario $t_{0}=0$, y mencionamos la relación que tiene la solución general encontrada con los polinomios que llevan el mismo nombre.

Ecuación hipergeométrica

En el último video de esta entrada probamos que $t_{0}=0$ es un punto singular regular para la ecuación hipergeométrica, posteriormente encontramos la ecuación indicial asociada, y posteriormente encontramos una solución a la ecuación diferencial cuando $\gamma=\frac{1}{2}$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Investiga los cuatro primeros polinomios de Chebyshev. Prueba que son solución particular a la ecuación de Chebyshev para $\lambda=0,1,2,3$, respectívamente.
  • Encuentra la solución general a la ecuación de Chebyshev para $\lambda=-1$.
  • En el segundo video mencionamos que para $\gamma=\frac{1}{2}$ la ecuación indicial asociada a la ecuación hipergeométrica tiene raíces $r_{1}=\frac{1}{2}$, $r_{2}=0$, y encontramos una primera solución usando $r_{1}$. Encuentra una segunda solución usando $r_{2}$ (encuentra al menos los primeros tres coeficientes de la serie solución).
  • Encuentra una solución a la ecuación hipergeométrica cuando $\alpha=1$, $\beta=1$, $\gamma=0$.

Más adelante

Con esta entrada finalizamos la revisión de algunas ecuaciones diferenciales especiales de segundo orden que se resuelven por los métodos de series estudiados anteriormente.

Casi concluimos la segunda unidad del curso, pero antes estudiaremos un poco el concepto de la transformada de Laplace, veremos algunas de sus principales propiedades y utilizaremos esta transformada para resolver ecuaciones de segundo orden con coeficientes constantes.

¡Hasta la próxima!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»