(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)
Introducción
Como pudiste darte cuenta por el título, en esta entrada definiremos una relación de equivalencia en un grupo. Permítenos dar una motivación usando un grupo que tal vez ya hayas estudiado en cursos anteriores como el de Álgebra Superior II.
Dicho grupo tan importante, es el de los enteros con la suma $(\z, +)$. Para $a,b\in \z$ es posible establecer una relación $\thicksim$ dentro de los enteros como sigue \begin{align*} a \thicksim b \Leftrightarrow b-a \text{ es múltiplo de } n. \end{align*} Esta relación de equivalencia induce una partición de $\z$, con exáctamente $n$ conjuntos. Donde cada conjunto es una de las clases módulo $n$. En esta entrada queremos introducir una relación parecida, pero generalizada a cualquier grupo.
Comencemos modificando este ejemplo un poco. Primero, llamemos $H$ al conjunto de todos los enteros múltiplos de $n$. Así nuestra relación quedaría, para $a,b\in \z$, \begin{align*} a \thicksim b \Leftrightarrow b-a \in H. \end{align*}
Luego, notemos que a pesar de que la operación que usamos para definir el grupo es la suma usual, nuestra relación está definida usando la resta. En realidad, lo que está pasando es que estamos sumando $b$ con el inverso aditivo de $a$, es decir $-a$. Entonces $b -a = b + (-a)$. Además, $(\z,+)$ es un grupo abeliano, por lo que $b + (-a) \in H \Leftrightarrow (-a) + b \in H$. Para nuestra generalización usaremos el segundo caso.
Así, tenemos que comenzar agarrando un subgrupo cualquiera de $G$, es decir, nos tomamos $H\leq G.$ Entonces nuestra relación debe quedar, dados $a,b\in G$, \begin{align*} a \thicksim b \Leftrightarrow a^{-1}b\in H. \end{align*}
Ya al tener esa relación y demostrar que es una relación de equivalencia, usaremos las propiedades de grupo para descubrir que las clases de equivalencia son las clases laterales vistas en la entrada anterior.
Relación Generalizada
Lo anterior queda formalizado en la siguiente definición.
Definición. Sea $G$ un grupo y $H$ un subgrupo de $G$. Definimos una relación en $G$ del siguiente modo: dados $a,b \in G$,
\begin{align*} a \thicksim b \Leftrightarrow a^{-1}b \in H. \end{align*}
Ahora, demostraremos que esa relación, así como la de la introducción, es una relación de equivalencia.
Observación. La definición anterior es una relación de equivalencia.
Demostración. Sean $G$ un grupo y $H\leq G$.
Primero, tomamos $a \in G$. También podemos tomar $a^{-1}$ . Así $a^{-1}a = e \in H$. Por lo tanto $a \thicksim a$ y nuestra relación es reflexiva.
Ahora tomamos $a,b \in G$. Si $a \thicksim b$, entonces $a^{-1} b\in H$.
\begin{align*} \Rightarrow b^{-1}a = (a^{-1}b)^{-1} \in H \Rightarrow b \thicksim a \end{align*}
Por lo que nuestra relación es simétrica.
Sean $a,b,c \in G$. Si $a \thicksim b$ y $b \thicksim c$, entonces $a^{-1}b \in H$ y $b^{-1}c \in H$, entonces usando la cerradura de $H$ y asociando de otra manera, obtenemos
\begin{align*} a^{-1}c = (a^{-1}b)(b^{-1}c) \in H \Rightarrow a \thicksim c. \end{align*}
Así, nuestra relación es transitiva.
Por lo tanto, nuestra relación es una relación de equivalencia.
$\square$
Nótese que para probar las tres propiedades de una relación de equivalencia (reflexividad, simetría y transitividad) usamos las tres condiciones de un subgrupo (la existencia del neutro, la cerradura de los inversos y la cerradura del producto).
A continuación, veamos cómo son las clases de equivalencia: Sea $a \in H$.
\begin{align*} \bar{a} &= \{b \in G | a \thicksim b\} = \{b \in G | a^{-1}b \in H\} \\ &= \{b \in G | a^{-1}b = h, h \in H\} = \{b \in G | b = ah, h \in H\} \\ &= \{ah | h \in H\} = a H. \end{align*}
Ahora veremos algunas observaciones de lo anterior.
Observación. Sean $G$ un grupo, $H\leq G$ y $a,b\in G$, entonces \begin{align*} a H = bH & \Leftrightarrow a^{-1}b \in H. \end{align*}
En particular, \begin{align*} H = bH & \Leftrightarrow b \in H \end{align*}
Nota. Análogamente se puede trabajar con clases laterales derechas, i.e. ($Ha = Hb \Leftrightarrow ba^{-1}\in H$).
Como $\thicksim$ es una relación de equivalencia, esta induce una partición y, como sus clases de equivalencia son las clases laterales, tenemos el siguiente teorema.
Teorema. Sea $G$ un grupo, $H$ subgrupo de $G$.
$aH \neq \emptyset \quad \forall a \in G$ .
Si $a,b \in G$ son tales que $aH \cap bH \neq \emptyset$, entonces $aH = bH$.
$\displaystyle \bigcup_{a\in G} aH = G$
Claramente el teorema anterior enuncia las características de una partición, por lo que no hay nada que probar.
Ejemplos
Ejemplo 1. Consideremos al grupo de los cuaternios $Q$ , tomemos el subgrupo $H = \left< i \right> = \{\pm 1 , \pm i\}$. Veamos qué sucede con sus clases laterales. \begin{align*} jH &= \{j(+1), j(-1), j(+i), j(-i)\}\\ &= \{j, -j, -k k\} \\ &= Hj. \end{align*}
La última igualdad la puedes comprobar tú, multiplicando los mismos elementos por $j$, pero ahora del lado izquierdo.
Así, las clases laterales son:
Clases laterales izquierdas: $H, jH$.
Clases laterales derechas: $H, Hj$.
Ejemplo 2. Tomemos $S_3$ y $H = \{(1), (32)\}$. Primero, veamos cómo se ven las clases laterales izquierdas.
Primero, tenemos la clase del neutro, es decir $(1) H = H$. Luego, tenemos que tomarnos un elemento de $S_3$ que no esté en $H$, digamos $(1\;2\;3)$, entonces, \begin{align*} (1\;2\;3)H &= \{(1\;2\;3)(1), (1\;2\;3)(3\;2)\}\\ &= \{(1\;2\;3), (1\;2)\}. \end{align*}
Repetimos lo anterior, tomamos un elemento de $S_3$ que no esté $H$ y sea distinto al que ya nos tomamos para obtener una clase distinta. Esto nos da \begin{align*} (1\;3\;2)H &= \{(1\;3\;2)(1), (1\;3\;2)(3\;2)\} \\ & = \{(1\;3\;2)(1\;3)\}.\\ \end{align*}
Por lo que las clases laterales izquierdas son: \begin{align*} &(1)H = H\\ &(1\;2\;3)H = \{(1\;2\;3), (1\;2)\}\\ &(1\;3\;2)H = \{(1\;3\;2)(1\;3)\}.\\ \end{align*}
De la misma manera obtenemos las clases laterales derechas: \begin{align*} &H(1) = H \\ &H(1\;2\;3) = \{(1)(1\;2\;3), (3\;2)(1\;2\;3)\} = \{(1\;2\;3), (1\;3)\} \\ &H(1\;3\;2) = \{(1)(1\;3\;2), (3\;2)(1\;3\;2)\} = \{(1\;3\;2), (1\;2)\}.\\ \end{align*}
Este ejemplo nos permite ver que las clases laterales izquierdas y las clases laterales derechas no siempre coinciden.
Número de elementos en las clases laterales
El último ejemplo nos dice que las clases laterales derechas e izquierdas no siempre coinciden, sin embargo probaremos que siempre hay la misma cantidad de ambas.
Teorema. Sea $G$ un grupo, $H$ un subgrupo de $G$. Entonces
\begin{align*} \#\{a H | a \in G\} = \#\{Ha | a \in G\}. \end{align*}
Demostración.
Sea $\psi: \{a H | a \in G\} \to \{Ha | a \in G\}$, definida como $\psi(aH) = Ha^{-1} \quad \forall a \in G$. Probaremos que esta función es biyectiva.
Pequeño paréntensis:
Antes de comenzar con la demostración, pongamos atención a la definición de $\psi$. En un inicio podríamos pensar ¿por qué no hacemos $\psi(aH) = Ha$? La respuesta es simple, porque esto no funcionaría. Definamos una nueva función para ejemplificar, sea $\phi: \{a H | a \in G\} \to \{Ha | a \in G\} $ tal que $\phi(aH ) = Ha$.
Tomemos $b\in G$ tal que $aH = bH$, para que $\phi$ esté bien definida, necesitaríamos que $\phi(aH) = \phi(bH)$, es decir $Ha = Hb$. Por la relación que definimos, esto implica que si $a^{-1}b \in H$, entonces $ba^{-1} \in H$, pero esto no necesariamente es cierto porque el grupo puede no ser abeliano. Lo que sí sabemos es que si $a^{-1}b\in H$, entonces $Ha^{-1}b = H$, y así $Ha^{-1} = Hb^{-1}$.
Por esto es que escogimos a $\psi$ de esa manera.
Termina paréntesis. Ahora sí comencemos con la demostración.
Sean $a,b \in G$,
\begin{align*} aH = bH & \Leftrightarrow a^{-1}b \in H \\ &\Leftrightarrow Ha^{-1}b = H \\ & \Leftrightarrow Ha^{-1} = Hb ^{-1} \\ & \Leftrightarrow \psi (aH) = \psi (bH). \end{align*} Por tanto, $\psi$ está bien definida y es inyectiva.
Además, dada $Ha, a \in G$.
\begin{align*} Ha = H(a^{–1})^{-1} = \psi(a^{-1} H) \end{align*}
así $\psi$ es suprayectiva.
Por lo tanto $\# \{aH | a \in G\} = \# \{Ha|a\in G\}.$
$\square$
Ahora, ya sabemos que la cantidad de clases laterales izquierdas es la misma que la de clases laterales derechas. Entonces podemos nombrar esto como el índice.
Definición. Sea $G$ un grupo, $H$ un subgrupo de $G$. El índicede $H$ en $G$ es
Tomemos a $Q$ como los cuaternios, $H= \left< i \right> = \{\pm 1, \pm i\}$ $[Q:H]= 2$.
Ahora, tomemos $S_3$, $H = \{(1), (3 2)\}$. Como ya vimos, $[S_3:H]= 3$.
Consideremos el grupo $(\z, +)$ y $H = \{6m | m \in \z\}$. Hay 6 clases laterales: $H, 1+H, 2+H, 3+H, 4+H, 5+H$. Que serían los múltiplos de $6$, $6+1$, $6+2$, $\dots$ respectivamente. Así, $[\z, H ]= 6$.
Tarea moral
Analizando los ejemplos que tienes hasta ahora observa si existe alguna relación entre el orden de un grupo $G$, el orden del subgrupo $H$ y la cantidad de clases laterales de $H$ en $G$.
Considera $\{\pm 1\} \leq \left< i \right> \leq Q$. Describe las clases laterales izquierdas de $\{\pm 1\}$ en $\left< i \right>$, las clases laterales izquierdas de $\left< i \right>$ en $Q$, y las clases laterales izquierdas de $\{\pm 1\}$ en $Q$. Encuentra $[Q: \{\pm 1\}]$, $[Q:\left< i \right>]$ y $[\left< i \right>: \{\pm 1\}]$.
Considera $\left< (1\;2\;3) \right> \leq A_4 \leq S_4$. Describe las clases laterales izquierdas de $\left< (1\;2\;3) \right>$ en $A_4$, las clases laterales izquierdas de $A_4$ en $S_4$, y las clases laterales izquierdas de $\left< (1\;2\;3) \right>$ en $S_4$. Encuentra $[S_4:\left< (1\;2\;3) \right>]$, $[S_4: A_4]$ y $[A_4: \left< (1\;2\;3) \right>]$.
Ahora conoces el índice de $H$ en $G$. Recúerdalo para la siguiente entrada, porque intentaremos describir el orden de $G$ en términos del orden de $H$ y del índice. Sin hacer trampa, ¿cómo crees que se puede relacionar el orden de $G$ y el índice?
A lo largo de nuestros cursos hemos trabajado con el concepto de función. Intuitivamente entendemos a una función como una regla que asocia elementos entre dos conjuntos, con la condición de que a cada elemento del primer conjunto se le asigne uno y solo uno del segundo conjunto.
Para el caso complejo el concepto de función que conocemos no es una excepción, sin embargo resulta necesario introducir un nuevo concepto referente a funciones que «asignan más de un valor» a un mismo número complejo, las funciones multivaluadas. En el sentido estricto de la palabra es claro que esta idea de función carece de sentido pues rompe con la definición de lo que entendemos por función, pero para las funciones complejas esta idea resulta algo necesario al abordar el concepto de función inversa. Nuestro objetivo en esta entrada será definir esta nueva idea de «función», la cual nos permitirá ver que los conceptos de función inversa y función multivaluada están estrechamente ligados.
Observación 13.1. Recordemos que para un número complejo $z\neq 0$, tal que $z=r\operatorname{cis}(\theta)$, con $r=|\,z\,|$ y $\theta = \operatorname{arg} z$, sus $n$-raíces complejas están dadas por: \begin{equation*} w_k = \sqrt[n]{r} \left[\operatorname{cos}\left(\frac{\theta + 2k\pi}{n}\right) + i \operatorname{sen}\left( \frac{\theta + 2k\pi}{n} \right)\right], \end{equation*} donde $k=0, 1,\ldots, n-1$.
Para motivar una definición de función multivaluada consideremos el siguiente:
Ejemplo 13.1. De acuerdo con la observación 4.8 (entrada 4 de la primera unidad) sabemos que para $n\in\mathbb{N}^+$ la expresión $z^{1/n}$ es $n$-valuada. Si consideramos a la función $w= g(z) = z^{1/3}$, con $z\neq 0$, entonces está función es $3$-valuada, es decir, para cada valor de $z$ existen tres valores distintos de $w$ que satisfacen la ecuación $z=w^3$. Por ejemplo, para la ecuación $w^3 = 1$, si consideramos el argumento principal de $z=1$, es decir $\operatorname{Arg} z = 0$, tenemos que: \begin{align*} w_0 = 1,\\ w_1 = \frac{-1 + i\sqrt{3}}{2},\\ w_2 = \frac{-1 – i\sqrt{3}}{2}, \end{align*} son las 3 raíces cúbicas de la unidad, es decir las soluciones de la ecuación. Entonces, para $z=1$ la función $g(z) = z^{1/3}$, asigna los valores $w_0, w_1$ y $w_2$ dados.
Notemos que si consideramos a las funciones $f(z)=z^3$ y $g(z) = z^{1/3}$, entonces $g$ no puede ser la inversa de $f$ desde que $f$ no es inyectiva pues claramente $f(w_0) = 1 = f(w_1)$, pero $w_0 \neq w_1$.
Debe ser claro que en general las funciones de la forma $f(z)=z^{1/n}$, con $n\in\mathbb{N}^+$, asignan más de un valor para cada número complejo $z\neq 0$, por lo que en el sentido estricto dichas reglas de asignación no representan a una función, sino a un conjunto de funciones. Podemos visualizar este hecho en el siguiente Applet de GeoGebra https://www.geogebra.org/m/mqwkd66u.
Definición 13.1. (Función univaluada y función multivaluada.) Sea $U\subset\mathbb{C}$ un conjunto abierto y $f:U \to \mathbb{C}$ una función. Diremos que $f$ es una función univaluada o simplemente una función compleja si para cada $z\in U$ existe un único $w\in \mathbb{C}$ tal que $f(z) = w$. En caso contrario diremos que $f$ es una función multivaluada.
Observación 13.2. Para representar a una función multivaluada usaremos como notación letras mayúsculas, mientras que para referirnos a funciones univaluadas utilizaremos letras minúsculas, así por ejemplo, para $n\in\mathbb{N}^+$, la función $F(z) = z^{1/n}$ es multivaluada, mientras que la función $f(z) = 3z+1$ es univaluada.
Definición 13.2. (Rama de una función multivaluada.) Sea $F(z)$ una función multivaluada definida en un dominio $D\subset\mathbb{C}$. Diremos que $f(z)$ es una rama de $F(z)$ en $D$ si:
$f$ está bien definida en $D$, es decir $f$ es una función univaluada.
$f(z)$ es uno de los posibles valores de $F(z)$ para cada $z\in D$.
$f$ es continua en $D$.
Observación 13.3. Cuando representemos ramas de una función multivaluada $F$ utilizaremos subíndices en la notación de función univaluada, por ejemplo $f_0, f_1, f_2, \ldots$.
Observación 13.4. El concepto de dominio en la definición anterior corresponde con el de una región en el plano complejo $\mathbb{C}$, es decir, un conjunto abierto y conexo.
Observación 13.5. Aunque en esta entrada no abordaremos formalmente el concepto de continuidad de una función compleja, utilizamos esta propiedad fuertemente en la definición de una rama de una función multivaluada, ya que en ocasiones el dominio de una función multivaluada no corresponderá con el dominio de una rama puesto que puede suceder que la función univaluada no sea continua en dicho conjunto, como veremos en los ejemplos 13.2 y 13.4. Para mayor detalle sobre el concepto de continuidad se puede consultar la entrada 15 de esta unidad.
Ejemplo 13.2. En la definición 4.1, de la entrada 4, se específico que la notación usada para referirnos al argumento de un número complejo, es decir $\operatorname{arg} z$, no representa a una función de $z$, ya que dicha notación describe a un conjunto de números reales $\theta$ que satisfacen las ecuaciones: \begin{equation*} \text{sen}(\theta) = \frac{\text{Re}(z)}{|\, z \,|}, \quad \text{cos}(\theta) = \frac{\text{Im}(z)}{|\, z \,|}. \tag{13.1} \end{equation*}
Considerando el concepto de función multivaluada podemos hablar de la función $F(z) = \operatorname{arg}(z)$, la cual asignará a cada número complejo $z\neq 0$ una infinidad de argumentos que satisfacen las ecuaciones (13.1), ya que para cada $n\in\mathbb{Z}$, si $\theta\in\mathbb{R}$ satisface las ecuaciones (13.1), entonces $\theta + 2\pi n$ también lo hará.
Si fijamos un valor de $k\in\mathbb{Z}$, obtenemos una función univaluda que comunmente es llamada «rama» de la función $F(z)= \operatorname{arg}(z)$. Es importante hacer énfasis aquí en el hecho de que esta «rama» no es necesariamente una rama en el sentido estricto de la palabra, es decir de acuerdo con la definición 13.2, pues como veremos en el ejemplo 15.6 de la entrada 15, la función argumento es continua en el dominio $\mathbb{C}\setminus\left(-\infty,0\right]$, mientras que la función multivaluada $F(z)= \operatorname{arg}(z)$ está definida en el dominio $\mathbb{C}\setminus\{0\}$.
Es claro que existen infinitas ramas, en particular, si elegimos el valor $k = 0$, obtenemos la rama que denominamos la rama principal, que corresponde con el argumento principal de un número complejo $z\neq 0$, es decir $\operatorname{Arg} z \in (-\pi, \pi]$.
Notemos que tanto la función multivaluada $F(z) = \operatorname{arg}(z)$ como la función univaluada $f(z) = \operatorname{Arg}(z)$ están definidas en $\mathbb{C}\setminus\{0\}$ y toman valores en intervalos reales de la forma $\left((2n-1)\pi, (2n+1)\pi\right]$, con $n\in\mathbb{Z}$, por lo que su gráfica tiene lugar en $\mathbb{R}^3$. Podemos visualizar estas gráficas en el siguiente Applet de GeoGebra: https://www.geogebra.org/m/cwt5ctuf.
Procedemos a deducir una nueva expresión para obtener el argumento principal de un número complejo que nos será de utilidad más adelante.
Supongamos que $z\in \mathbb{R}^{-}$, entonces: \begin{equation*} z = -|\,z\,| = |\,z\,| \left[\operatorname{cos}(\pi) + i \operatorname{sen}(\pi)\right] = |\,z\,| \operatorname{cis}(\pi), \end{equation*} por lo que $\operatorname{Arg}(z) = \pi \in \operatorname{arg} z$ y claramente $\pi \in (-\pi,\pi]$.
de donde: \begin{equation*} \tan\left(\frac{\theta_0}{2}\right) = \dfrac{b}{1 + a}. \end{equation*}
Recordemos que se cumplen las siguientes identidades trigonométricas: \begin{equation*} \tan\left(\frac{\theta_0}{2}\right) = \dfrac{\operatorname{sen}(\theta_0)}{1 + \operatorname{cos}(\theta_0)}, \quad \tan^2\left(\frac{\theta_0}{2}\right) = \dfrac{1 – \operatorname{cos}(\theta_0)}{1 + \operatorname{cos}(\theta_0)}, \quad \tan\left(\frac{\theta_0}{2}\right) = \dfrac{2 \operatorname{tan}\left(\frac{\theta_0}{2}\right)}{1 – \tan^2\left(\frac{\theta_0}{2}\right)}, \end{equation*} por lo que: \begin{equation*} \operatorname{sen}(\theta_0) = \dfrac{2 \operatorname{tan}\left(\frac{\theta_0}{2}\right)}{1 + \tan^2\left(\frac{\theta_0}{2}\right)} = b, \end{equation*} \begin{equation*} \operatorname{cos}(\theta_0) = \dfrac{1 – \tan^2\left(\frac{\theta_0}{2}\right)}{1 + \tan^2\left(\frac{\theta_0}{2}\right)} = a. \end{equation*}
Más aún, dado que $z\neq 0$ y $z\not\in \mathbb{R}^{-}$, es decir $z\not\in (-\infty, 0] = \left\{z = x+iy : x\leq 0, y =0\right\}$, para $z=x+iy$ se cumple que $x>0$ ó $y\neq 0$, por lo que $|\,z\,| + x >0$, entonces: \begin{equation*} \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \end{equation*} de donde $\theta_0 \in (-\pi, \pi)$ y: \begin{equation*} z = |\,z\,| \left[\operatorname{cos}(\theta_0) + i \operatorname{sen}(\theta_0)\right] = |\,z\,| \operatorname{cis}(\theta_0). \end{equation*} Por lo tanto, $\theta_0 = \operatorname{Arg}(z)$.
$\blacksquare$
Observación 13.6. De acuerdo con los resultados de la entrada 4, Unidad I, sabemos que para $z_1,z_2\in\mathbb{C}\setminus\{0\}$, se cumple que: \begin{equation*} \operatorname{arg} z_1 z_2 = \operatorname{arg} z_1 + \operatorname{arg} z_2 = \operatorname{Arg} z_1 + \operatorname{Arg} z_2 + 2\pi n, \quad n\in\mathbb{Z}, \end{equation*} \begin{equation*} \operatorname{arg} \frac{z_1}{z_2} = \operatorname{arg} z_1 – \operatorname{arg} z_2 = \operatorname{Arg} z_1 – \operatorname{Arg} z_2 + 2\pi n, \quad n\in\mathbb{Z}, \end{equation*} \begin{equation*} \operatorname{arg} z_1^k = k \operatorname{arg} z_1 = k \operatorname{Arg} z_1 + 2\pi n, \quad k, n\in\mathbb{Z}, \end{equation*} donde $\operatorname{Arg} z \in (-\pi, \pi]$.
Es importante recordar que estas igualdades son entre conjuntos. Sin embargo, considerando la definición de función multivaluada es claro que estas propiedades se heredan a la función multivaluada $G(z) = \operatorname{arg}(z)$, para $z\neq 0$.
Más aún, de nuestros cursos de Cálculo sabemos que la función $f(x) = [x]$, llamada parte entera, determina el mayor entero menor o igual a $x$. Para $x\in\mathbb{R}$ y $n\in\mathbb{Z}$ dicha función cumple que: \begin{equation*} [x] = n \quad \Longleftrightarrow \quad x-1 < n \leq x \quad \Longleftrightarrow \quad n \leq x < n+1. \end{equation*}
Notemos que mediante esta función podemos obtener una expresión para determinar el argumento principal de un número complejo a través de cualquier elemento del conjunto de argumentos, es decir, para $z\in\mathbb{C}$, con $z\neq 0$, sabemos que: \begin{equation*} \operatorname{arg} z = \operatorname{Arg} z + 2\pi k, \quad k\in\mathbb{Z}, \end{equation*} de donde: \begin{equation*} \operatorname{Arg} z = \operatorname{arg} z + 2\pi n, \quad n=-k\in\mathbb{Z}. \end{equation*}
Puesto que $\operatorname{Arg} z \in (-\pi, \pi]$, entonces: \begin{equation*} -\pi < \operatorname{arg} z + 2\pi n \leq \pi \quad \Longleftrightarrow \quad \frac{1}{2} – \frac{\operatorname{arg} z}{2\pi} – 1 < n \leq \frac{1}{2} – \frac{\operatorname{arg} z}{2\pi}, \end{equation*} es decir: \begin{equation*} \operatorname{Arg} z = \operatorname{arg} z + 2\pi \left[ \frac{1}{2} – \frac{\operatorname{arg} z}{2\pi}\right], \end{equation*} donde $[\,x\,]$ corresponde con la función parte entera y $\operatorname{arg} z$ es un argumento $\theta$ cualquiera que satisface (13.1).
De acuerdo con observación anterior, no es difícil verificar que la función argumento principal definida antes, satisface las siguientes propiedades.
Para todo $n\in\mathbb{Z}$ se cumple que: \begin{equation*} \operatorname{Arg}\left(z_1^n\right) = n\, \operatorname{Arg}\left(z_1\right) + 2\pi N_{n}, \end{equation*} donde $N_n$ es un número entero dado por: \begin{equation*} N_n = \left[ \frac{1}{2} – \frac{n}{2\pi}\operatorname{Arg}(z_1)\right], \end{equation*} con $[\, x \,]$ la función parte entera de $x$.
Demostración. Sean $z_1, z_2 \in \mathbb{C}\setminus\{0\}$.
Sean $\theta_1 = \operatorname{Arg}(z_1)$ y $\theta_1 = \operatorname{Arg}(z_2)$, entonces $\theta_1, \theta_2 \in (-\pi, \pi]$, por lo que: \begin{equation*} -2\pi < \theta_1 + \theta_2 \leq 2\pi \quad \Longleftrightarrow \quad -2\pi \leq -\left(\theta_1 + \theta_2\right) < 2\pi. \end{equation*} De acuerdo con la observación 13.6 es claro que: \begin{equation*} \operatorname{Arg}(z_1 z_2) = \theta_1 + \theta_2 + 2\pi N_{+}, \end{equation*} donde $N_{+} = \left[ \dfrac{1}{2} – \dfrac{\theta_1 + \theta_2}{2\pi}\right] \in \mathbb{Z}$.
Entonces: \begin{equation*} -\dfrac{1}{2} – \frac{2\pi}{2\pi} \leq -\dfrac{1}{2} – \dfrac{\theta_1 + \theta_2}{2\pi} < N_{+} \leq \dfrac{1}{2} – \dfrac{\theta_1 + \theta_2}{2\pi} < \dfrac{1}{2} + \dfrac{2\pi}{2\pi}, \end{equation*} es decir $-\dfrac{3}{2} < N_{+} < \dfrac{3}{2}$, por lo que $N_{+} \in \left\{-1, 0, 1\right\}$.
Dado que $ \operatorname{Arg}(z_1 z_2) \in (-\pi, \pi]$, entonces: \begin{equation*} -\pi < \theta_1 + \theta_2 +2\pi N_{+} \leq \pi. \end{equation*} Si $ -2\pi < \theta_1 + \theta_2 \leq -\pi$, entonces $N_{+} = 1$. Mientras que si $ \pi < \theta_1 + \theta_2 \leq 2\pi$, entonces $N_{+} = -1$.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
Se sigue de la observación 13.6.
$\blacksquare$
Ejemplo 13.3. Sean $z_1 = i$ y $z_2 = -1$. Calcular:
a) $\operatorname{Arg}(z_1 z_2)$.
Solución. Tenemos que $z_1 z_2 = -i$, por lo que $\operatorname{Arg}\left(z_1 z_2\right) = -\dfrac{\pi}{2}$.
Por otra parte, tenemos que $\operatorname{Arg}\left(z_1\right) = \dfrac{\pi}{2}$ y $\operatorname{Arg}\left(z_2\right) = \pi$, por lo que: \begin{equation*} \operatorname{Arg}\left(z_1\right) + \operatorname{Arg}\left(z_2\right) = \dfrac{\pi}{2} + \pi = \frac{3\pi}{2}. \end{equation*} De acuerdo con la propiedad 1, como $\operatorname{Arg}\left(z_1\right) + \operatorname{Arg}\left(z_2\right) > \pi$, entonces: \begin{equation*} \operatorname{Arg}(z_1 z_2) = -\frac{\pi}{2} = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) -2\pi. \end{equation*} b) $\operatorname{Arg}\left(z_2^{-1}\right)$.
Solución. Como $\operatorname{Im}(z_2) = 0$ y $z_2\neq 0$, entonces por la propiedad 3 tenemos que: \begin{equation*} \operatorname{Arg}\left(z_2^{-1}\right) = \operatorname{Arg}(z_2) = \pi. \end{equation*} c) $\operatorname{Arg}(z_1^2)$.
Observación 13.7. De nuestros cursos de Cálculo sabemos que las funciones reales seno y coseno son continuas en $\mathbb{R}$ y que para todo $x\in\mathbb{R}$ se cumple que: \begin{equation*} -1 \leq \operatorname{sen}(x) \leq 1 \quad \text{y} \quad -1 \leq \operatorname{cos}(x) \leq 1. \end{equation*}
Por lo que, si $r,s \in [-1,1]$, entonces existen $x,y\in\mathbb{R}$ tales que: \begin{equation*} \operatorname{sen}(y) = s \quad \text{y} \quad \operatorname{cos}(x) = r. \end{equation*}
Si imponemos la condición $r^2 + s^2 = 1$, es decir que $(r,s)$ cae en la circunferencia unitaria de $\mathbb{R}^2$, entonces se cumple que: \begin{equation*} \operatorname{sen}(y) = \pm \operatorname{sen}(x) = \operatorname{sen}\left(\pm x\right). \end{equation*}
Dado que $\operatorname{cos}\left( \pm x\right) = \operatorname{cos}(x)$, entonces existe $\theta\in\mathbb{R}$ tal que: \begin{equation*} s = \operatorname{sen}\left(\theta\right) \quad \text{y} \quad r = \operatorname{cos}\left(\theta\right). \end{equation*}
De las observaciones 13.7 y 13.8 tenemos que si $r,s\in\mathbb{R}$, con $r^2+s^2 = 1$, entonces dado $\alpha\in\mathbb{R}$ existe $\theta \in [\alpha, \alpha+2\pi)$ tal que: \begin{equation*} s = \operatorname{sen}\left(\theta\right) \quad \text{y} \quad r = \operatorname{cos}\left(\theta\right). \end{equation*}
Notemos que dicho $\theta$ es único. Supongamos que existen $\theta, \theta’ \in [\alpha, \alpha+2\pi)$ tales que: \begin{equation*} \operatorname{sen}\left(\theta\right) = s = \operatorname{sen}\left(\theta’\right) \quad \text{y} \quad \operatorname{cos}\left(\theta\right) = r = \operatorname{cos}\left(\theta’\right), \end{equation*} entonces $\operatorname{cos}(\theta-\theta’) = \operatorname{sen}^2\left(\theta\right) + \operatorname{cos}^2\left(\theta\right) = 1$, pero lo anterior solo es posible si y solo si $\theta – \theta’ = 2k\pi$ para algún $k\in\mathbb{Z}$.
Puesto que $\theta, \theta’ \in [\alpha, \alpha+2\pi)$ y $\theta = \theta’ + 2k\pi$, para algún $k\in\mathbb{Z}$, entonces $k = 0$ y por tanto $\theta = \theta’$.
Más aún, dado que para todo $\alpha\in\mathbb{R}$ se cumple que: \begin{equation*} \operatorname{sen}(\alpha + 2\pi) = \operatorname{sen}(\alpha) \quad \text{y} \quad \operatorname{cos}(\alpha + 2\pi) = \operatorname{cos}(\alpha), \end{equation*} entonces existe un único $\theta’ \in (\alpha, \alpha + 2\pi]$ tal que: \begin{equation*} s = \operatorname{sen}\left(\theta’\right) \quad \text{y} \quad r = \operatorname{cos}\left(\theta’\right). \end{equation*}
Considerando lo anterior, podemos definir una rama arbitraria de la función multivaluada $F(z) = \operatorname{arg}(z)$.
Definición 13.4. (Rama del argumento en un intervalo $I$.) Sean $\alpha\in\mathbb{R}$, $z\in\mathbb{C}\setminus\{0\}$ y sea $I\subset\mathbb{R}$ un intervalo semiabierto de longitud $2\pi$, es decir de la forma $[\alpha, \alpha + 2\pi)$ ó $(\alpha, \alpha + 2\pi]$. Al único número real $\theta\in I$ tal que: \begin{equation*} \text{sen}(\theta) = \frac{\text{Re}(z)}{|\, z \,|} \quad \text{y} \quad \text{cos}(\theta) = \frac{\text{Im}(z)}{|\, z \,|}, \end{equation*} lo llamaremos el argumento de $z$ en $I$ y lo denotaremos como $\operatorname{Arg}_{I} z$.
La utilidad de la definición 13.4 la veremos cuando definamos al logaritmo complejo, pues en ocasiones el trabajar con ramas distintas de la principal nos permitirá hablar de ciertas funciones en las que tengamos que estudiar algunas de sus propiedades como la continuidad y la analicidad.
Considerando la definición 13.4, es posible definir a la función $\operatorname{Arg}_{I}: \mathbb{C}\setminus\{0\} \to I$ como $\operatorname{Arg}_{I}(z) = $ el único valor de $\operatorname{arg} z$ que pertenece a $I$.
Observación 13.9. En general la función $\operatorname{Arg}_{I}(z)$ será una rama, de acuerdo con la definición 13.2, siempre que se defina sobre el dominio $\mathbb{C}\setminus L\alpha$, con $L_\alpha = \{r\operatorname{cis}(\alpha) : r\geq 0\}$, figura 60, es decir todo el plano complejo menos la semirrecta que parte desde el origen y que forma un ángulo $\alpha$ con respecto al eje real positivo, pues en dicha semirrecta la función no es continua, como veremos en el ejemplo 15.6 de la entrada 15.
Observación 13.10. Notemos que si $\alpha=-\pi$ e $I = (\alpha, \alpha + 2\pi]$, entonces para $z\neq 0$ se cumple que $\operatorname{Arg}(z) = \operatorname{Arg}_{(-\pi, \pi]}(z)$, es decir obtenemos la rama principal o el argumento principal. Mientras que si consideramos a $\alpha=0$ e $I = [\alpha, \alpha + 2\pi)$, entonces para $z\neq 0$ obtenemos $\operatorname{Arg}_{[0, 2\pi)}(z)$ que suele llamarse el argumento natural de $z$.
Podemos deducir que el argumento principal y el argumento natural de un número complejo $z\neq 0$ están relacionados como sigue: \begin{equation*} \operatorname{Arg}(z) = \left\{ \begin{array}{lcc} \operatorname{Arg}_{[0, 2\pi)}(z) & \text{si} & 0 \leq \operatorname{Arg}_{[0, 2\pi)}(z) \leq \pi, \\ \operatorname{Arg}_{[0, 2\pi)}(z) – 2\pi & \text{si} & \pi < \operatorname{Arg}_{[0, 2\pi)}(z) < 2 \pi. \end{array} \right. \end{equation*} \begin{equation*} \operatorname{Arg}_{[0, 2\pi)}(z) = \left\{ \begin{array}{lcc} \operatorname{Arg}(z) & \text{si} & 0 \leq \operatorname{Arg}(z) \leq \pi, \\ \operatorname{Arg}(z) + 2\pi & \text{si} & -\pi < \operatorname{Arg}(z) < 0. \end{array} \right. \end{equation*}
Gráficamente podemos ver dónde toman valores el argumento principal y el argumento natural de un número complejo $z\neq 0$, figura 61.
Ejemplo 13.4. Si consideramos $\alpha=-\pi$ e $I = (\alpha, \alpha + 2\pi]$, entonces para $z=-1-i$ tenemos que: \begin{equation*} \operatorname{Arg}_{(-\pi, \pi]}(z) = -\frac{3\pi}{4}. \end{equation*}
Por otra parte si consideramos $\alpha=0$ e $I = [\alpha, \alpha + 2\pi)$, entonces para $z=-1-i$ tenemos que: \begin{equation*} \quad \operatorname{Arg}_{[0, 2\pi)}(z) = \frac{5\pi}{4}. \end{equation*}
Procedemos a establecer un resultado que relacione a la función $\operatorname{Arg}_{I}(z)$ con las funciones $\operatorname{Arg}(z)$ y $\operatorname{Arg}{[0, 2\pi)}(z)$.
Proposición 13.3. Sean $z\neq 0$, $\alpha\in\mathbb{R}$ y sea $I\subset\mathbb{R}$ un intervalo semiabierto de longitud $2\pi$, es decir de la forma $[\alpha, \alpha + 2\pi)$ ó $(\alpha, \alpha + 2\pi]$.
por lo que: \begin{align*} \operatorname{Arg}_{\left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]}(i) & = \operatorname{Arg}\left(- i \operatorname{cis} \left(-\frac{3\pi}{2}\right)\right) + \frac{3\pi}{2} + \pi\\ & = \operatorname{Arg}\left(1\right) + \frac{5\pi}{2}\\ & = 0 + \frac{5\pi}{2}\\ & = \frac{5\pi}{2}. \end{align*}
Observación 13.11. En el caso real para garantizar la existencia de la inversa de la función $f(x) = x^2$, bastaba con restringir el dominio de $f$ al intervalo $[0, \infty )$. Sin embargo, dado que en $\mathbb{C}$ el orden inducido en $\mathbb{R}$, bajo la relación «$>0$», no es válido y considerando el hecho de que nuestro candidato para ser la inversa de la función $f(z) = z^2$, es decir la función $F(z) = z^{1/2}$ es una función multivaluada, entonces para el caso complejo debemos ser aún más minuciosos en la elección del dominio al que debemos restringir a la función $f(z) = z^2$ para que sea inyectiva y por tanto invertible.
Ejemplo 13.7. En el ejemplo 12.7(a) vimos que la función compleja $f(z) = z^2$ no es inyectiva, por lo que no es biyectiva y de acuerdo con la definición 12.4 no podemos hablar de su función inversa. Veamos que si restringimos el dominio de esta función es posible garantizar que $f$ es inyectiva.
Solución. De acuerdo con la observación 13.1 tenemos que para $n=2$ y $z\neq 0$, la función $f(z) = z^2$ tiene dos raíces, las cuales están dadas por: \begin{equation*} w_k = \sqrt{r} \left[\operatorname{cos}\left(\frac{\theta + 2k\pi}{2}\right) + i \operatorname{sen}\left( \frac{\theta + 2k\pi}{2} \right)\right], \tag{13.2} \end{equation*} donde $k=0, 1$.
Definimos el siguiente dominio: \begin{equation*} D= \left\{z\in\mathbb{C} : -\frac{\pi}{2} < \operatorname{arg} z \leq \frac{\pi}{2}\right\}. \tag{13.3} \end{equation*}
Veamos que $f$ es inyectiva en $D$. Sean $z_1, z_2 \in D$, con $z_1 = r_1 \operatorname{cis}(\theta_1)$ y $z_2 = r_2 \operatorname{cis}(\theta_2)$ ambos distintos de cero, entonces $\theta_1, \theta_2 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Supongamos que $f(z_1) = f(z_2)$, entonces por la fórmula de De Moivre tenemos que: \begin{equation*} r_1^2 \operatorname{cis}(2\theta_1) = r_2^2 \operatorname{cis}(2\theta_2), \end{equation*} de donde es claro que los números complejos $z_1^2$ y $z_2^2$ tienen el mismo módulo y el mismo argumento principal, es decir: \begin{equation*} r_1^2=r_2^2 \quad \text{y} \quad \operatorname{Arg} z_1^2 = \operatorname{Arg} z_2^2. \end{equation*}
Dado que $r_1, r_2>0$, entonces $r_1 = r_2$. Por otra parte, como $\theta_1, \theta_2 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$, entonces: \begin{equation*} -\pi < 2\theta_1 \leq \pi \quad \text{y} \quad -\pi < 2\theta_2 \leq \pi, \end{equation*} por lo que $\operatorname{Arg} z_1^2 = 2\theta_1$ y $\operatorname{Arg} z_2^2 = 2\theta_2$, es decir $2\theta_1 = 2\theta_2$, entonces $\theta_1 = \theta_2$. Por lo tanto, como $z_1$ y $z_2$ tienen el mismo módulo y el mismo argumento principal, concluimos que $z_1 = z_2$.
Así, $f$ restringida al dominio $D$, dado en (13.3), es inyectiva.
En general, para la función compleja $f(z) = z^n$, con $n\geq 2$, el planteamiento dado en este último ejemplo puede utilizarse para garantizar que dicha función es inyectiva, solo habría que modificar el dominio dado en (13.3) por: \begin{equation*} D_n = \left\{z\in\mathbb{C} : -\frac{\pi}{n} < \operatorname{arg} z \leq \frac{\pi}{n}\right\}. \tag{13.4} \end{equation*}
Observación 13.12. No es difícil verificar que el dominio dado por (13.4) es mapeado bajo la función $f(z) = z^n$ en el conjunto $\mathbb{C}\setminus\{0\}$, para más detalle de este hecho se puede consultar la entrada 26 de esta unidad.
Notemos que si hacemos $k=0$ y $\theta = \operatorname{Arg}(z)$ en (13.2), entonces obtenemos una función que a cada $z\neq 0$ asigna únicamente una raíz cuadrada, la raíz principal.
Definición 13.5. (Raíz cuadrada principal.) Sea $z\neq 0$. Definimos a la función raíz cuadrada principal como: \begin{equation*} f(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r = |\,z\,|$ y $\theta = \operatorname{Arg}(z)$.
Debe ser claro que al tomar $\theta = \operatorname{Arg}(z)$ en la definición anterior estamos garantizando que los valores que tomará la función raíz cuadrada principal, es decir su imagen, serán los $z\neq 0$ tales que $-\pi < \operatorname{Arg}(z) \leq \pi$, el cual es un conjunto más grande que el dominio $D$ dado en (13.3.).
Ejemplo 13.8. Obtengamos el valor de la raíz cuadrada principal de los puntos: $z_1 = -i$, $z_2 = -\sqrt{3}+i$ y $z_3 = 9$.
Solución.
a) Para $z_1 = -i$ tenemos que $|\,z_1\,| = 1$ y $\operatorname{Arg}(z_1) = -\frac{\pi}{2}$, por lo que: \begin{equation*} f(-i) = \sqrt{1} \operatorname{cis}\left(\frac{-\frac{\pi}{2}}{2}\right) = \operatorname{cos}\left(-\frac{\pi}{4}\right) + i \operatorname{cos}\left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\left(1-i\right). \end{equation*} b) Para $z_2 = -\sqrt{3}+i$ tenemos que $|\,z_1\,| = 1$ y: \begin{equation*} \operatorname{Arg}(z_2) = \operatorname{arctan}\left(-\frac{1}{\sqrt{3}}\right) + \pi = \frac{5\pi}{6}, \end{equation*} por lo que: \begin{equation*} f\left(-\sqrt{3}+i\right) = \sqrt{2} \operatorname{cis}\left(\frac{\frac{5\pi}{6}}{2}\right) = \sqrt{2} \left[\operatorname{cos}\left(\frac{5\pi}{12}\right) + i \operatorname{sen}\left(\frac{5\pi}{12}\right)\right] = \frac{\sqrt{3} – 1}{2} + i \frac{\sqrt{3} + 1}{2}. \end{equation*} c) Para $z_1 = 9$ tenemos que $|\,z_3\,| = 9$ y $\operatorname{Arg}(z_1) = 0$, por lo que: \begin{equation*} f(9) = \sqrt{9} \operatorname{cis}\left(0\right) = 3\left[ \operatorname{cos}\left(0\right) + i \operatorname{sen}\left(0\right) \right] = 3. \end{equation*}
Ejemplo 13.9. Veamos que la función $g(z) = z^{1/2}$, con $g$ la raíz cuadrada principal, es una inversa de la función $f(z) = z^2$ siempre que restrinjamos el dominio de $f$ al dominio $D$ dado por (13.3).
Solución. De acuerdo con el ejemplo 13.7 sabemos que la función $f(z) = z^2$ es inyectiva en el dominio $D$ dado por los $z\neq 0$ tales que $-\pi/2 < \operatorname{Arg}(z) \leq \pi/2$ y por la observación 13.12 tenemos que $f$ es biyectiva en $D$ y por tanto existe $f^{-1}$.
Procedemos ahora a verificar que $g(z) = z^{1/2}$, con $g$ la raíz cuadrada principal, es una inversa de $f$. Sean $z,w\neq 0$ y supongamos que $f^{-1}(z) = w$. Escribiendo a $z$ y $w$ en su forma polar tenemos que: \begin{equation*} z = r\operatorname{cis}(\theta), \quad w = \rho \operatorname{cis}(\alpha), \end{equation*} donde $r=|\,z\,|$, $\rho=|\,w\,|$, $\operatorname{Arg}(z) = \theta$ y $\operatorname{Arg}(w) = \alpha$.
Dado que el rango de $f^{-1}$ es el dominio de $f$, entonces el argumento principal de $w$, es decir $\alpha$, cumple que: \begin{equation*} -\frac{\pi}{2} < \alpha \leq \frac{\pi}{2}. \end{equation*}
Además, como $f(w) = w^2 = z$, entonces $w$ debe ser una de las dos raíces cuadradas dadas por (13.2), es decir $w = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right)$ ó $w = \sqrt{r} \operatorname{cis}\left(\frac{\theta + 2\pi}{2}\right)$.
Por reducción al absurdo supongamos que: \begin{equation*} w = f^{-1}(z) = \sqrt{r} \operatorname{cis}\left(\frac{\theta + 2\pi}{2}\right). \tag{13.5} \end{equation*}
Como $\operatorname{Arg}(z) = \theta$, entonces $-\pi < \theta \leq \pi$, por lo que: \begin{equation*} \frac{\pi}{2} < \frac{\theta + 2\pi}{2} \leq \frac{3\pi}{2}. \tag{13.6} \end{equation*}
Tenemos que $\operatorname{Arg}(w) = \alpha$, entonces $\alpha \in (-\pi,\pi]$. Mientras que de (13.5) y (13.6) se sigue que $\pi/2 < \alpha \leq 3\pi/2$, por lo que $\pi/2 < \alpha \leq \pi$ ó $-\pi < \alpha \leq -\pi/2$. Sin embargo ninguna de estas condiciones se cumple desde $-\frac{\pi}{2} < \alpha \leq \frac{\pi}{2}$, por lo que nuestro supuesto en (13.5) es falso, entonces: \begin{equation*} w = f^{-1}(z) = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} la cual corresponde con la función $g(z) = z^{1/2}$ dada en la definición 13.5.
En general, considerando la observación 13.1, podemos definir una función que asigne una sola raíz, en particular la raíz $n$-ésima principal a cada $z\neq 0$, con $n\geq 2$.
Definición 13.6. (Raíz $n$-ésima principal.) Sea $z\neq 0$. Para $n\geq 2$ definimos a la función raíz $n$-ésima principal como: \begin{equation*} f(z) = z^{1/n} = \sqrt[n]{r} \operatorname{cis}\left(\frac{\theta}{n}\right), \end{equation*} donde $r = |\,z\,|$ y $\theta = \operatorname{Arg}(z)$.
Ejemplo 13.10. De acuerdo con el ejemplo 13.1 sabemos que para la función multivaluada $F(z) = z^{1/3}$ se cumple que: \begin{equation*} F(1) = \left\{ 1, \frac{-1 + i\sqrt{3}}{2}, \frac{-1 – i\sqrt{3}}{2} \right\}. \end{equation*}
Mientras que si consideramos a la función raíz cúbica principal $f(z) = z^{1/3}$, entonces: $f(1) = 1$.
Observación 13.13. De nueva cuenta, es importante mencionar que aunque la función raíz $n$-ésima principal, con $n\geq 2$, es una función univaluda, no necesariamente es una rama de la función multivaluada $F(z) = z^{1/n}$, pues como veremos en el ejemplo 15.7 de la entrada 15, la función raíz cuadrada principal $f(z)=z^{1/2}$ es discontinua en todo el eje real negativo desde que la función argumento principal es discontinua en dicho conjunto, el cual es un subconjunto del dominio $\mathbb{C}\setminus\{0\}$, correspondiente con el dominio de definición de dicha función.
De acuerdo con las observaciones 13.10 y 13.13 es interesante notar que podemos definir ramas de la función multivaluada $F(z) = z^{1/n}$, $n\geq 2$, de acuerdo con la definición 13.2, considerando ramas de la función multivaluada $G(z) = \operatorname{arg}(z)$, para ello solo debemos hacer uso de la definición 13.4. Más aún, dado un dominio donde esté definida la función $F$, entonces tendremos exactamente $n$ ramas diferentes para dicha función.
Para mostrar esto consideremos el siguiente:
Ejemplo 13.11. Sea $ I = \left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]$. Entonces, para $z\in\mathbb{C}\setminus L_{\frac{3\pi}{2}} = \left\{ z\in\mathbb{C} : |z|>0, \,\, \frac{3\pi}{2} <\operatorname{arg}(z)<\frac{7\pi}{2}\right\}$, podemos definir una rama de la función multivaluada $F(z) = z^{1/2}$, como: \begin{equation*} f_1(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r = |\,z\,|$, $\theta = \operatorname{Arg}_I(z)$ y $L_{\frac{3\pi}{2}} = \left\{-ir : r\geq 0\right\}$, es decir la semirrecta imaginaria negativa que parte del origen.
Por el ejemplo 13.6 sabemos que para $z=i$ se tiene que: \begin{equation*} \operatorname{Arg}_{\left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]}(i) = \frac{5\pi}{2}. \end{equation*}
Por otra parte, si utilizamos la función raíz cuadrada principal restringida al dominio $\mathbb{C}\setminus(-\infty, 0]$, es decir considerando el intervalo $I = (-\pi, \pi]$, tenemos: \begin{equation*} f_0(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2}\right), \quad -\pi < \beta < \pi, \end{equation*} donde $r = |\,z\,|$, $\beta = \operatorname{Arg}(z)$ y $L{-\pi} = \left\{-r : r\geq 0\right\}$, la cual es llamada la rama principal.
Entonces para $z=i$ tenemos que $\operatorname{Arg}(z) = \frac{\pi}{2}$, por lo que: \begin{equation*} f_0(i) = \sqrt{1} \operatorname{cis}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}. \end{equation*}
Es claro que $f_0(i) \neq f_1(i)$, por lo que $f_0$ y $f_1$ son dos ramas diferentes de la función multivaluada $F(z) = z^{1/2}$.
Más aún, si tomamos $ I = \left(\pi, 3\pi\right]$, para para $z \in\mathbb{C}\setminus L_{\frac{3\pi}{2}} = \left\{ z\in\mathbb{C} : |z|>0, \,\, \pi <\operatorname{arg}(z)<3\pi\right\}$, podemos definir una tercera rama de la función multivaluada $F(z) = z^{1/2}$, como: \begin{equation*} f_2(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r = |\,z\,|$, $\theta = \operatorname{Arg}_I(z)$ y $L{\pi} = \left\{-r : r\geq 0\right\}$.
Notemos que tanto $f_0$ como $f_2$ comparten el dominio $\mathbb{C}\setminus L_{\pi} = \mathbb{C}\setminus(-\infty, 0]$.
Por lo que: \begin{equation*} f_2(i) = \sqrt{i} \operatorname{cis}\left(\frac{\frac{5\pi}{2}}{2}\right) = \operatorname{cis}\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} -i\frac{\sqrt{2}}{2}. \end{equation*}
Desde que $f_0(i) \neq f_2(i)$, es claro que $f_0$ y $f_2$ son dos ramas diferentes de la función multivaluada $F(z) = z^{1/2}$. Sin embargo, puesto que $f_0$ y $f_2$ están definidas sobre el mismo dominio podemos obtener la siguiente relación.
Primeramente, procediendo como en la prueba de la proposición 13.3 es fácil verificar que: \begin{equation*} \operatorname{cis}\left(\theta+\beta\right) = \operatorname{cis}\left(\theta\right) \operatorname{cis}\left(\beta\right), \quad \forall \theta, \beta\in\mathbb{R}. \tag{13.7} \end{equation*}
Dado que $\theta\in (\pi, 3\pi)$ y $\beta \in (-\pi, \pi)$, entonces: \begin{equation*} \pi< \theta < 3\pi \quad \Longleftrightarrow \quad -\pi< \theta – 2\pi < \pi, \end{equation*} por lo que tomando $\beta= \theta – 2\pi$ tenemos que $\theta = \beta + 2\pi$.
Entonces, por (13.7) tenemos que: \begin{align*} f_2(z) &= \sqrt{r} \operatorname{cis}\left(\frac{\beta+2\pi}{2}\right)\\ & = \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2} + \pi \right)\\ & = \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2} \right) \operatorname{cis}\left(\pi \right)\\ & = – \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2} \right),\quad -\pi< \beta < \pi, \end{align*} de donde se sigue que $f_0 = -f_2$.
Haciendo una analogía con el caso real, en el que hablábamos de la raíz positiva y la raíz negativa de un número real positivo, podemos pensar a las ramas $f_0$ y $f_2$, de la función multivaluada $F(z) = z^{1/2}$, como la raíz positiva y negativa de un número complejo.
Observación 13.14. De acuerdo con lo anterior, debe ser claro que la función multivaluada $F(z)=z^{1/2}$ está completamente determinada por sus dos ramas, es decir, una vez elegida una rama del argumento, entonces $F$ está dada por sus ramas positiva y negativa.
Sea $z=r\operatorname{cis}(\theta) \neq 0$, con $r=|z|>0$ y $\theta = \operatorname{arg}(z) = \theta_I + 2\pi n$, para $n\in\mathbb{Z}$, $\theta_I = \operatorname{Arg}_{I}(z) \in I$ e $I$ un intervalo de longitud $2\pi$, definición 13.4. Entonces: \begin{align*} F(z) = z^{1/2} & = \left(r\operatorname{cis}(\theta)\right)^{1/2}\\ & = \sqrt{r}\operatorname{cis}\left(\frac{\theta}{2}\right)\\ & = \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} + \pi n\right)\\ & = \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} \right) \operatorname{cis}\left(\pi n\right), \quad n\in\mathbb{Z}. \end{align*}
Considerando los resultados de la entrada 5, sabemos que únicamente $n=0$ y $n=1$ determinan valores distintos para $F$, ya que si $n$ es par obtenemos el mismo valor que $n=0$ y si $n$ es impar obtenemos el mismo valor que $n=1$, es decir que para otros valores enteros de $n$ obtenemos los mismos valores para $F$ que los dados por $n=0$ y $n=1$. Entonces: \begin{equation*} F(x)= \left\{ \begin{array}{lcc} \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} \right) & \text{si} & n=0,\\ \\- \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} \right) & \text{si} & n=1, \end{array} \right. \end{equation*} con $\theta_I \in I$. Es decir, estos dos valores distintos de $F$ determinan sus dos ramas.
Por ejemplo si elegimos a la rama principal del argumento, es decir $\theta_I = \operatorname{Arg}(z)$ con $I = (-\pi, \pi]$, entonces para $z=r\operatorname{cis}\left(\theta_I\right) \neq 0$ tenemos que: \begin{equation*} F(z) = f_{\pm}(z) = \pm \sqrt{r} \operatorname{cis}\left(\frac{\theta_I}{2}\right), \quad -\pi < \theta_I < \pi. \end{equation*}
Cerraremos esta entrada con dos nuevos conceptos que también juegan un papel importante al trabajar con funciones multivaluadas, los cuales utilizaremos más adelante.
Definición 13.6.(Punto de ramificación.) Sea $F(z)$ una función multivaluada definida en un dominio $D\subset\mathbb{C}$ y sea $z_0 \in \mathbb{C}$. Decimos que $z_0$ es un punto de ramificación de $F$ si una vuelta alrededor de $z_0$ (y suficientemente cerca a $z_0$) produce un cambio de rama de la función.
Si $n$ es el menor número natural tal que $n$ vueltas alrededor de $z_0$ llevan cada rama sobre sí misma, decimos que $z_0$ es un punto de ramificación de orden $n-1$. Si nunca vuelve a la rama original, diremos que es de orden $\infty$. El punto al infinito $z_\infty = \infty$ es un punto de ramificación de $F(z)$ si una vuelta alrededor de una circunferencia suficientemente grande provoca un cambio de rama. Equivalentemente, $z_\infty = \infty$ es un punto de ramificación de $F(z)$ si $z = 0$ es un punto de ramificación de la función $F(1/z)$.
Ejemplo 13.12. Consideremos a la función multivaluada $F(z) = z^{1/2}$. Veamos que $z_0=0$ y $z_\infty = \infty$ son puntos de ramificación de $F$.
Solución. Es claro que la función $F$ no está definida para $z=0$, por lo que no es casualidad que dicho punto sea una punto de ramificación de $F$. Sea $C(z_0,\varepsilon)$ una circunferencia con centro en $z_0=0$ y radio $\varepsilon>0$, con $\varepsilon$ arbitrariamente pequeño. Sabemos que un punto $z\in C(z_0,\varepsilon)$ en su forma polar está dado por: \begin{equation*} z = \varepsilon \operatorname{cis}(\theta), \quad -\pi < \theta \leq \pi, \end{equation*} donde $\theta = \operatorname{Arg}(z)$ y $\varepsilon = |\,z\,|$.
De acuerdo con la observación 13.14, sabemos que la función multivaluada $F(z) = z^{1/2}$ tienes dos ramas diferentes, su rama positiva y su rama negativa, es decir $f_{+}$ y $f_{-}$. Supongamos que a $z_1 \in C(z_0,\varepsilon)$ le hemos aplicado $F$, entonces tenemos que: \begin{equation*} F(z_1) = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right) = f_+(z_1), \quad -\pi < \theta <\pi. \end{equation*}
Si consideramos que $z_1$ ha dado una vuelta completa sobre la circunferencia $C(z_0,\varepsilon)$, en el sentido contrario al de las manecillas del reloj, es decir que $\theta$ aumento $2\pi$, entonces tenemos que: \begin{align*} F(z_1) & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta+2\pi}{2}\right)\\ & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right) \operatorname{cis}\left(\pi\right)\\ &= – \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right), \quad -\pi < \theta <\pi,\ & = – f_+(z_1)\\ & = f_{-}(z_1), \end{align*} es decir, al partir de un punto arbitrario sobre la circunferencia $C(z_0,\varepsilon)$ y dar una vuelta completa sobre dicha circunferencia la función multivaluada $F(z)=z^{1/2}$ cambio de rama, por lo que $z_0 =0$ es un punto de ramificación de dicha función, figura 62.
Notemos que si $z_1$ da dos vueltas completas sobre la circunferencia $C(z_0,\varepsilon)$, es decir $ 3\pi < \theta + 4\pi < 5\pi$, entonces: \begin{align*} F(z_1) & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta+4\pi}{2}\right)\\ & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right) \operatorname{cis}(2\pi)\\ & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right), \quad -\pi<\theta<\pi,\\ & = f_+(z_1), \end{align*} por lo que, después de dos vueltas completas alrededor del punto $z_0 = 0$ el valor de la función multivaluada $F$ regresa al valor de la rama principal $f_0$, es decir a su rama positiva, entonces $z_0 = 0$ es un punto de ramificación de orden $1$.
Recordemos que en la esfera de Riemann el punto al infinito $z_\infty=\infty$ corresponde con el polo norte $N$. Por lo que una circunfernecia alrededor de $N$, de radio arbitrariamente pequeño sobre la esfera de Riemann, determina una circunferencia de radio muy grande en el plano complejo. Esta curva rodea, necesariamente, a $z_0=0$. Por lo tanto, una vuelta completa sobre esta circunferencia causará un cambio de rama de la función multivaluada $F(z) = z^{1/2}$.
Procediendo como antes, podemos concluir fácilmente que $z_\infty = \infty$ también es un punto de ramificación de orden $1$ de $F$.
Tomemos un punto $z$ sobre la circunferencia $C(z_0,\varepsilon)$, con $z_0 =0$ y $\varepsilon>0$ arbitrariamente pequeño. Si $z$ da una vuelta completa alrededor de $z_0$ tendremos que $\theta$ habrá aumentado $2\pi$, por lo que: \begin{align*} F\left(\frac{1}{z}\right) & = r^{-1/2} \operatorname{cis}\left(\frac{-\theta + 2\pi}{2}\right)\\ & = r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = -r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right), \quad -\pi<\theta<\pi,\\ & = f_{-}\left(\frac{1}{z}\right). \end{align*}
Entonces, después de una vuelta alrededor del punto $z_0=0$, la función multivaluada $F(1/z)$ cambio de rama, por lo que $z=0$ es un punto de ramificación de $F(1/z)$ y por tanto $z_\infty = \infty$ es un punto de ramificación de $F(z)$.
De manera análoga, si $z$ da dos vueltas alrededor de $z_0 = 0$, entonces $F$ vuelve a tomar el valor de la rama principal, es decir que con dos vueltas la rama principal regresa a sí misma, por tanto $z_0$ es un un punto de ramificación de orden $2-1 = 1$ de $F(1/z)$.
Definición 13.6.(Corte de rama.) Un corte de rama es una línea (habitualmente recta) que separa dos ramas de una misma función multivaluada. Equivalentemente, es la línea en la que una rama se hace discontinua.
Observación 13.15. Los cortes de rama son, en realidad, curvas por las que hacemos discontinuas las ramas y que impiden que podamos dar una vuelta completa alrededor de un punto de ramificación. Es muy importante hacer notar que los cortes de rama no son únicos y podemos elegirlos según nos convenga.
Ejemplo 13.13. Consideremos a la función multivaluada $F(z) = z^{1/2}$. De acuerdo con el ejemplo 13.11, tenemos que para las ramas $f_0, f_1$ y $f_2$ sus cortes de ramas son, respectivamente, las semirrectas: \begin{align*} L_{-\pi} = \left\{-r : r\geq 0\right\} = (-\infty,0],\\ L_{\frac{3\pi}{2}} = \left\{-ir : r\geq 0\right\},\\ L_{\pi} = \left\{-r : r\geq 0\right\} = (-\infty,0], \end{align*} pues en dichos conjuntos cada una de las ramas no son continuas.
Ejemplo 13.14. Consideremos a \begin{equation*} I = \left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]. \end{equation*}
La función $\operatorname{Arg}_I(z)$ es discontinua en: \begin{equation*} L_{\frac{3\pi}{2}} = \left\{-ir : r\geq 0\right\}, \end{equation*} por lo que dicha semirrecta corresponde con su corte de rama.
Por otra parte, para la función $\operatorname{Arg}(z)$ se tiene que su corte de rama es la semirrecta: \begin{equation*} L_{-\pi} = \left\{-r : r\geq 0\right\} = (-\infty,0], \end{equation*} pues en dicho conjunto la función es discontinua.
Ejemplo 13.15. Considerando las ramas principal y natural del argumento determina los corte de rama para la función multivaluada $F(z) = \sqrt{z^2-1}$. ¿Cuáles son los puntos de ramificación de $F$?
Solución. Sabemos que para la función multivaluada $F(w)=\sqrt{w}$, se tiene que $w=0$ y $w=\infty$ son ambos puntos de ramificación de orden 1, por lo que si $w=z^2-1$, entonces un primer candidato a ser punto de ramificación es $w=0$, es decir, $z^2-1=(z-1)(z+1) = 0$, de donde inferimos que $z=1$ y $z=-1$ son ambos puntos de ramificación.
Y para $n=1$ tenemos: \begin{equation*} f_{-}(z) = \sqrt{z^2 -1} = \sqrt{(z-1)(z+1)} = -\sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right). \end{equation*}
En ambos casos $r_1, r_2 >0$ y $-\pi < \theta_1, \theta_2 <\pi$.
Si elegimos la rama principal del argumento, entonces tenemos que: \begin{equation*} -\pi < \operatorname{Arg}(w)\leq \pi \quad \Longleftrightarrow \quad \left\{w\in\mathbb{C} : \operatorname{Re}(w)\leq 0, \operatorname{Im}(w) = 0 \right\}. \end{equation*}
Por lo que, tomando $z=x+iy\in\mathbb{C}$ y $w = z^2-1$, con $x,y\in\mathbb{R}$, tenemos que el corte de rama de la rama principal $f_0(z) = \sqrt{z^2-1}$ está dado por las siguientes condiciones: \begin{equation*} \left\{ \begin{array}{l} \operatorname{Re}(z^2-1) = x^2 – y^2 -1 \leq 0,\\ \\ \operatorname{Im}(z^2-1) = 2xy = 0. \end{array} \right. \end{equation*}
De la segunda condición es claro que puede sucder que $x=0$ ó $y=0$. Si $x=0$, entonces de la primera condición se sigue que $y^2 +1 \geq 0$, lo cual se cumple para todo $y\in\mathbb{R}$.
Por otra parte, si $y=0$, entonces de la primera condición se sigue que $x^2 \leq 1$, lo cual se cumple para todo $x\in\mathbb{R}$ tal que $|\,x\,| \leq 1$.
Entonces, considerando la rama principal del argumento, tenemos que el corte de rama de $f_0$ es: \begin{equation*} L_P = \left\{z =x+iy\in\mathbb{C} : x=0, y \in\mathbb{R} \right\} \cup \left\{z =x+iy\in\mathbb{C} : |\,x\,| \leq 1, y = 0 \right\}. \end{equation*}
El conjunto anterior corresponde con todo el eje imaginario y el intervalo real $[-1,1]$, sin embargo, geométricamente podemos notar que el primer conjunto de discontinuidades para la rama principal $f_0$ se puede omitir desde que dicho conjunto ya se considera si definimos a dicha rama como: \begin{equation*} f_0(z) = \sqrt{z^2-1} = \left\{ \begin{array}{lcc} f_+(z) & \text{si} & \operatorname{Re}(z)>0,\\ \\ f_-(z) & \text{si} & \operatorname{Re}(z)<0, \end{array} \right. \end{equation*}cuyo corte de rama, para cada función, es respectivamente: \begin{equation*} \left\{z =x+iy\in\mathbb{C} : y=0, 0<x\leq 1 \right\} \quad \text{y} \quad \left\{z =x+iy\in\mathbb{C} : y=0, -1 \leq x <0 \right\}. \end{equation*}
Por tal motivo, resulta completamente innecesario mencionar a las discontinuidades del eje imaginario, pues están implícitas en la definición de la rama principal dada antes, por ello, al hablar del corte de rama para esta función bastará con mencionar al intervalo real $[-1,1]$, es decir: \begin{equation*} L_P = \left\{z =x+iy\in\mathbb{C} : |\,x\,| \leq 1, y = 0 \right\}. \end{equation*}
Por otra parte, si elegimos la rama natural del argumento entonces tenemos que: \begin{equation*} 0 \leq \operatorname{Arg}(w) < 2\pi \quad \Longleftrightarrow \quad \left\{w\in\mathbb{C} : \operatorname{Re}(w)\geq 0, \operatorname{Im}(w) = 0 \right\}. \end{equation*}
Por lo que, tomando $w = z^2-1$ y $z=x+iy$, con $x,y\in\mathbb{R}$, tenemos que el corte de rama de la rama $f(z) = \sqrt{z^2-1}$ está dado por las condiciones: \begin{equation*} \left\{ \begin{array}{l} \operatorname{Re}(z^2-1) = x^2 – y^2 -1 \geq 0,\\ \\ \operatorname{Im}(z^2-1) = 2xy = 0. \end{array} \right. \end{equation*}
De manera análoga concluimos que $x\neq 0$, por lo que de la segunda condición se sigue que $y=0$, entonces $x^2\geq 1$, es decir $|\,x\,| \geq 1$.
Entonces, considerando la rama natural del argumento, tenemos que el corte de rama de $f$ son dos semirrectas dadas por: \begin{equation*} L_N = \left\{z =x+iy\in\mathbb{C} : |\,x\,| \geq 1, y = 0 \right\}. \end{equation*}
De lo anterior es claro que los puntos $z=1$ y $z=-1$ aparecen en ambos cortes de rama, por lo que procedemos a verificar que son puntos de ramificación de la función multivaluada $\sqrt{z^2-1}$.
Consideremos una circunferencia con centro en $1$ y radio suficientemente pequeño para que el punto $z=-1$ sea un punto exterior a ella, figura 65, y tomemos a un punto cualquiera $z$ sobre ella, entonces: \begin{equation*} F(z) = \sqrt{z^2 -1} = \sqrt{(z-1)(z+1)} = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) = f_{+}(z). \end{equation*}
Notemos que si damos una vuelta alrededor del punto $z=1$, considerando el punto $z$ sobre la circunferencia dada, entonces solo el argumento de $z-1$ se verá afectado, es decir: \begin{align*} F(z) & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\left(\theta_1 + 2\pi\right) +\theta_2}{2}\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = – \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 +\theta_2}{2}\right)\\ & = f_{-}(z)\\ & \neq f_{+}(z), \end{align*}por lo que, después de una vuelta alrededor del punto $z=1$, la función $F$ cambió de rama, es decir que $z=1$ es un punto de ramificación de orden $1$.
De manera similar, si tomamos un punto $z$ sobre una circunferencia con centro en el punto $z=-1$ y radio suficientemente pequeño de tal forma que el punto $z=1$ sea un punto exterior a ella, figura 66, entonces el argumento de $z+1$ se verá modificado en $2\pi$, es decir: \begin{align*} F(z) & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\left(\theta_2 + 2\pi\right) +\theta_1}{2}\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = – \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 +\theta_2}{2}\right)\\ & = f_1(z)\\ & \neq f_0(z), \end{align*} por lo que, de nueva cuenta la función $F$ cambio de rama, entonces $z=-1$ también es un punto de ramificación de orden $1$.
Por último, tomemos a un punto $z_0\in\mathbb{C}$, con $z_0 \neq 1, -1$, y tracemos una circunferencia con centro en $z_0$ y radio suficientemente pequeño, de tal forma que $1$ y $-1$ sean puntos exteriores a ella, figura 67. Notemos que si un punto $z$ da una vuelta completa sobre dicha circunferencia, entonces los argumentos de $z-1$ y $z+1$ no se ven modificados, por lo que la función $F$ no cambia de rama, es decir que $z_0$ no es un punto de ramificación, por lo que $z=1$ y $z=-1$ son los únicos puntos de ramificación.
Más aún, si tomamos una circunferencia que encierre a ambos puntos de ramificación, al dar una vuelta completa sobre dicha circunferencia tendremos que tanto el argumento de $z-1$ como el de $z+1$ se verán modificados, es decir: \begin{align*} F(z) & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\left(\theta_1 + 2\pi\right) + \left(\theta_2 + 2\pi\right)}{2}\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) \operatorname{cis}\left(2\pi\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 +\theta_2}{2}\right), \end{align*} de donde se sigue que $z=\infty$ no es un punto de ramificación.
Es sencillo verificar esto último considerando a la función $F(1/z)$, por lo que se deja como ejercicio al lector.
Gráficamente, los cortes de rama dados en la figura 64 nos aseguran que una rama definida en un dominio que excluya a dichos conjuntos en efecto será una función continua univaluada, es decir, solo nos determinará un único valor para cada $z$ en dicho dominio.
Tarea moral
Verifica que se cumple la observación 13.3.
Demuestra la proposición 13.2.
Obtén, en las regiones apropiadas, las funciones inversas $z=g(w)$ de: a) $w = f(z) = z^3$. b) $w = f(z) = (z-1)^4+i$. c) $w = f(z) = z^7+1+i$. d) $w = f(z) = 2z^2+iz-i+1$.
Verifica que se cumple (13.7).
Considera a la función multivaluada $F(z) = z^{1/3}$ dada por sus tres ramas $f_0, f_1$ y $f_2$ siguientes: \begin{equation*} F(z) = \left\{ \begin{array}{lcc} f_0(z) = \sqrt[3]{r}\operatorname{cis}\left(\frac{\theta}{3}\right) & \text{si} & 0 \leq \theta < 2\pi, \\ f_1(z) = \sqrt[3]{r}\operatorname{cis}\left(\frac{\theta}{3}\right) & \text{si} & 2\pi \leq \theta < 4\pi, \\ f_2(z) = \sqrt[3]{r}\operatorname{cis}\left(\frac{\theta}{3}\right) & \text{si} & 4\pi \leq \theta < 6\pi, \end{array} \right. \end{equation*} donde $\theta = \operatorname{Arg}_{[0,2\pi)}(z)$ y $r=|\,z\,|$. Prueba que $z_0 = 0$ y $z_\infty = \infty$ son puntos de ramificación de $F$, ambos de orden $2$.
Muestra que los puntos dados son los puntos de ramificación de las siguientes funciones multivaluadas. a) $z=0$, $z=\infty$ ambos de orden $n-1$ para $F(z) = \sqrt[n]{z}$, $n\geq 2$. Recuerda que para esta función existen exactamente $n$ ramas distintas. b) $z=5$, $z=i$ y $z=2i-3$, los tres de orden $1$ para $F(z) = \sqrt{(z-5)(z-i)(z-2i+3)}$.
Prueba que el corte de rama de la función $f(z) = \operatorname{Arg}(iz-1)$ es la semirrecta: \begin{equation*} L = \left\{z=x+iy\in\mathbb{C} : x=0, y\geq 0\right\} \end{equation*} Hint: Observa que $-\pi < \operatorname{Arg}(w) \leq \pi \quad \Longleftrightarrow \quad \left\{w\in\mathbb{C} : \operatorname{Re}(w)\leq 0, \operatorname{Im}(w)=0\right\}$.
Sean $\alpha\in\mathbb{R}$ e $I = (\alpha, \alpha+2\pi]$. Define: \begin{equation*} \alpha^* = \alpha – 2\pi\left(\left\lceil\frac{\alpha}{2\pi}\right\rceil – 1 \right). \end{equation*} Muestra que: \begin{equation*} \operatorname{Arg}_I(z) = \left\{ \begin{array}{lcc} \operatorname{Arg}(z) + 2\pi\left( \left\lceil\frac{\alpha}{2\pi}\right\rceil – 1\right) & \text{si} & \alpha^*< \operatorname{Arg}(z) \leq \pi, \\ \operatorname{Arg}(z) + 2\pi \left\lceil\frac{\alpha}{2\pi}\right\rceil & \text{si} & \alpha^*< \operatorname{Arg}(z) \leq \pi, \end{array} \right. \end{equation*} donde $\lceil x \rceil = n \quad \Longleftrightarrow \quad n-1<x\leq n \quad \Longleftrightarrow \quad x \leq n < x+1$, para $n\in\mathbb{Z}$.
Más adelante…
En esta entrada introducimos de manera formal el concepto de función multivaluada y vimos algunos ejemplos puntuales de funciones de este tipo considerando algunos resultados que habíamos obtenido a lo largo de la unidad anterior.
En resumen, una función multivaluada puede pensarse como una colección de funciones univaluadas a las cuales llamamos ramas de la función. Más aún, las funciones multivaluadas pueden caracterizarse por sus puntos de ramificación y sus cortes de ramas. Los cortes de ramas, nos definen una rama de la función multivaluada, de acuerdo con la definición 13.2, la cual es una función discontinua sobre los puntos del corte ramal.
Dado que cada corte de rama impone una restricción en los valores del argumento, los cuales están limitados a un intervalo de longitud $2\pi$, y a su vez cada rama del argumento implica un corte en el plano complejo, entonces no existe una única forma de definir un corte de rama, esto dependerá en esencia de las necesidades del cálculo en cierto problema.
En las siguientes entradas estaremos trabajando con más ejemplos de funciones multivaluadas, como el logaritmo y las funciones inversas de las funciones trigonométricas e hiperbpolicas, que resultan ser de las funciones más elementales para el caso complejo, por lo que es importante familiarizarnos con este nuevo concepto y con las propiedades que lo definen.
La siguientes dos entradas veremos dos conceptos fundamentales en la teoría de las funciones, el del límite y continuidad. Como vimos en nuestros cursos de Cálculo, es posible estudiar y caracterizar a una función real a través del límite y la continuidad en un punto de la misma. Nuestro objetivo en las siguientes entradas consistirá en trabajar dichos conceptos pero desde la perspectiva de la variable compleja.
Nuestra motivación para este repaso comienza como sigue. Supongamos que $T:\mathbb{R}^n \rightarrow \mathbb{R}^m$ es una transformación lineal. Tomemos un vector $\bar{w}\in \mathbb{R}^m$. Es muy natural preguntarse qué vectores $\bar{v}$ hay en $\mathbb{R}^n$ tales que $T(\bar{v})=\bar{w}$, en otras palabras, preguntarse cuál es la preimagen de $\bar{w}$.
Sistemas de ecuaciones lineales
Continuando con la situación planteada en la introducción, si $A$ es la representación matricial de $T$ en una cierta base $\beta$, podemos contestar la pregunta planteada resolviendo la ecuación matricial $AX=B$ donde $X$, $B$ son las representaciones de los vectores $\bar{v}$, $\bar{w}$ en la base $\beta$, respectivamente. Una vez llegado a este punto, la ecuación $AX=B$ nos conduce a que se deban cumplir varias igualdades. Veamos cuáles son en términos de las entradas de $A$, $X$ y $Y$. Pensemos que $$A=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{pmatrix}.$$
Pensemos también que $X$ es el vector columna con entradas (incógnitas) $x_1,\ldots,x_n$, y que $B$ es el vector columna con entradas $b_1,\ldots,b_m$.
Al realizar las operaciones, la igualdad $AX=B$ se traduce en que se deban cumplir todas las siguientes ecuaciones simultáneamente:
Definición. Un sistema de $m$ ecuaciones lineales con $n$ incógnitas es un sistema de ecuaciones de la forma \eqref{eq:sistema}. Como discutimos arriba, al sistema también lo podemos escribir de la forma $AX=B$. A la matriz $A$ le llamamos la matriz de coeficientes. Al vector $X$ le llamamos el vector de incógnitas.
Resolver el sistema \eqref{eq:sistema} se refiere a determinar todos los posibles valores que pueden tomar las incógnitas $x_1,\ldots,x_n$ de manera que se cumplan todas las ecuaciones dadas.
Definición. Diremos que dos sistemas de ecuaciones son equivalentes si tienen las mismas soluciones.
Un resultado importante que relaciona a los sistemas de ecuaciones con las operaciones elementales que discutimos con anterioridad es el siguiente.
Proposición. Sea $A\in M_{m,n}(\mathbb{R})$ y $e$ una operación elemental cualquiera (intercambio de renglones, reescalamiento de renglón, o transvección). Entonces el sistema de ecuaciones $AX=B$ es equivalente al sistema de ecuaciones $e(A)X=e(B)$.
En otras palabras, si comenzamos con un sistema de ecuaciones $AX=B$ y aplicamos la misma operación elemental a $A$ y a $B$, entonces obtenemos un sistema equivalente. Veamos como ejemplo un esbozo de la demostración en el caso del reescalamiento de vectores. Los detalles y las demostraciones para las otras operaciones elementales quedan como ejercicio.
Demostración. Consideremos el rescalamiento $e$ de la $j$-ésima columna de una matriz por un factor $r$. Veremos que $e(A)X=e(B)$. Tomemos
Entonces la ecuación matricial $AX=B$ nos produce el siguiente sistema de ecuaciones lineales: \[ \left\{\begin{matrix} a_{11}x_{1}+ & \dots & +a_{1n}x_{n}=b_{1} \\ \vdots & \ddots & \vdots \\ a_{m1}x_{1}+ & \dots & +a_{mn}x_{n}=b_{m}. \end{matrix} \right.\]
Tomemos una solución del sistema: \[ X’= \begin{pmatrix} x_{1}’\\ \vdots \\ x_{n}’ \end{pmatrix} \]
La ecuación matricial $e(A)X=e(B)$ nos produce el siguiente sistema de ecuaciones: \[ \left\{\begin{matrix} a_{11}x_{1}+ & \dots & +a_{1n}x_{n}=b_{1} \\ \vdots & \ddots & \vdots \\ ra_{j1}x_{1}+ & \dots & +ra_{jn}x_{n}=rb_{j} \\ \vdots & \ddots \ & \vdots \\ a_{m1}x_{1}+ & \dots & +a_{mn}x_{n}=b_{m}. \end{matrix}\right. \]
Ahora, de cada una de las $n$ ecuaciones, excepto la $j$-ésima, sabemos que se solucionan al sustituir $x_{1}’, \dots ,x_{m}’$, resta revisar la $j$-ésima ecuación. Lo que sí sabemos de que $X’$ sea solución es que $$a_{j1}x_{1}’+ \dots +a_{jn}x_{n}’=b_{j}.$$ Así, al multiplicar por $r$ de ambos lados $ra_{j1}x_{1}’+ \dots + ra_{jn}x_{n}’=rb_{j}$. Así obtenemos que $X’$ satisface también a $e(A)X=e(B)$. Inversamente si una solución satisface al sistema $e(A)X=e(B)$ también lo hace para $AX=Y$. Te recomendamos revisar los detalles por tu cuenta.
$\square$
Soluciones a sistemas de ecuaciones lineales
La teoría de sistemas de ecuaciones lineales nos dice que tenemos tres posibles situaciones que se pueden presentar cuando estamos resolviendo un sistema de ecuaciones lineales en $\mathbb{R}$: no hay solución, hay una única solución, o tenemos infinidad de soluciones. Por ejemplo, se puede descartar que haya exactamente dos soluciones. En cuanto sucede esto, la cantidad de soluciones se dispara a una infinidad
Haremos una discusión de cuándo se presenta cada caso. De acuerdo con la sección anterior, cualquier operación elemental pasa un sistema de ecuaciones a uno equivalente. Además, de acuerdo con el teorema de reducción gaussiana, cualquier matriz puede ser llevada a la forma escalonada reducida. Así, al aplicar tanto a $A$ como a $B$ las operaciones elementales que llevan $A$ a su forma escalonada reducida $A_{red}$, llegamos a un sistema equivalente $A_{red}X=C$. El comportamiento del conjunto solución de $AX=B$ se puede leer en este otro sistema equivalente como sigue:
Sin solución. El sistema $AX=B$ no tiene solución si en $A_{red}X=C$ hay una igualdad lineal del estilo $0x_{j1}+\dots +0x_{jn}=c_j$, con $c_j\neq 0$. En otras palabras, si en $A_{red}$ hay una fila $j$ de ceros y la entrada $c_j$ es distinta de cero.
Infinidad de soluciones. El sistema $AX=B$ tiene una infinidad de soluciones si tiene solución, y además hay por lo menos una columna $k$ de $A_{red}$ en la que no haya pivote de ninguna fila. Esta columna $k$ corresponde a una variable libre $x_k$ que puede tomar cualquier valor, y el sistema tiene soluciones sin importar el valor que se le de a esta variable.
Solución única. Un sistema de ecuaciones con solución, pero sin variables libres tiene una única solución. Esto se puede leer en la matriz $A_{red}$, pues se necesita que todas las columnas tengan un pivote de alguna fila.
Pensemos un poco a qué se deben los comportamientos anteriores. Pensemos en que ya llegamos a $A_{red}X=C$. Iremos determinando los posibles valores de las entradas de $X$ de abajo hacia arriba, es decir, en el orden $x_n, x_{n-1},\ldots, x_1$. Si $x_k$ es variable libre, pongamos el valor que sea. Si $x_k$ tiene el pivote de, digamos, la fila $j$, entonces la ecuación $j$ nos dice \[0+\dots + 0 + x_{k}+\dots +a_{jn}x_{n}=b_{j}.\] Esto nos diría que \[x_{k}=b_{j}-a_{j(k+1)}x_{k+1}-\dots -a_{jn}x_{n},\] así que hemos logrado expresar a $x_k$ en términos de las variables ya determinadas $x_{k+1},\dots x_{n}$.
Matrices equivalentes por filas
Definición. Consideremos $I\in M_{m}(\mathbb{R})$ la matriz identidad de tamaño $m$. Una matriz elemental será una matriz que se obtenga de la identidad tras aplicar una operación elemental.
Definición. Sean $A, B\in M_{m,n}(\mathbb{R})$. Diremos que $A$ es equivalente por filas a $B$ si $A$ se puede obtener al aplicar una sucesión finita de operaciones elementales a $B$.
Se puede demostrar que «ser equivalente por filas» es una relación de equivalencia en $M_{m,n}(\mathbb{R})$. Así mismo, se puede demostrar en general que si $e$ es una operación elemental, entonces $e(A)$ es exactamente la misma matriz que multiplicar la matriz elemental $e(I)$ por la izquierda por $A$, es decir, $e(A)=e(I)A$. Como tarea moral, convéncete de ambas afirmaciones.
Para realizar la demostración, quizás quieras auxiliarte de la siguiente observación. Tomemos una matriz $B\in M_{m,n}(\mathbb{R})$ y pensemos en cada columna de $B$ como un vector columna:
Tomemos ahora una matriz $A\in M_{p,m}$. Tras realizar las operaciones, se puede verificar que la matriz $AB$ tiene como columnas a los vectores columna $AB_1, AB_2,\ldots,AB_n$.
El siguiente teorema nos da una manera alternativa de saber si dos matrices son equivalentes por filas.
Teorema. Sean $A, B\in M_{m\times n}(\mathbb{R})$. Se tiene que $B$ es equivalente por filas a $A$ si y sólo si $B=PA$, donde $P$ es una matriz en $M_m(\mathbb{R})$ obtenida como producto de matrices elementales.
Demostración. Por la discusión anterior, si $B$ es equivalente por filas a $A$, $A$ resulta de la aplicación de una sucesión finita de operaciones elementales a $B$ o, lo que es lo mismo, resulta de una aplicación finita de productos de matrices elementales por la izquierda. Por otro lado, si $B=PA$, con $P=E_{k}\cdot … \cdot E_{1}$ producto de matrices elementales, tenemos que $E_{1}A$ es equivalente por filas a $A$, que $E_{2}(E_{1}A)$ es equivalente por filas a $E_{1}A$, que $E_{3}(E_2(E_1(A)))$ equivalente por filas a $E_2(E_1(A))$, y así sucesivamente. Usando que ser equivalente por filas es transitivo (por ser relación de equivalencia), concluimos que $B$ es equivalente por filas a $A$.
$\square$
¿Qué sucede con los determinantes y las operaciones elementales? La siguiente proposición lo resume.
Proposición. Sea $A$ una matriz en $M_n(\mathbb{R})$ con determinante $\det(A)$.
Si se intercambian dos filas, el determinante se vuelve $-\det(A)$.
Si se reescala una fila por un real $r\neq 0$, el determinante se vuelve $r\det(A)$.
Si se hace una transvección, el determinante no cambia.
Observa que, en particular, si $\det(A)\neq 0$, entonces sigue siendo distinto de cero al aplicar operaciones elementales.
Matrices invertibles y sistemas de ecuaciones lineales
En muchas ocasiones nos encontramos en cálculo de varias variables con funciones que van de $\mathbb{R}^n$ a sí mismo. Si la función que estamos estudiando es una transformación lineal, entonces corresponde a una matriz cuadrada en $M_n(\mathbb{R})$. En estos casos hay otro concepto fundamental que ayuda, entre otras cosas, para resolver sistemas de ecuaciones lineales: el de matriz invertible. Veremos a continuación que esto interrelaciona a las matrices, las matrices elementales, los sistemas de ecuaciones lineales y a los determinantes.
Definición. Una matriz $A$ cuadrada es invertible por la izquierda (resp. derecha) si existe una matriz $B$ tal que $BA=I$ (resp. $AB=I$). A $B$ le llamamos la inversa izquierda (resp. derecha) de $A$. A una matriz invertible por la derecha y por la izquierda, donde la inversa izquierda sea igual a la derecha, simplemente se le llama invertible.
Se puede demostrar que, cuando existe, la matriz izquierda (o derecha) es única. Esto es sencillo. Se puede demostrar también que si $B$ es inversa izquierda y $B’$ es inversa derecha, entonces $B=B’$, lo cual no es tan sencillo. Además, se cumplen las siguientes propiedades de matrices invertibles.
Proposición. Sean $A, B\in M_n(\mathbb{R})$
Si $A$ es invertible, también lo es $A^{-1}$ y $(A^{-1})^{-1}=A$.
Si $A$ y $B$ son invertibles, también lo es $AB$ y $(AB)^{-1}=B^{-1} A^{-1}$.
Demostración. El inciso 1 es claro; para el inciso 2 tenemos \[ (AB)(B^{-1} A^{-1})=A(BB^{-1})A^{-1}=A(I)A^{-1}=AA^{-1}=I\] \[=B^{-1}(I)B=B^{-1}(A^{-1}A)B=(B^{-1}A^{-1})(AB) \].
$\square$
Veamos ahora cómo se conecta la noción de invertibilidad con la de matrices elementales. Como parte de la tarea moral, cerciórate de que cualquiera de las tres operaciones elementales para matrices son invertibles. Es decir, para cada operación elemental, piensa en otra operación elemental que aplicada sucesivamente a la primera nos de la matriz original. Con más detalle; si denotamos con $e$ a una operación elemental (puede ser cualquiera) denotamos como $e^{-1}$ a la segunda a la cual llamaremos inversa de $e$; y estas cumplen $e(e^{-1})(A)=A=e^{-1}(e(A))$ para cualquier matriz $A$ a la que se le pueda aplicar $e$.
Proposición. Toda matriz elemental es invertible.
Demostración. Supongamos que $E$ una matriz elemental correspondiente a la operación unitaria $e$. Si $e^{-1}$ es la operación inversa de $e$ y $E_{1}=e^{-1}(I)$ tenemos: \[ EE_{1}=e(E_{1})=e(e^{-1}(I))=I,\] y así mismo tenemos \[E_{1}E=e_{1}(E)=e_{1}(e(I))=I.\] De esta manera $E$ es invertible y su inversa es $E_{1}$.
$\square$
El resultado anterior habla sólo de la invertibilidad de matrices elementales, pero podemos usar a estas para caracterizar a las matrices invertibles.
Teorema. Sea $A\in M_n(\mathbb{R})$, los siguientes enunciados son equivalentes:
$A$ es invertible
$A$ es equivalente por filas a la matriz identidad
$A$ es producto de matrices elementales
Demostración. $1\Rightarrow 2)$. Supongamos que $A$ invertible, y usemos el teorema de reducción Gaussiana para encontrar la forma escalonada reducida $A_{red}$ de $A$ mediante una sucesión de operaciones elementales. Por el teorema de la sección de matrices equivalentes por filas, tenemos que $R=E_{k}\cdots E_{1}A$, donde $E_{k},\dots ,E_{1}$ son matrices elementales. Cada $E_{i}$ es invertible, y $A$ es invertible. Por la proposición anterior, tenemos entonces que $A_{red}$ es invertible. Se puede mostrar que entonces ninguna fila de $A_{red}$ puede consistir de puros ceros (verifícalo de tarea moral), de modo que toda fila de $A$ tiene pivote (que es igual a $1$). Como hay $n$ filas y $n$ columnas, entonces hay exactamente un $1$ en cada fila y en cada columna. A $A_{red}$ no le queda otra opción que ser la matriz identidad.
$2\Rightarrow 3)$. Si $A$ es equivalente por filas a $I$, entonces hay operaciones elementales que la llevan a $I$. Como ser equivalente por filas es relación de equivalencia, existen entonces operaciones elementales que llevan $I$ a $A$. Pero entonces justo $A$ se obtiene de $I$ tras aplicar un producto (por la izquierda) de matrices elementales. Por supuesto, en este producto podemos ignorar a $I$ (o pensarla como un reescalamiento por $1$).
$3\Rightarrow 1)$. Finalmente como cada matriz elemental es invertible y todo producto de matrices invertibles es invertible tenemos que 3 implica 1.
$\square$
Ya que entendemos mejor la invertibilidad, la podemos conectar también con la existencia y unicidad de soluciones en sistemas de ecuaciones lineales.
Teorema. Sea $A\in M_{n}(\mathbb{R})$; las siguientes afirmaciones son equivalentes:
$A$ es invertible.
Para todo $Y$, el sistema $AX=Y$ tiene exactamente una solución $X$.
Para todo $Y$, el sistema $AX=Y$ tiene al menos una solución $X$.
Demostración. $1\Rightarrow 2)$. Supongamos $A$ invertible. Tenemos que $X=A^{-1}Y$ es solución pues $AX=A(A^{-1})Y=IY=Y$. Veamos que la solución es única. Si $X$ y $X’$ son soluciones, tendríamos $AX=Y=AX’$. Multiplicando por $A^{-1}$ por la izquierda en ambos lados de la igualdad obtenemos $X=X’$.
$2\Rightarrow 3)$. Es claro pues la única solución es, en particular, una solución.
$3\Rightarrow 1)$. Tomemos los vectores canónicos $\hat{e}_1,\hat{e}_2,\ldots,\hat{e}_n$ de $\mathbb{R}^n$. Por $(3)$ tenemos que todos los sistemas $AX=\hat{e}_1, \ldots, AX=\hat{e}_n$ tienen solución. Tomemos soluciones $B_1,\ldots,B_n$ para cada uno de ellos y tomemos $B$ como la matriz con columnas $B_1,\ldots, B_n$. Por el truco de hacer el producto de matrices por columnas, se tiene que las columnas de $AB$ son $AB_1=\hat{e}_1,\ldots, AB_n=\hat{e}_n$, es decir, $AB$ es la matriz identidad.
$\square$
En la demostración anterior falta un detalle importante. ¿Puedes encontrar cuál es? Está en la demostración $3\Rightarrow 1)$. Si quieres saber cuál es y cómo arreglarlo, puedes consultar la entrada Mariposa de 7 equivalencias de matrices invertibles.
Terminamos la teoría de esta entrada con un resultado que conecta invertibilidad y determinantes.
Proposición. Sea $A\in M_{n}(\mathbb{R})$. $A$ es invertible, si y sólo si, $det(A)\neq 0$.
Demostración. Si $A$ es invertible, entonces se cumple la ecuación $I=AA^{-1}$. Aplicando determinante de ambos lados y usando que es multiplicativo: $$1=det(I)=det(AA^{-1})=det(A)det(A^{-1}).$$ Como al lado izquierdo tenemos un $1$, entonces $\det(A)\neq 0$.
Si $det(A)\neq 0$, llevemos $A$ a su forma escalonada reducida $A_{red}$. Por la observación hecha al final de la sección de matrices elementales, se tiene que $\det(A_{red})\neq 0$. Así, en cada fila tenemos por lo menos un elemento no cero. Como argumentamos anteriormente, esto implica $A_{red}=I$. Como $A$ es equivalente por filas a $I$, entonces es invertible.
$\square$
Mas adelante…
Continuaremos estableciendo herramientas de Álgebra lineal que usaremos en el desarrollo de los temas subsiguientes. En la siguiente entrada hablaremos de eigenvalores y eigenvectores. Con ellos, expondremos un método que proporciona una representación matricial sencilla simple para cierto tipos de transformaciones lineales.
Tarea moral
Demuestra que la relación «es equivalente por filas» es una relación de equivalencia en $M_{m,n}(\mathbb{R})$.
Sea $A\in M_{m,n}\mathbb{R}$. Verifica que para cualquier operación elemental $e$ de cualquiera de los tres tipos se cumple que $e(A)X=e(B)$ es equivalente a $AX=B$. Deberás ver que cualquier solución de uno es solución del otro y viceversa.
Demuestra que si $A$ es invertible, también lo es $A^{-1}$ y que $(A^{-1})^{-1}=A$. Verifica la invertibilidad izquierda y derecha.
Demuestra que cualquiera de las tres operaciones elementales para matrices son invertibles. Es decir, para cada operación elemental, hay otra que al aplicarla sucesivamente nos regresa a la matriz original.
Prueba que una matriz invertible tiene por lo menos un elemento distinto de cero en cada fila, y por lo menos un elemento distinto de cero en cada columna.
En las dos entradas anteriores hemos definido y obtenido una serie de resultados de las funciones exponencial compleja y logaritmo complejo, mediante las cuales hemos extendido sobre $\mathbb{C}$ a las funciones reales exponencial y logaritmo, respectivamente.
En esta entrada definiremos a las funciones trigonométricas complejas así como a las funciones hiperbólicas complejas y obtendremos para ambas algunas de sus propiedades más elementales, extendiendo sobre $\mathbb{C}$ a sus correspondientes versiones reales.
Notemos que mediante la identidad de Euler podemos relacionar a las funciones trigonométricas reales con la función exponencial compleja. Tenemos que: \begin{equation*} e^{i\theta} = \operatorname{cos}(\theta) + i \operatorname{sen}(\theta), \tag{22.1} \end{equation*} donde $\theta$ es un número real. Sustituyendo $\theta$ por $-\theta$ tenemos que: \begin{align*} e^{-i\theta} & = \operatorname{cos}(-\theta) + i \operatorname{sen}(-\theta)\\ & = \operatorname{cos}(\theta) – i \operatorname{sen}(\theta). \tag{22.2} \end{align*}
Por otra parte, restando a (22.1) la ecuación (22.2) tenemos que: \begin{equation*} \operatorname{sen}(\theta) = \frac{e^{i\theta} – e^{-i\theta}}{2i}. \tag{22.4} \end{equation*}
Las expresiones obtenidas en (22.3) y (22.4) nos motivan a extender las funciones trigonométricas reales a $\mathbb{C}$ mediante la siguiente:
Definición 22.1. (Funciones seno y coseno complejas.) Sea $z\in\mathbb{C}$. Definimos a las funciones complejas seno y coseno, respectivamente, como: \begin{equation*} \operatorname{sen}(z) := \frac{e^{iz} – e^{-iz}}{2i}, \quad \operatorname{cos}(z) := \frac{e^{iz} + e^{-iz}}{2}. \end{equation*}
Ejemplo 22.1. Sea $z\in\mathbb{C}$. Determinemos los ceros de las funciones complejas seno y coseno y veamos que son todos reales.
Solución. Tenemos que: \begin{align*} \operatorname{sen}(z) = \frac{e^{iz} – e^{-iz}}{2i} = 0 \quad & \Longleftrightarrow \quad e^{iz} – e^{-iz} = 0,\\ & \Longleftrightarrow \quad e^{iz} = e^{-iz},\\ & \Longleftrightarrow \quad e^{2iz} = 1 = e^{2k\pi i}, \quad k \in \mathbb{Z}, \end{align*} de donde $2iz = 2\pi i(k+n)$ para $k\in\mathbb{Z}$ y para alguna $n\in\mathbb{Z}$ (corolario 20.2), es decir $z = k’\pi$ con $k’=k+n \in \mathbb{Z}$, por lo que los ceros de la función seno son $z=0, \pm\pi, \pm2\pi, \pm 3\pi, \ldots$.
Procedemos de manera análoga para la función coseno, es decir: \begin{align*} \operatorname{cos}(z) = \frac{e^{iz} + e^{-iz}}{2} = 0 \quad & \Longleftrightarrow \quad e^{iz} + e^{-iz} = 0,\\ & \Longleftrightarrow \quad e^{iz} = -e^{-iz},\\ & \Longleftrightarrow \quad e^{2iz} = -1 = e^{(2k+1)\pi i}, \quad k \in \mathbb{Z}, \end{align*}
entonces $2iz = (2(k+n)+1)\pi i$ para $k\in\mathbb{Z}$ y para alguna $n\in\mathbb{Z}$ (corolario 20.2), es decir $z = \left(k’ + \frac{1}{2}\right)\pi$ con $k’=k+n \in \mathbb{Z}$, por lo que los ceros de la función coseno son $z=\pm\pi/2, \pm3\pi/2, \pm 5\pi/2, \ldots$.
En ambos casos es claro que los ceros de las funciones seno y coseno son todos reales.
Observación 22.1. De nuestros cursos de Cálculo sabemos que las funciones reales hipérbolicas seno y coseno se definen, para $x\in\mathbb{R}$, respectivamente como: \begin{equation*} \operatorname{senh}(x) = \frac{e^x – e^{-x}}{2}, \quad \operatorname{cosh}(x) = \frac{e^x + e^{-x}}{2}. \end{equation*}
Al igual que en el caso real, las funciones trigonométricas complejas satisfacen algunas identidades con las que ya estamos familiarizados y que suelen ser de utilidad en la resolución de ciertos problemas.
Proposición 22.1. (Identidades trigonométricas seno y coseno.) Sean $z, z_1, z_2 \in \mathbb{C}$, con $z=x+iy$, entonces las funciones trigonométricas complejas seno y coseno satisfacen:
$\operatorname{sen}(-z) = -\operatorname{sen}(z)$ y $\operatorname{cos}(z) = \operatorname{cos}(-z)$.
De acuerdo con (3), para $z=z_1=z_2$ tenemos que: \begin{equation*} \operatorname{cos}{(2z)} = \operatorname{cos}^2{(z)} – \operatorname{sen}^2{(z)}. \end{equation*} Por otra parte, de (7) tenemos que: \begin{equation*} \operatorname{cos}^2{(z)} = 1 – \operatorname{sen}^2{(z)}. \end{equation*} Por lo que: \begin{equation*} \operatorname{cos}{(2z)} = 1 – \operatorname{sen}^2{(z)} – \operatorname{sen}^2{(z)} = 1 – 2\operatorname{sen}^2{(z)}, \end{equation*} de donde se sigue el resultado.
Ejemplo 22.2. Determina todas las soluciones de la ecuación $\cos{(z)} = 2$.
Solución. Sea $z=x+iy\in\mathbb{C}$, entonces por el resultado anterior tenemos que la ecuación dada se puede reescribir como: \begin{equation*} \cos(z) = \cos(x) \cosh(y) – i\operatorname{sen}(x) \operatorname{senh}(y) = 2. \end{equation*}
Tomando las partes real e imaginaria de esta última igualdad tenemos: \begin{equation*} \left\{ \begin{array}{l} \cos(x) \cosh(y) = 2, \tag{22.5}\\ \operatorname{sen}(x) \operatorname{senh}(y) = 0. \end{array} \right. \end{equation*}
Procedemos a resolver este sistema de ecuaciones para las variables $x$ e $y$.
Notemos que si $y=0$, entonces $\cosh(0)=1$, por lo que de la primera ecuación de (22.5) se tiene que: \begin{equation*} \cos(x) = 2, \end{equation*} lo cual claramente no es posible para ningún valor de $x\in\mathbb{R}$, por tanto concluimos que $y\neq 0$.
Como $y\neq 0$, entonces $\operatorname{senh}(y)\neq 0$, por lo que de la segunda ecuación de (22.5) se tiene que: \begin{equation*} \operatorname{sen}(x) = 0, \end{equation*} de donde $x = n\pi$, con $n\in\mathbb{Z}$.
Sustituyendo lo anterior en la primera ecuación, para $n\in\mathbb{Z}$ tenemos que: \begin{equation*} \cos\left( n\pi\right) \cosh(y) = 2 \quad \Longleftrightarrow \quad \left( -1\right)^n \cosh(y) = 2, \end{equation*} pero como $\cosh(y)>0$ para toda $y\in\mathbb{R}$, entonces $n$ debe ser par, es decir: \begin{equation*} x = 2k\pi, \end{equation*} para $k\in\mathbb{Z}$. Por lo que: \begin{align*} \cosh{(y)} = 2 \quad &\Longleftrightarrow \quad \frac{e^{y} + e^{-y}}{2} = 2,\\ &\Longleftrightarrow \quad e^{y} + e^{-y} = 4,\\ &\Longleftrightarrow \quad e^{y}e^{y} + e^{-y}e^{y} – 4e^{y} = 0,\\ &\Longleftrightarrow \quad \left(e^{y}\right)^2 – 4e^{y} + 1 = 0. \end{align*}
Resolviendo la ecuación cuadrática para $e^y$, tenemos: \begin{equation*} e^y = \frac{-(-4) \pm \sqrt{(-4)^2 – 4(1)(1)}}{2(1)} = \frac{4\pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3}, \end{equation*} de donde $y = \ln{\left(2 \pm \sqrt{3}\right)}$.
Entonces, las soluciones de la ecuación $\cos{(z)} = 2$ son: \begin{equation*} z = 2k\pi \pm i \ln{\left(2 + \sqrt{3}\right)}, \quad k\in\mathbb{Z}. \end{equation*}
Considerando la definición 22.1 y el hecho de que las funciones complejas seno y coseno son una extensión de las funciones trigonométircas reales, resulta natural definir el resto de las funciones trigonométricas complejas mediante estas dos funciones.
Observación 22.2. Notemos que las funciones trigonométricas dadas en la definición anterior son funciones racionales, por lo que tanto su dominio natural como su dominio de analicidad dependen de los ceros de las funciones complejas seno y coseno.
Ejemplo 22.3. La función tangente compleja es $\pi$-periódica. Veamos que $\operatorname{tan}(z_1) = \operatorname{tan}(z_2)$ si y solo si $z_1 = z_2 + k\pi$, con $k\in\mathbb{Z}$.
Solución. De acuerdo con el ejemplo 22.1 tenemos que la función tangente compleja no está definida para los valores de $z = \left(k + \frac{1}{2}\right)\pi$, con $k \in \mathbb{Z}$, entonces consideremos a $z_1, z_2 \in \mathbb{C}$ tales que $z_1, z_2 \neq \left(k + \frac{1}{2}\right)\pi$. Por la proposición 22.1(2) tenemos que: \begin{align*} \operatorname{tan}(z_1) = \operatorname{tan}(z_2) \quad & \Longleftrightarrow \quad \frac{\operatorname{sen}(z_1)}{\operatorname{cos}(z_1)} = \frac{\operatorname{sen}(z_2)}{\operatorname{cos}(z_2)}\\ & \Longleftrightarrow \quad \operatorname{sen}(z_1) \operatorname{cos}(z_2) – \operatorname{sen}(z_2) \operatorname{cos}(z_1) = 0\\ & \Longleftrightarrow \quad \operatorname{sen}(z_1 – z_2) = 0\\ & \Longleftrightarrow \quad z_1 – z_2 = k\pi, \quad k\in\mathbb{Z},\\ & \Longleftrightarrow \quad z_1 = z_2 + k\pi, \quad k\in\mathbb{Z}. \end{align*}
Es posible deducir una serie de identidades para las funciones trigonométricas complejas con las que ya estamos familiarizados.
Proposición 22.2. (Identidades funciones trigonométricas.) Sean $z,z_1,z_2\in\mathbb{C}$. Considerando el dominio de definición de cada una de las funciones trigonométricas complejas, tenemos que:
Ejemplo 22.4. Determinemos el valor de las siguientes funciones trigonométricas en su forma $a+ib$. a) $\operatorname{sen}(i)$. b) $\operatorname{cos}(1+i)$. c) $\operatorname{tan}(2i – \pi)$.
Solución. a) Por definición de la función seno complejo y considerando a la función real seno hiperbólico tenemos que: \begin{align*} \operatorname{sen}(i) & = \frac{e^{i^2} – e^{-i^2}}{2i}\\ & = -i \left(\frac{e^{-1} – e^{1}}{2}\right)\\ & = i \left(\frac{e^{1} – e^{-1}}{2}\right)\\ & = i \operatorname{senh}(1). \end{align*} b) Por la definición de la función coseno complejo, de acuerdo con la proposición 20.2, de la entrada 20, y considerando a las funciones reales seno y coseno hiperbólicos tenemos que: \begin{align*} \operatorname{cos}(1+i) & = \frac{e^{i(1+i)} + e^{-i(1+i)}}{2}\\ & = \frac{e^{i+i^2} + e^{-i-i^2}}{2}\\ & = \frac{e^{i-1} + e^{1-i}}{2}\\ & = \frac{e^{i}e^{-1} + e^{1}e^{-i}}{2}\\ & = \frac{e^{-1}\left[\operatorname{cos}(1) + i \operatorname{sen}(1)\right] + e\left[\operatorname{cos}(-1) + i \operatorname{sen}(-1)\right]}{2}\\ & = \frac{\operatorname{cos}(1)\left[e^1 + e^{-1} \right]}{2} – i \left( \frac{\operatorname{sen}(1) \left[e^1 – e^{-1}\right]}{2}\right)\\ & = \operatorname{cos}(1)\operatorname{cosh}(1) – i \operatorname{sen}(1)\operatorname{senh}(1). \end{align*} c) De acuerdo con la proposición 22.2(1) sabemos que para $z \neq \left(k + \frac{1}{2}\right)\pi$, con $k\in\mathbb{Z}$, se cumple que $\operatorname{tan}(-z) = – \operatorname{tan}(z)$, es decir que $\tan(z)$ es una función impar, por lo que considerando la definición de la función tangente compleja, la proposición 20.1, de la entrada 20, y la observación 22.1 tenemos que: \begin{align*} \operatorname{tan}(2i-\pi) = – \operatorname{tan}(\pi – 2i) &= -(-i)\left( \frac{e^{i\pi -2i^2} – e^{-i\pi + 2i^2}}{e^{i\pi -2i^2} + e^{-i\pi + 2i^2}}\right)\\ &= i\left( \frac{e^{i\pi}e^{2} – e^{-i\pi} e^{-2}}{e^{i\pi}e^{2} – e^{-i\pi} e^{-2}}\right)\\ &= i\left( \frac{e^{2}\left(-1\right) – e^{-2}\left(-1\right)}{e^{2}\left(-1\right) + e^{-2}\left(-1\right)}\right)\\ &= i\left( \frac{e^{2} – e^{-2}}{e^{2} + e^{-2}}\right)\\ & = i \tanh{(2)}. \end{align*}
Proposición 22.3. (Derivadas de las funciones trigonométricas.) Sea $z\in\mathbb{C}$. Considerando el dominio de definición de cada una de las funciones trigonométricas complejas, tenemos que:
$\operatorname{sen}(z)$ y $\operatorname{cos}(z)$ son funciones enteras y sus derivadas son, respectivamente: \begin{equation*} \frac{d}{dz} \operatorname{sen}(z) = \operatorname{cos}(z), \quad \frac{d}{dz} \operatorname{cos}(z) = -\operatorname{sen}(z). \end{equation*}
Para $z \neq \left(k + \frac{1}{2}\right)\pi$, con $k \in \mathbb{Z}$, las funciones $\operatorname{tan}(z)$ y $\operatorname{sec}(z)$ son analíticas y se tiene que: \begin{equation*} \frac{d}{dz} \operatorname{tan}(z) = \operatorname{sec}^2(z), \quad \frac{d}{dz} \operatorname{sec}(z) = \operatorname{sec}(z)\operatorname{tan}(z). \end{equation*}
Para $z \neq k\pi$, con $k \in \mathbb{Z}$, las funciones $\operatorname{cot}(z)$ y $\operatorname{csc}(z)$ son analíticas y se tiene que: \begin{equation*} \frac{d}{dz} \operatorname{cot}(z) = – \operatorname{csc}^2(z), \quad \frac{d}{dz} \operatorname{csc}(z) = -\operatorname{csc}(z)\operatorname{cot}(z). \end{equation*}
Demostración.
De acuerdo con la definición 22.1, como las funciones $\operatorname{sen}(z)$ y $\operatorname{cos}(z)$ están definidas en términos de las funciones $e^{iz}$ y $e^{-iz}$, las cuales son funciones enteras, entonces ambas funciones trigonométricas son enteras. Más aún, utilizando la regla de la cadena para cada una de las funciones tenemos que: \begin{align*} \frac{d}{dz} \operatorname{sen}(z) & = \frac{d}{dz} \left( \frac{e^{iz} – e^{-iz}}{2i} \right)\\ & = \frac{\frac{d}{dz} e^{iz} – \frac{d}{dz} e^{-iz}}{2i}\\ & = \frac{i e^{iz} + i e^{-iz}}{2i}\\ & = \frac{e^{iz} + e^{-iz}}{2}\\ & = \cos{(z)}. \end{align*} \begin{align*} \frac{d}{dz} \operatorname{cos}(z) & = \frac{d}{dz} \left( \frac{e^{iz} + e^{-iz}}{2} \right)\\ & = \frac{\frac{d}{dz} e^{iz} + \frac{d}{dz} e^{-iz}}{2i}\\ & = \frac{ i e^{iz} – i e^{-iz}}{2}\\ & =i \left( \frac{e^{iz} – e^{-iz}}{2}\right)\\ & =- \left(\frac{e^{iz} – e^{-iz}}{2i}\right)\\ & = -\operatorname{sen}(z). \end{align*}
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
$\blacksquare$
Ejemplo 22.5. Veamos que al igual que en el caso real, para las funciones complejas seno y coseno se cumple que: \begin{equation*} \lim_{z\to 0} \frac{\operatorname{sen}(z)}{z} = 1, \quad \lim_{z\to 0} \frac{\operatorname{cos}(z) – 1}{z} = 0. \end{equation*}
Solución. De acuerdo con la proposición 22.3 sabemos que las funciones $f(z) = \operatorname{sen(z)}$ y $g(z) = \operatorname{cos(z)}$ son enteras. En particular notemos que: \begin{equation*} 1 = \operatorname{cos}(0) = f'(0) = \lim_{z \to 0}\frac{f(z) – f(0)}{z-0} = \lim_{z \to 0}\frac{\operatorname{sen}(z)}{z}, \end{equation*} \begin{equation*} 0 = -\operatorname{sen}(0) = g'(0) = \lim_{z \to 0}\frac{g(z) – g(0)}{z-0} = \lim_{z \to 0}\frac{\operatorname{cos}(z) – 1}{z}. \end{equation*}
Ejemplo 22.6. Determinemos el dominio de analicidad $U$ de la función $f(z) = \tan\left(\dfrac{\pi z^2}{2}\right)$ y obtengamos $f'(z)$ para $z\in U$.
Solución. Notemos que podemos ver a $f$ como la composición de las funciones $g(z) = \tan(z)$ y $h(z) = \dfrac{\pi z^2}{2}$, es decir $f = g \circ h$.
Dado que $h$ es una función polinómica es claro que es una función entera, mientras que $g$ es analítica en: \begin{equation*} V = \mathbb{C} \setminus \left\{\left(k + \frac{1}{2}\right)\pi : k \in\mathbb{Z} \right\}. \end{equation*}
Entonces, el dominio de analicidad de $f$ es el conjunto abierto: \begin{equation*} U =\left\{z\in\mathbb{C} : \frac{\pi z^2}{2} \in V \right\}. \end{equation*}
Tenemos que para $z\in\mathbb{C}$ se cumple que: \begin{equation*} \frac{\pi z^2}{2} = \left(k + \frac{1}{2}\right)\pi \quad \Longleftrightarrow \quad z^2 = 2k + 1 \quad \Longleftrightarrow \quad z^2 \, \, \text{es un entero impar}, \end{equation*} por lo que $z\in V$ siempre que $z^2$ no sea un entero impar, entonces: \begin{equation*} U =\mathbb{C} \setminus \left( \left\{\pm\sqrt{2k+1} : k \in \mathbb{N} \right\} \bigcup \left\{\pm i \sqrt{2k+1} : k \in \mathbb{N}\right\} \right). \end{equation*}
Sea $z\in U$, entonces por la regla de la cadena tenemos que \begin{equation*} f'(z) = g’\left(h(z)\right) h’\left(z\right) = \sec^2\left( \frac{\pi z^2}{2}\right) \pi z. \end{equation*}
Considerando la definición de las funciones hiperbólicas reales, observación 22.1, podemos también extender estas funciones a $\mathbb{C}$ mediante la función exponencial compleja como sigue:
Definición 22.3. (Funciones hiperbólicas complejas.) Sea $z\in\mathbb{C}$. Definimos al seno hiperbólico complejo y al coseno hiperbólico complejo, respectivamente, como: \begin{equation*} \operatorname{senh}(z) := \frac{e^{z} – e^{-z}}{2}, \quad \operatorname{cosh}(z) := \frac{e^{z} + e^{-z}}{2}. \end{equation*}
De manera natural definimos el resto de las funciones hiperbólicas complejas en términos de estas dos funciones. \begin{equation*} \operatorname{tanh}(z) := \frac{\operatorname{senh}(z)}{\operatorname{cosh}(z)}, \quad \operatorname{cosh}(z)\neq 0, \end{equation*} \begin{equation*} \operatorname{coth}(z) := \frac{\operatorname{cosh}(z)}{\operatorname{senh}(z)}, \quad \operatorname{senh}(z)\neq 0, \end{equation*} \begin{equation*} \operatorname{sech}(z) := \frac{1}{\operatorname{cosh}(z)}, \quad \operatorname{cosh}(z)\neq 0, \end{equation*} \begin{equation*} \operatorname{csch}(z) := \frac{1}{\operatorname{senh}(z)}, \quad \operatorname{sen}(z)\neq 0. \end{equation*}
Observación 22.4. En el ejercicio 4 de esta entrada se determinan los ceros de las funciones complejas seno y coseno hiperbólicas, es decir $\operatorname{senh}(z) = 0$ si y solo si $z = ik\pi$, para $ k\in\mathbb{Z}$. Mientras que $ \operatorname{cosh}(z) = 0$ si y solo si $ z = i\left(k+\frac{1}{2}\right)\pi$, con $k\in\mathbb{Z}$. Por tanto, el dominio natural y el dominio de analicidad de las funciones hiperbólicas, definidas como funciones racionales en términos de las funciones seno y coseno hiperbólicos, dependerán de los ceros de dichas funciones.
Es interesante notar que las funciones complejas trigonométricas e hiperbólicas están relacionadas mediante las siguientes identidades.
Proposición 22.4. Sea $z = x+iy \in\mathbb{C}$, entonces, considerando el dominio de definición de cada una de las funciones trigonométricas e hiperbólicas, se cumple que:
$\operatorname{senh}(iz) = i \operatorname{sen}(z)$ y $\operatorname{sen}(iz) = i\operatorname{senh}(z)$.
$\operatorname{cosh}(iz) = \operatorname{cos}(z)$ y $\operatorname{cos}(iz) = \operatorname{cosh}(z)$.
$\operatorname{tanh}(iz) = i \operatorname{tan}(z)$ y $\operatorname{tan}(iz) = i\operatorname{tanh}(z)$.
$\operatorname{coth}(iz) = -i\operatorname{cot}(z)$ y $\operatorname{cot}(iz) = – i \operatorname{coth}(z)$.
Al igual que con las funciones trigonométricas complejas, para las funciones hiperbólicas complejas es posible deducir algunas identidades que resultan útiles al resolver algún problema. Podemos mencionar algunas en la siguiente:
Proposición 22.5. (Identidades funciones hiperbólicas.) Sean $z, z_1, z_2\in\mathbb{C}$. Considerando el dominio de definición de cada una de las funciones trigonométricas, se cumple que:
Observación 22.5. Recordemos que las funciones reales seno y coseno cumplen que: \begin{equation*} |\,\operatorname{sen}(x)\,| \leq 1, \quad |\,\cos(x)\,| \leq 1, \quad \forall x\in\mathbb{R}, \end{equation*} es decir son funciones acotadas.
Es interesante notar que en el caso complejo las funciones seno y coseno no son acotadas. De acuerdo con la proposición 22.1 y la proposición 22.5 tenemos que: \begin{align*} |\,\operatorname{sen}(z)\,| & = \sqrt{\operatorname{sen}^2(x) \cosh^2(y) + \cos^2(x) \operatorname{senh}^2(y)}\\ & = \sqrt{\operatorname{sen}^2(x) \left[1 + \operatorname{senh}^2(y)\right] + \cos^2(x) \operatorname{senh}^2(y)}\\ & = \sqrt{\operatorname{sen}^2(x) + \left[\cos^2(x) + \operatorname{sen}^2(x)\right] \operatorname{senh}^2(y)}\\ & = \sqrt{\operatorname{sen}^2(x) + \operatorname{senh}^2(y)}. \end{align*}
Como la función real seno hiperbólico no es acotada, se tiene que si $y \to \infty$, entonces $\operatorname{senh}(y) \to \infty$, por lo que no existe constante real $M>0$ tal que $|\,\operatorname{sen}(z)\,| < M$ ó $|\,\cos(z)\,| < M$ para todo $z\in\mathbb{C}$.
Ejemplo 22.7. Muestra que para todo $z=x+iy\in\mathbb{C}$ se cumple que: \begin{equation*} |\,\operatorname{senh}(y)\,| \leq |\,\operatorname{sen}(z)\,| \leq \cosh(y),\quad |\,\operatorname{senh}(y)\,| \leq |\,\cos(z)\,| \leq \cosh(y). \end{equation*}
Por otra parte, de la proposición 22.4 se sigue que: \begin{align*} |\,\operatorname{sen}(z)\,|^2 & = \operatorname{sen}^2(x) + \operatorname{senh}^2(y)\\ & = \operatorname{sen}^2(x) + \left(\cosh^2(y) -1\right)\\ & = \cosh^2(y) – \left(1 – \operatorname{sen}^2(x)\right)\\ & = \cosh^2(y) – \cos^2(x)\\ & \leq \cosh^2(y). \end{align*}
Considerando lo anterior es claro que: \begin{equation*} \operatorname{senh}^2(y) \leq |\,\operatorname{sen}(z)\,|^2 \leq \cosh^2(y). \end{equation*}
Dado que para todo $x\in\mathbb{R}$ se cumple que $\cosh(x)>0$, entonces tomando raíz cuadrada en la desigualdad anterior tenemos que: \begin{equation*} |\,\operatorname{sen}(y)\,| \leq |\,\operatorname{sen}(z)\,| \leq \cosh(y). \end{equation*}
De manera análoga, como: \begin{equation*} \operatorname{senh}^2(y) = |\,\cos(z)\,|^2 – \cos^2(x) \leq |\,\cos(z)\,|^2 \end{equation*} y \begin{align*} |\,\cos(z)\,|^2 & = \cos^2(x) + \operatorname{senh}^2(y)\\ & = \cos^2(x) + \left(\cosh^2(y) -1\right)\\ & = \cosh^2(y) – \left(1 – \cos^2(x)\right)\\ & = \cosh^2(y) – \operatorname{sen}^2(x)\\ & \leq \cosh^2(y), \end{align*} entonces: \begin{equation*} \operatorname{senh}^2(y) \leq |\,\operatorname{sen}(z)\,|^2 \leq \cosh^2(y), \end{equation*} de donde se sigue el resultado al tomar raíz cuadrada en la desigualdad anterior.
Ejemplo 22.8. Determina todas las soluciones de la ecuación $\cosh(z) = -2$.
Solución. Podemos resolver este problema mediante un planteamiento similar al del ejemplo 22.2, sin embargo, a fin de mostrar otra alternativa procedemos mediante la definición de la función coseno hiperbólico.
Resolvemos la ecuación cuadrática para $e^{z}$, entonces: \begin{equation*} e^z = \frac{-4\pm\sqrt{4^2-4(1)(1)}}{2(1)} = \frac{-4\pm\sqrt{3}}{2} = -2\pm\sqrt{3}. \end{equation*}
Para determinar los valores de $z$ que satisfacen esta última igualdad utilizaremos el logaritmo complejo. Dado que las raíces obtenidas son ambas reales y negativas, tenemos que: \begin{equation*} \operatorname{Arg}\left(-2\pm\sqrt{3}\right) = \pi, \end{equation*} entonces: \begin{equation*} \arg\left(-2\pm\sqrt{3}\right) = \pi + 2\pi n = \pi(2n + 1), \quad n\in\mathbb{Z}. \end{equation*}
Consideremos a la primera raíz, es decir $e^z = -2+\sqrt{3}$, entonces: \begin{equation*} z = \log(-2+\sqrt{3}) = \ln\left(\left|-2+\sqrt{3}\right|\right) + i \arg\left(-2+\sqrt{3}\right). \end{equation*}
Consideremos ahora a la segunda raíz, es decir $e^z = -2-\sqrt{3}$, entonces: \begin{equation*} z = \log(-2-\sqrt{3}) = \ln\left(\left|-2-\sqrt{3}\right|\right) + i \arg\left(-2-\sqrt{3}\right). \end{equation*}
Por lo tanto, las soluciones de la ecuación $\cosh(z) = -2$ son: \begin{equation*} z = \pm \ln{\left(2 + \sqrt{3}\right)} + i\pi(2n + 1), \quad n\in\mathbb{Z}. \end{equation*}
Proposición 22.4. (Derivadas de las funciones hiperbólicas.) Considerando el dominio de definición de cada una de las funciones hiperbólicas complejas, tenemos que:
$\operatorname{senh}(z)$ y $\operatorname{cosh}(z)$ son funciones enteras y sus derivadas son, respectivamente: \begin{equation*} \frac{d}{dz} \operatorname{senh}(z) = \operatorname{cosh}(z), \quad \frac{d}{dz} \operatorname{cosh}(z) = \operatorname{senh}(z). \end{equation*}
Para $z \neq i\left(k + \frac{1}{2}\right)\pi$, con $k \in \mathbb{Z}$, las funciones $\operatorname{tanh}(z)$ y $\operatorname{sech}(z)$ son analíticas y se tiene que: \begin{equation*} \frac{d}{dz} \operatorname{tanh}(z) = \operatorname{sec}^2(z), \quad \frac{d}{dz} \operatorname{sech}(z) = \operatorname{sec}(z)\operatorname{tan}(z). \end{equation*}
Para $z \neq i k\pi$, con $k \in \mathbb{Z}$, las funciones $\operatorname{coth}(z)$ y $\operatorname{csch}(z)$ son analíticas y se tiene que: \begin{equation*} \frac{d}{dz} \operatorname{coth}(z) = – \operatorname{csch}^2(z), \quad \frac{d}{dz} \operatorname{csch}(z) = -\operatorname{csch}(z)\operatorname{coth}(z). \end{equation*}
Demostración.
Como las funciones $\operatorname{senh}(z)$ y $\operatorname{cosh}(z)$ están definidas en términos de la función exponencial compleja, la cual es una función entera, entonces es claro que ambas funciones son enteras. Considerando la regla de la cadena para cada una de las funciones tenemos que: \begin{align*} \frac{d}{dz} \operatorname{senh}(z) & = \frac{d}{dz} \left( \frac{e^{z} – e^{-z}}{2} \right)\\ & = \frac{\frac{d}{dz} e^{z} – \frac{d}{dz} e^{-z}}{2}\\ & = \frac{e^{z} + e^{-z}}{2}\\ & = \cosh{(z)}. \end{align*} \begin{align*} \frac{d}{dz} \operatorname{cosh}(z) & = \frac{d}{dz} \left( \frac{e^{z} + e^{-z}}{2} \right)\\ & = \frac{\frac{d}{dz} e^{z} + \frac{d}{dz} e^{-z}}{2}\\ & = \frac{e^{z} – e^{-z}}{2}\\ & = \operatorname{senh}(z). \end{align*}
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
$\blacksquare$
Ejemplo 22.9. Analicemos la analicidad de la función $f(z) = \cosh\left(iz+e^{iz}\right)$ y obtengamos $f'(z)$.
Solución. Notemos que si consideramos a $g(z) = \cosh(z)$ y $h(z) = iz+e^{iz}$, entonces $f = g\circ h$.
Es claro que $h$ y $g$ son ambas funciones enteras, por lo que $f$ es también una función entera. Más aún, para $z\in\mathbb{C}$, por la regla de la cadena tenemos que: \begin{equation*} f'(z) = g'(h(z))h'(z) = \operatorname{senh}(iz+e^{iz}) \left(i + ie^{iz}\right). \end{equation*}
Tarea moral
Completa las demostraciones de la proposiciones de esta entrada.
Determina el valor de cada una de las siguientes funciones trigonométricas e hiperbólicas en su forma $a+ib$. a) $\operatorname{tan}(2i)$. b) $\operatorname{sec}\left(\frac{\pi}{2}-i\right)$. c) $\operatorname{csc}(1+i)$. d) $\operatorname{cosh}\left(1+\frac{\pi}{6}i\right)$. e) $\operatorname{senh}\left(\frac{\pi}{2}i\right)$. f) $\operatorname{tanh}\left(2+3i\right)$.
Muestra que para todo $z\in\mathbb{C}$ se cumple que: \begin{equation*} \operatorname{cos}\left(\overline{z}\right) = \overline{\operatorname{cos}(z)}, \quad \operatorname{sen}\left(\overline{z}\right) = \overline{\operatorname{sen}(z)}. \end{equation*}
Para cada inciso prueba lo que se te pide. a) Para $z\in\mathbb{C}$, con $z\neq 1$, y para $n\in\mathbb{N}$, muestra que: \begin{equation*} 1 + z + z^2 + \cdots + z^n = \frac{1 – z^{n+1}}{1-z}. \end{equation*} b) Considera a $z=e^{i\theta}$, para $\theta \in\mathbb{R}$ tal que $\theta \neq 2\pi k$, con $k\in\mathbb{Z}$ y muestra que: \begin{equation*} 1 + e^{i\theta} + e^{i2\theta} + \cdots + e^{i n\theta} = \frac{i}{2} \frac{\left(1 – e^{i(n+1)\theta}\right)e^{-i \frac{\theta}{2}}}{\operatorname{sen}\left(\frac{\theta}{2}\right)}. \end{equation*} Hint: Sustituye en (a) $z=e^{i\theta}$, después multiplica y divide por $e^{-i\frac{\theta}{2}}$ y utiliza (22.4). c) Toma la parte real e imaginaria de la identidad obtenida en (b) y concluye que: \begin{equation*} \frac{1}{2} + \operatorname{cos}(\theta) + \operatorname{cos}(2\theta) + \cdots + \operatorname{cos}(n \theta) = \frac{\operatorname{sen}\left(\left[n+\frac{1}{2}\right]\theta\right)}{2\operatorname{sen}\left(\frac{\theta}{2}\right)}, \end{equation*} \begin{equation*} \operatorname{sen}(\theta) + \operatorname{sen}(2\theta) + \cdots + \operatorname{sen}(n \theta) = \frac{\operatorname{cos}\left(\frac{\theta}{2}\right) – \operatorname{cos}\left(\left[n+\frac{1}{2}\right]\theta\right)}{2\operatorname{sen}\left(\frac{\theta}{2}\right)}. \end{equation*} La suma $D_n(\theta) = 1 + 2\operatorname{cos}(\theta) + 2\operatorname{cos}(2\theta) + \cdots + 2\operatorname{cos}(n \theta)$ es llamada el núcleo de Dirichlet y juega un papel importante en la teoría de las series de Fourier.
Obtén la parte real e imaginaria de las siguientes funciones: a) $f(z) = \operatorname{sen}(2z)$. b) $f(z) = z\operatorname{cos}(z)$. c) $f(z) = \operatorname{cos}(z^2)$. d) $f(z) = \operatorname{tan}(z)$.
Determina el dominio de analicidad de las siguientes funciones y obtén su derivada. a) $f(z) = z \tan\left(\frac{1}{z}\right)$. b) $f(z) = \cos \left(i e^z\right)$. c) $f(z) = \sec \left(z^2\right)$. d) $f(z) = \operatorname{sen}(z) \operatorname{senh}{(z)} $. e) $f(z) = \tanh{ \left(iz-2\right)}$.
Resuelve las siguientes ecuaciones. a) $\cos{(z)} = i \operatorname{sen}{(z)}$. b) $\cosh{(z)} = i$. c) $\cos{(z)} = 4$. d) $ \operatorname{senh}{(z)} = -1$.
¿Dónde son diferenciables las siguientes funciones? ¿Son analíticas? a) $f(z) = \operatorname{sen} \left(|\,z\,|^2\right)$. b) $f(z) = \dfrac{e^z}{\operatorname{cos}(z)}$.
Prueba que la función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} 1 & \text{si} & z = 0, \\ \\ z^{-1} \operatorname{sen}(z) & \text{si} & z\neq 0, \end{array} \right. \end{equation*} es una función continua en $\mathbb{C}$.
Más adelante…
En esta entrada hemos extendido a $\mathbb{C}$ las funciones trigonométricas e hiperbólicas reales a través de la función exponencial compleja. Es interesante notar que a diferencia del caso real, para el caso complejo es posible definir a las funciones elementales a través de las funciones complejas exponencial y logaritmo, mediante las cuales es claro que muchas de las propiedades como continuidad, diferenciabilidad y analicidad, entre otras, se heredan de manera natural a las funciones elementales.
Vimos que muchas de las propiedades con las que estamos familiarizados para el caso real, se cumplen también para el caso complejo. Sin embargo, a diferencia del caso real, las funciones trigonométricas complejas no son acotadas, mientras que las funciones hiperbólicas complejas son periódicas y tienen una infinidad de ceros.
La siguiente entrada analizaremos a las funciones inversas de las funciones complejas trigonométricas e hiperbólicas vistas en esta sección, recordando nuevamente el concepto de función multivaluada.
En las entradas anteriores hemos determinado condiciones necesarias y suficientes para garantizar la analicidad de una función compleja. En particular hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. Además, a través de dichas ecuaciones hemos probado que la diferenciabilidad en el sentido real de una función vectorial de dos variables no es equivalente a la diferenciabilidad de una función compleja, por lo que debe ser claro que no toda función vectorial de dos variables resultará ser una función analítica.
En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones de C-R y veremos que es posible extender algunas resultados vistos en nuestros cursos de Cálculo para las funciones complejas a través de las funciones reales correspondientes con las partes real e imaginaria de una función compleja.
Observación 19.1. De nuestros cursos de Cálculo sabemos que para una función $u:U \to \mathbb{R}$ de clase $C^1$, con $U\subset\mathbb{R}^2$ una región, se cumple que $u$ no depende de la variable $x$ si y solo si $\partial u/ \partial x = 0$ para todo punto en $U$. Análogamente para la variable $y$. Más aún, tenemos que: \begin{align*} \frac{\partial}{\partial x} x = 1, \quad \frac{\partial}{\partial y} x = 0,\\ \frac{\partial}{\partial x} y = 0, \quad \frac{\partial}{\partial y} y = 1. \end{align*}
Para motivar los siguientes planteamientos consideremos el siguiente:
Ejemplo 19.1. Determinemos si la función compleja $f(z) = 2xy + i(y^2-x^2)$ es analítica o no.
Solución. Es claro que podemos estudiar la analicidad de esta función a través de los resultados de la entrada anterior, sin embargo notemos que operando un poco a la función, para $z=x+iy\in \mathbb{C}$, tenemos que: \begin{align*} f(z) & = 2xy + i(y^2-x^2)\\ & = -i(i2xy) + i(y^2-x^2)\\ & = -i \left[-(y^2-x^2) + i2xy \right]\\ & = -i \left(x^2 -y^2 + i2xy \right)\\ & = – i\left(x+iy\right)^2\\ & = -i z^2, \end{align*} es decir que para todo $z\in \mathbb{C}$ se tiene que $f(z) = -iz^2$, la cual es una función polinómica y por tanto analítica en todo $\mathbb{C}$. Es importante notar que en la función anterior no aparecen términos que dependan del conjugado de $z$.
Debe ser claro que el conjugado de un número complejo $z$, es decir $\overline{z}$, resulta ser una función compleja de la variable $z$. En el ejemplo 17.2, de la entrada 17, hemos visto que la función $f(z)=\overline{z}$ no es analítica en $\mathbb{C}$ desde que no se cumplen las ecuaciones de C-R en ningún punto. Sin embargo, esta función en particular cumple que $u_x = – v_y$ y $u_y = v_x$ para todo $z=x+iy\in \mathbb{C}$.
De acuerdo con la observación 12.5 de la entrada 12, estamos interesados en caracterizar a las funciones complejas que solo dependen de la variable $z$, es decir que no tienen términos que dependan de su conjugado.
Lo anterior nos motiva a considerar a $\overline{z} = x-iy$ como una variable «independiente» de $z=x+iy$. Entonces, nuestro objetivo es determinar un criterio similar al de la observación 19.1 para garantizar la analicidad de una función compleja $f$ cuando esta dependa únicamente de la variable $z$. Tenemos que si $z$ y $\overline{z}$ son variables independientes, entonces: \begin{align*} \frac{\partial}{\partial z} z = 1, \quad \frac{\partial}{\partial \overline{z}} z = 0,\\ \frac{\partial}{\partial z} \overline{z} = 0, \quad \frac{\partial}{\partial \overline{z}} \overline{z} = 1. \end{align*}
Como para todo $z=x+iy\in\mathbb{C}$ se cumple que: \begin{equation*} x = \frac{z+\overline{z}}{2}, \quad y = \frac{z-\overline{z}}{2i}, \tag{19.1} \end{equation*} entonces, dada una función compleja $f(z)=u(x,y) + iv(x,y)$ definida en un conjunto abierto $U\subset \mathbb{C}$ de clase $C^1$, podemos pensarla como una función de las variables independientes $x$ e $y$ o bien de las variables «independientes» $z$ y $\overline{z}$, y así definir: \begin{equation*} g(z,\overline{z}) = \hat{f}(x,y):= f(z) = u\left( \frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right) + i v\left( \frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right). \end{equation*}
Lo anterior resulta de gran utilidad al considerar a $z$ y $\overline{z}$ como variables independientes, ya que bajo este supuesto podemos obtener a las derivadas parciales complejas $g_z$ y $g_{\overline{z}}$ mediante la regla de la cadena como sigue: \begin{align*} g_{z} = \frac{\partial g}{\partial z} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2}\left(\frac{\partial g}{\partial x} – i \frac{\partial g}{\partial y} \right),\\ g_{\overline{z}} = \frac{\partial g}{\partial \overline{z}} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial \overline{z}} = \frac{1}{2}\left(\frac{\partial g}{\partial x} + i \frac{\partial g}{\partial y} \right). \end{align*}
De lo anterior obtenemos la siguiente:
Definición 19.1. (Operadores diferenciales complejos de Wirtinger.) Sea $U\subset \mathbb{C}$ un conjunto abierto y $f(z)=u(x,y)+iv(x,y)$ una función compleja definida en $U$ de clase $C^1$. Definimos los operadores direrenciales complejos de Wirtinger como: \begin{align*} f_z := \frac{\partial f}{\partial z} = \frac{1}{2}\left(\frac{\partial f}{\partial x} – i \frac{\partial f}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u }{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} – \frac{\partial u}{\partial y} \right),\\ f_{\overline{z}} := \frac{\partial f}{\partial \overline{z}} = \frac{1}{2}\left(\frac{\partial f}{\partial x} + i \frac{\partial f }{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u }{\partial x} – \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} + \frac{\partial u}{\partial y} \right). \end{align*}
Observación 19.2. Notemos que la condición $\dfrac{\partial f}{\partial \overline{z}} =0$, intuitivamente nos dice que la función $f$ no depende de la variable $\overline{z}$ como lo planteamos inicialmente. Más aún, considerando la definición anterior se tiene el siguiente:
Lema 19.1. Sean $U \subset \mathbb{C}$ un conjunto abierto y $f(z) = u(x,y) + iv(x,y)$ una función definida en $U$ de clase $C^1$. Entonces $u$ y $v$ satisfacen las ecuaciones de C-R en $U$ si y solo si $\dfrac{\partial f}{\partial \overline{z}} =0$ para todo $z=x+iy\in U$.
Demostración.Se deja como ejercicio al lector.
$\blacksquare$
Ejemplo 19.2. Sea $z\in\mathbb{C}$. Consideremos a la función $f(z) = |\,z\,|$. Determinemos a la función $g(z,\overline{z})$ y a las derivadas parciales $f_z$ y $f_{\overline{z}}$.
Solución. Tenemos que $f(z) = |\,z\,| = \left(z \overline{z}\right)^{1/2}$, por lo que $g(z,\overline{z}) = \left(z \overline{z}\right)^{1/2}$.
Por otra parte, si $z\neq 0$, entonces: \begin{align*} f_z(z) = \frac{\partial g}{\partial z}(z,\overline{z}) = \frac{1}{2}\left(z \overline{z}\right)^{-1/2} \overline{z} = \frac{\overline{z}}{2|\,z\,|},\\ f_{\overline{z}}(z) = \frac{\partial g}{\partial \overline{z}}(z,\overline{z}) = \frac{1}{2}\left(z \overline{z}\right)^{-1/2} z = \frac{z}{2|\,z\,|}. \end{align*}
Observación 19.2. De acuerdo con el ejercicio 7 de la entrada 16, sabemos que la función $f(z)=|\,z\,|$ no es analítica en ningún punto de $\mathbb{C}$. Podemos analizar esto mediante el lema anterior.
Para $z = 0$ es claro que $f$ no es diferenciable en dicho punto desde que no existe: \begin{equation*} \lim_{h \to 0 } \frac{f(0+h) – f(0)}{h} = \lim_{h \to 0 } \frac{|h|}{h}. \end{equation*}
Por otra parte, para $z\neq 0$ se tiene que: \begin{equation*} \frac{\partial f}{\partial \overline{z}} = 0 \quad \Longleftrightarrow \quad \frac{z}{2|\,z\,|} = 0 \quad \Longleftrightarrow \quad z = 0, \end{equation*} lo cual claramente no es posible, por lo que no se satisfacen las ecuaciones de C-R para ningún $z\neq 0$, es decir que $f$ no es analítica en ningún punto de $\mathbb{C}$.
El ejemplo anterior motiva la siguiente:
Proposición 19.1. Sean $U\subset \mathbb{C}$ un conjunto abierto y $f(z)=u(x,y)+iv(x,y)$ una función definida en $U$ de clase $C^1$. Las siguientes condiciones son equivalentes:
$f$ es analítica en $U$.
$\dfrac{\partial f}{\partial \overline{z}} = 0$ para todo $z_0\in U$. En tal caso: \begin{equation*} f'(z_0) = \frac{\partial f}{\partial z} (z_0) = \frac{\partial f}{\partial x} (z_0) = -i\frac{\partial f}{\partial y} (z_0), \quad z_0 \in U. \end{equation*}
Demostración.Se deja como ejercicio al lector.
$\blacksquare$
Observación 19.3. La trascendencia de este resultado radica en que podemos pensar a las funciones analíticas como «auténticas funciones complejas» en el sentido de que si $f(z) = u(x,y) + iv(x,y)$ es una función analítica, entonces al sustituir a las variables $x$ e $y$ por $\dfrac{z+\overline{z}}{2}$ y $\dfrac{z-\overline{z}}{2i}$ respectivamente, dicha función no depende de la variable $\overline{z}$ como mencionamos en la observación 19.2.
Ejemplo 19.3. Consideremos a la función compleja $f(z) = |\,z\,|^2 + \dfrac{z}{\overline{z}}$. Veamos que $f$ no es analítica en ningún punto en $\mathbb{C}$, determinemos dónde $f$ es al menos diferenciable y obtengamos a las derivadas parciales $f_z$ y $f_{\overline{z}}$.
Solución. La función $f$ está definida en el dominio $U = \mathbb{C}\setminus\{0\}$. Para $z=x+iy \in U$ tenemos que: \begin{align*} f(z) & = |\,z\,|^2 + \frac{z}{\overline{z}}\\ & = |\,z\,|^2 + \frac{z^2}{|\,z\,|^2}\\ & = x^2 + y^2 + \frac{x^2+2ixy -y^2}{x^2 + y^2}\\ & = \left(x^2 + y^2 + \frac{x^2 -y^2}{x^2 + y^2}\right) + i \left(\frac{2xy}{x^2 + y^2}\right)\\ & := u(x,y) + i v(x,y). \end{align*}
Para mostrar la utilidad de obtener las derivadas parciales complejas pensando a $f$ como una función $g$ de las variables $z$ y $\overline{z}$, primeramente procedemos a obtener las derivadas parciales $f_z$ y $f_{\overline{z}}$ mediante la definición 19.1.
Considerando las igualdades dadas en (19.1), tenemos que: \begin{equation*} f_z = \overline{z} + \frac{1}{\overline{z}}, \quad \text{y} \quad f_{\overline{z}} = z – \frac{z}{\overline{z}^2}. \end{equation*}
Notemos que podemos evitar todo el desarrollo anterior si consideramos que: \begin{align*} f(z) & = |\,z\,|^2 + \dfrac{z}{\overline{z}}\\ & = z \overline{z} + \dfrac{z}{\overline{z}}\\ & := g(z,\overline{z}), \quad \forall z \neq 0, \end{align*}
entonces para todo $z\neq 0$ existen las derivadas parciales complejas: \begin{align*} f_z = \frac{\partial g}{\partial z} = \overline{z} + \frac{1}{\overline{z}},\\ f_{\overline{z}} = \frac{\partial g}{\partial \overline{z}} = z – \frac{z}{\overline{z}^2}. \end{align*}
De estas últimas expresiones es claro que las funciones $f_z$ y $f_{\overline{z}}$ son continuas en $U = \mathbb{C}\setminus\{0\}$, por lo que lo son también las derivadas parciales $u_x$, $u_y$, $v_x$ y $v_y$ , es decir que $f$ es de clase $C^1(U)$.
Por otra parte, dado que: \begin{equation*} \frac{\partial f}{\partial \overline{z}} = 0 \quad \Longleftrightarrow \quad z – \frac{z}{\overline{z}^2} = 0 \quad \Longleftrightarrow \quad \overline{z}^2 = 1 \quad \Longleftrightarrow \quad z = \pm 1, \end{equation*} entonces $f$ solo es diferenciable en los puntos $z=1$ y $z=-1$. Puesto que no existe disco abierto alrededor de dichos puntos donde $f$ sea diferenciable, concluimos que $f$ no es analítica en ningún punto en $\mathbb{C}$.
Observación 19.4. Debe ser claro que si tenemos una función compleja $f$ diferenciable en un punto $z_0$, entonces se cumple que $f_{\overline{z}}(z_0) = 0$. Sin embargo, debemos enfatizar en que la existencia de $f_{\overline{z}}(z_0)$ no garantiza la existencia de $f'(z_0)$, desde que las ecuaciones de C-R no son una condición suficiente para la diferenciabilidad en el sentido complejo.
Ejemplo 19.4. Consideremos el ejercicio 6 de la entrada 17. Tenemos que la función: \begin{equation*} f(z)= \left\{\begin{array}{lcc} \dfrac{z^5}{|\,z\,|^4}& \text{si} & z\neq 0, \\ 0 & \text{si} & z = 0, \end{array} \right. \end{equation*} satisface las ecuaciones de C-R en $z=0$, pero $f'(0)$ no existe.
es decir que $f_z(0,0) = f_{\overline{z}}(0,0) = 0$. Sin embargo, notemos que para $z\neq 0$ se tiene que: \begin{align*} \lim_{z\to 0} \frac{f(z) – f(0)}{z-0} & = \lim_{z\to 0} \frac{z^4}{|\,z\,|^4}\\ & = \lim_{z\to 0} \frac{z^2}{\overline{z}^2}, \end{align*} pero dicho límite no existe pues si nos aproximamos a $0$ a través de la recta $y=x$ tenemos que: \begin{align*} \lim_{z\to 0} \frac{f(z) – f(0)}{z-0} & = \lim_{x\to 0} \frac{x^2 \left(1+i\right)^2}{x^2 \left(1-i\right)^2}\ & = \left(\frac{ 1+i}{1-i}\right)^2 = -1, \end{align*}
mientras que si nos aproximamos a $0$ a través del eje $x$ tenemos que: \begin{equation*} \lim_{z\to 0} \frac{f(z) – f(0)}{z-0} = \lim_{x\to 0} \frac{\left(x + i0\right)^2}{\left(x-i0\right)^2} = 1, \end{equation*} por lo que $f'(0)$ no existe.
El resultado obtenido en este ejemplo no contradice el teorema 18.1 de la entrada anterior ni a la proposición 19.1 de esta entrada, sino que en ambos casos no se cumple la hipótesis de continuidad de las derivadas parciales de las funciones $u$ y $v$ que determinan a $f$.
Lema 19.2. Sea $D\subset\mathbb{R}^2$ un conjunto abierto y conexo. Si $u:D\to\mathbb{R}$ es una función real tal que $u_x(z) = u_y(z) = 0$ para todo $z=(x,y)\in D$, entonces $u$ es una función constante en $D$.
Demostración. Dadas las hipótesis, tomemos a $z_0=(x_0,y_0)\in D$ fijo, entonces existe algún $r>0$ tal que $B(z_0,r)\subset D$. Sea $z=(x,y)\in B(z_0,r)$, procediendo como en la prueba del teorema 18.1 de la entrada anterior, concluimos, por el teorema del valor intermedio para funciones reales, que existen $\alpha, \beta\in(0,1)$, tales que: \begin{align*} u(z)-u(z_0) & = u(x,y)-u(x_0,y_0)\\ & = (x-x_0) u_x(x_0+\alpha(x-x_0),y) + (y-y_0) u_y(x_0, y_0+\beta(y-y_0)).\tag{19.2} \end{align*}
Sean $\zeta_1 = (x_0+\alpha(x-x_0),y)$ y $\zeta_2 = (x_0,y_0+\beta(y-y_0))$, para algunos $\alpha, \beta\in(0,1)$. Es claro que, figura 75: \begin{equation*} \left| \zeta_1 – z_0 \right| \leq \left| z – z_0 \right|<r, \quad \left| \zeta_2 – z_0\right| \leq \left| z – z_0 \right|<r, \end{equation*} por lo que, la igualdad en (19.2) es equivalente a decir que existen $\zeta_1, \zeta_2 \in B(z_0,r)$ tales que: \begin{equation*} u(z)-u(z_0) = (x-x_0) u_x(\zeta_1) + (y-y_0) u_y(\zeta_2). \tag{19.3} \end{equation*}
De acuerdo con la igualdad (19.3), como $\zeta_1, \zeta_2 \in D$, entonces por hipótesis se cumple que: \begin{equation*} u(z)-u(z_0) = (x-x_0) \cdot 0 + (y-y_0) \cdot 0 = 0, \end{equation*} por lo que para todo $z\in B(z_0, r)$ se cumple que $u(z) = u(z_0)$, es decir que $u$ es una función constante en todo disco abierto completamente contenido en $D$.
Para $z_0\in D$ un punto fijo, definimos los siguientes conjuntos: \begin{equation*} U=\{ z\in D : u(z) = u(z_0)\} \quad \text{y} \quad V=\{ z\in D : u(z) \neq u(z_0)\}. \end{equation*}
Probemos que $U$ y $V$ son conjuntos abiertos en $D$.
Sea $z\in U$, entonces $u(z) = u(z_0)$. Por otra parte, como $D$ es abierto entonces existe $r>0$ tal que $B(z,r) \subset D$. Veamos que $B(z,r) \subset U$.
De acuerdo con lo que probamos antes, es claro que para todo $z^* \in B(z,r)$ la función $u$ es constante en dicho disco, por lo que $u(z) = u(z^*)$, entonces para todo $z^* \in B(z,r)$ se cumple que $u(z^*) = u(z_0)$, es decir, $z^* \in U$, entonces: \begin{equation*} B(z,r) \subset U, \end{equation*} por lo que concluimos que $U$ es un conjunto abierto. De manera análoga se verifica que $V$ es un conjunto abierto, por lo que se deja como ejercicio al lector.
Tenemos entonces que $D = U \cup V$ y $U \cap V = \emptyset$, pero como $D$ es un conjunto conexo, entonces uno de los dos conjuntos $U$ o $V$ debe ser vacío. Por construcción es claro que $z_0\in U$, por lo que $V = \emptyset$, por lo tanto $D = U$, entonces para todo $z\in D$ se cumple que $u(z) = u(z_0)$, es decir que $u$ es una función constante en $D$.
$\blacksquare$
Proposición 19.2. Sean $D\subset\mathbb{C}$ un dominio y $f:D\to\mathbb{C}$ una función analítica en $D$. Si $f'(z) = 0$ para todo $z\in D$, entonces $f$ es una función constante en $D$.
Demostración. Dadas las hipótesis, tomemos a $f(z) = u(x,y) + iv(x,y)$ definida en $D$. Como $f$ es una función analítica en $D$, entonces las funciones $u$ y $v$ satisfacen las ecuaciones de C-R en $D$ y se cumple que: \begin{equation*} f'(z) = u_x(z) + iv_x(z), \quad \forall z = x+iy \in D. \end{equation*}
Por hipótesis tenemos que: \begin{equation*} 0 = f'(z) = u_x(z) + iv_x(z) = v_y(z) – i u_y(z), \end{equation*} para todo $z \in D$, es decir que para todo punto en $D$ se cumple que: \begin{equation*} u_x(x,y) = u_y(x,y) = v_x(x,y) = v_y(x,y) = 0. \end{equation*}
Considerando el lema 19.2 concluimos que las funciones $u$ y $v$ son constantes en $D$ y por tanto que $f$ es una función constante en $D$.
$\blacksquare$
Corolario 19.1. Sean $D\subset\mathbb{C}$ un dominio y $f,g\in \mathcal{F}(D)$ dos funciones analíticas en $D$. Si $f$ y $g$ coinciden en un punto y tienen la misma derivada en $D$, entonces $f$ y $g$ son idénticas.
Demostración.Se deja como ejercicio al lector.
$\blacksquare$
Observación 19.5. La propiedad de conexidad del dominio $D$ es necesaria. Notemos que en la prueba de la proposición 19.2, de manera implícita, usamos fuertemente el hecho de que $D$ era un conjunto conexo, pero si $D$ solo es un conjunto abierto el resultado no es válido.
Ejemplo 19.5. Consideremos al conjunto $U = \{ z=x+iy\in\mathbb{C} : x \neq 0\}$, el cual es abierto en $\mathbb{C}$. Definimos a la función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} 1 & \text{si} & \operatorname{Re}(z)>0, \\ 2 & \text{si} & \operatorname{Re}(z)<0. \end{array} \right. \end{equation*} Claramente la función $f(z)$ es analítica en $U$ y $f'(z) = 0$ para todo $z\in U$, sin embargo $f$ no es una función constante.
Procedemos ahora a probar un resultado en el cual podemos ver que la analicidad de una función compleja es una propiedad más restrictiva que la diferenciabilidad en el sentido real.
Proposición 19.3. Sean $D\subset\mathbb{C}$ un dominio y $f(z) = u(x,y) + iv(x,y)$ una función analítica en $D$.
Si $u$ ó $v$ son constantes en $D$, entonces $f$ también es una función constante en $D$.
Si $|\,f\,|$ es constante en $D$, entonces $f$ también es una función constante en $D$.
Dadas las hipótesis, como $f$ es una función analítica en $D$, entonces las funciones $u$ y $v$ satisfacen las ecuaciones de C-R en $D$ y se tiene que: \begin{equation*} f'(z) = u_x(z) + iv_x(z) = v_y(z) – iu_y(z), \quad \forall z\in D\tag{19.4} \end{equation*}
Probaremos el resultado considerando a la función $u$ como constante, el caso en el que la función $v$ es constante es completamente análogo.
Si suponemos que $u$ es una función constante en $D$, entonces se cumple que: \begin{equation*} u_x(z) = u_y(z) = 0, \quad \forall z=x+iy\in D. \end{equation*}
De acuerdo con (19.4) tenemos que: \begin{equation*} f'(z) = u_x(z) – iu_y(z) = 0, \end{equation*} para todo $z=x+iy\in D$, por lo que se sigue de la proposición 19.2 que $f$ es constante en $D$.
Supongamos ahora que $|\,f\,|$ es una función constante en $D$, entonces tenemos que: \begin{equation*} |\,f(z)\,|^2 = u^2(x,y) + v^2(x,y) = c, \tag{19.5} \end{equation*} para todo $z=x+iy\in D$ y para alguna constante real $c\geq 0$.
Si $c = 0 $, entonces es claro que $f(z) = 0$ para todo $z=x+iy\in D$, por lo que en tal caso $f$ es constante.
Supongamos que $c > 0 $, entonces tomando derivadas parciales en (19.5), con respecto a $x$ e $y$, para todo $z=x+iy\in D$ tenemos que: \begin{align*} 2u(x,y) u_x(x,y) + 2 v(x,y) v_x(x,y) = 0,\\ 2u(x,y) u_y(x,y) + 2 v(x,y) v_y(x,y) = 0, \end{align*}
Por hipótesis sabemos que se cumplen las ecuaciones de C-R en $D$, por lo que para todo $z=x+iy \in D$ se tiene que: \begin{align*} u(x,y) u_x(x,y) – v(x,y) u_y(x,y) = 0,\\ u(x,y) u_y(x,y) + v(x,y) u_x(x,y) = 0. \end{align*}
Multiplicando por las funciones $u(x,y)$ y $v(x,y)$, respectivamente, en las igualdades anteriores, procedemos a sumarlas y restarlas, entonces para todo $z=x+iy\in D$ tenemos que: \begin{align*} u_x(x,y)\left(u^2(x,y) + v^2(x,y) \right) = 0,\\ u_y(x,y)\left(u^2(x,y) + v^2(x,y) \right) = 0, \end{align*} de donde $u_x(x,y) = u_y(x,y) = 0$ para todo $z=x+iy\in D$. De manera análoga podemos obtener que $v_x(x,y) = v_y(x,y) = 0$ en $D$. Considerando el lema 19.2 concluimos que $u$ es una función constante en $D$, por lo que, de acuerdo con la primera parte de la prueba, $f$ es una función constante en $D$.
Tarea moral
Demuestra el lema 19.1 y la proposición 19.1.
Sea $D\subset\mathbb{C}$ un dominio. Supón que $f$ y $|\,f\,|$ son funciones analíticas en $D$. Prueba que $f$ es una función constante en $D$.
Obtén las derivadas parciales $f_z$ y $f_{\overline{z}}$ para las siguientes funciones complejas: a) $f(z) = 2x^3y^2 + i(x^2-y)$. b) $f(z) = \dfrac{x-1-iy}{(x-1)^2 + y^2}$. c) $f(z) = x^2+y^2+3x+1+i3y$. d) $f(z) = x^2-y^2+i3xy$. e) $f(z) = (x+iy)(x^2+y^2)$. ¿Son analíticas? ¿Son diferenciables?
Sea $U\subset \mathbb{C}$ un conjunto abierto y $f:U\to\mathbb{C}$ una función de clase $C^1$. Muestra que para todo $z\in U$ se cumple que: a) $(\overline{f})_z = \overline{f_{\overline{z}}}$. b) $(\overline{f})_{\overline{z}} = \overline{f_z}$.
Sean $D\subset\mathbb{C}$ un dominio y $f \in \mathcal{F}(D)$ una función analítica. Supón que existen $a,b,c\in\mathbb{R}$, constantes reales con $a^2 + b^2 > 0$, tales que: \begin{equation*} a \operatorname{Re} f(z) + b \operatorname{Im} f(z) = c, \quad \forall z \in D. \end{equation*} Prueba que la función $f$ es constante en $D$.
Sea $f:\mathbb{C} \to \mathbb{C}$ un polinomio. Supón que: \begin{equation*} \frac{\partial f}{\partial z} = 0 = \frac{\partial f}{\partial \overline{z}}, \quad \forall z\in \mathbb{C}. \end{equation*} Prueba que la función $f$ es constante.
Demuestra el corolario 19.1.
Sea $U\subset \mathbb{C}$ un conjunto abierto y sean $f,g:U \to \mathbb{C}$ dos funciones de clase $C^1$. Muestra que para cualesquiera constantes $a,b\in\mathbb{C}$ se cumple que: a) $\dfrac{\partial}{\partial z}\left( a f + b g\right) = a \dfrac{\partial f}{\partial z} + b \dfrac{\partial g}{\partial z}$. b) $\dfrac{\partial}{\partial \overline{z}}\left( a f + b g\right) = a \dfrac{\partial f}{\partial \overline{z}} + b \dfrac{\partial g}{\partial \overline{z}}$. c) $\dfrac{\partial}{\partial z}\left( fg\right) = g \dfrac{\partial f}{\partial z} + f \dfrac{\partial g}{\partial z}$. d) $\dfrac{\partial}{\partial \overline{z}}\left( fg\right) = g \dfrac{\partial f}{\partial \overline{z}} + f \dfrac{\partial g}{\partial \overline{z}}$.
Sean $U, V\subset \mathbb{C}$ dos conjuntos abiertos. Supón que $f:U \to \mathbb{C}$ y $g:V \to \mathbb{C}$ son dos funciones de clase $C^1$ y que $f(U) \subset V$. Muestra que: \begin{align*} \left(g\circ f\right)_z = \left(g_z \circ f\right)f_z + \left(g_{\overline{z}} \circ f\right)\left(\overline{f}\right)_z,\\ \left(g \circ f\right)_{\overline{z}} = \left(g_z\circ f\right)f_{\overline{z}} + \left(g_{\overline{z}} \circ f\right)\left(\overline{f}\right)_{\overline{z}}. \end{align*} Concluye que: a) Si $f$ es analítica en $U$, entonces: \begin{equation*} \left(g\circ f\right)_z = \left(g_z \circ f\right)f’, \quad \left(g \circ f\right)_{\overline{z}} = \left(g_{\overline{z}} \circ f\right)\overline{f’}. \end{equation*} b) Si $g$ es analítica en $V$, entonces: \begin{equation*} \left(g\circ f\right)_z = \left(g’ \circ f\right)f_z, \quad \left(g\circ f\right)_{\overline{z}} = \left(g’ \circ f\right)f_{\overline{z}}.\end{equation*}
Más adelante…
En esta entrada hemos deducido una serie de resultados que son consecuencia directa de las ecuaciones de C-R, además de caracterizar aún más a la diferenciabilidad compleja a través del concepto de analicidad de una función, que como vimos resulta ser un concepto más restrictivo que el de diferenciabilidad real. Mediante los resultados de esta entrada hemos concluido que las «genuinas» funciones complejas que resultan ser analíticas son aquellas que solo están dadas en términos de la variable compleja $z$, es decir que no dependen de $\overline{z}$.
La siguientes entradas definiremos algunas de las funciones complejas elementales para la teoría. Mediante estas funciones haremos una extensión de las funciones reales como la exponencial, el logaritmo y las funciones trigonométricas. Veremos que para el caso complejo muchas de las propiedades que satisfacen dichas funciones reales se seguirán cumpliendo, aunque como es de esperarse veremos que en el caso complejo estas funciones cumplen otras propiedades como la periodicidad y retomaremos nuevamente el concepto de funciones multivaludas.