Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Teoría de los Conjuntos I: Conjuntos numerables (parte II)

Por Gabriela Hernández Aguilar

Introducción

En la entrada anterior hemos mostrado algunos ejemplos de conjuntos equipotentes al conjunto de los números naturales. En algunos casos exhibimos funciones biyectivas del conjunto de los números naturales en cada uno de los respectivos conjuntos. Sin embargo, esta labor puede resultar complicada, en muchas ocasiones exhibir funciones biyectivas de un conjunto en otro presenta diversas dificultades. Debido a esto, en varias situaciones resulta muy útil aplicar el teorema de Cantor-Schröder-Bernstein para mostrar que dos conjuntos son equipotentes sin necesidad de proporcionar una biyección. En esta entrada añadiremos otro par de ejemplos de conjuntos equipotentes al conjunto de los números naturales, pero haremos uso del teorema de Cantor-Schröder-Bernstein para mostrar tal equipotencia.

Conjuntos numerables.

En el siguiente ejemplo aparece un conjunto que ya conocíamos y que de hecho se encuentra en la entrada anterior, se trata del conjunto de números racionales, para el cual dimos dos maneras de mostrar que es numerable.

Ejemplo.

$\mathbb{Q}$ es numerable, es decir, equipotente a $\mathbb{N}$.

Lo que haremos será mostrar que $\mathbb{Q}^{+}\cup\{0\}$ y $\mathbb{N}$ son equipotentes con ayuda del teorema de Cantor-Schröder-Bernstein. Luego, como $\mathbb{Q}^{-}$ y $\mathbb{Q}^{+}$ son equipotentes podremos concluir que $\mathbb{Q}$ es la unión de dos conjuntos ajenos numerables y, por tanto, que $\mathbb{Q}$ es numerable.

Ante un claro abuso de notación en lo que sigue, definamos $f:\mathbb{N}\to\mathbb{Q}^{+}\cup\{0\}$ por medio de $f(n)=\frac{n}{1}$. Luego, $f$ es una función ineyctiva de $\mathbb{N}$ en $\mathbb{Q}^{+}\cup\{0\}$, pues si $f(n)=f(m)$, entonces, $\frac{n}{1}=\frac{m}{1}$ lo cual implica que $n\cdot 1=m\cdot1$, es decir, $n=m$. Ahora, tenemos que exhibir una función inyectiva de $\mathbb{Q}^{+}\cup\{0\}$ en $\mathbb{N}$. Definamos $g:\mathbb{Q}^{+}\cup\{0\}\to\mathbb{N}\times\mathbb{N}$ por medio de $$g\left(\frac{p}{q}\right)=\left\{\begin{array}{lcc}
(p,q) & \textnormal{si}\ \frac{p}{q}\in\mathbb{Q}^{+}\ \textnormal{y}\ p\ \textnormal{y}\ q\ \textnormal{son primos relativos}\\
(0,0) & \textnormal{si}\ \frac{p}{q}=0
\end{array}
\right.$$

Debido a que cada racional en $\mathbb{Q}^{+}$ tiene una expresión única de la forma $\frac{p}{q}$ con $p$ y $q$ primos relativos, entonces, $g$ está bien definida. Veamos que $g$ es inyectiva. Supongamos que $\frac{p}{q},\frac{s}{t}\in\mathbb{Q}^{+}\cup\{0\}$ son tales que $g(\frac{p}{q})=g(\frac{s}{t})$. Si $\frac{p}{q}=0$, entonces, $g(\frac{p}{q})=(0,0)$ y así $g(\frac{s}{t})=(0,0)$; luego, $\frac{s}{t}=0$, pues en caso contrario, podríamos asumir que $s$ y $t$ son primos relativos y por tanto $g(\frac{s}{t})=(s,t)\not=(0,0)$ ya que $s\not=0$. Así pues, si $\frac{p}{q}=0$, entonces, $\frac{s}{t}=0$. Análogamente, si $\frac{s}{t}=0$, entonces, $\frac{p}{q}=0$. Supongamos ahora que $\frac{p}{q}\not=0\not=\frac{s}{t}$ y que tanto $p$ y $q$ como $s$ y $t$, son primos relativos. Así, $g(\frac{p}{q})=(p,q)$ y $g(\frac{s}{t})=(s,t)$ y por consiguiente, $(p,q)=(s,t)$, de modo que $s=p$ y $q=t$, lo que demuestra que $\frac{p}{q}=\frac{s}{t}$. Por tanto, $g$ es una función inyectiva. Finalmente, si consideramos la función inyectiva $h:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ definida por medio de $h(n,m)=2^n(2m+1)$, la cual aparece en los ejercicios de la sección anterior, tendremos que $h\circ g:\mathbb{Q}^{+}\cup\{0\}\to\mathbb{N}$ es una función inyectiva. Por el teorema de Cantor-Schröder-Bernstein concluimos que $\mathbb{Q}^{+}\cup\{0\}$ es numerable y, consecuentemente, $\mathbb{Q}$ es numerable.

$\square$

El siguiente ejemplo también aparece en la entrada anterior, pero ahora utilizaremos el teorema de Cantor-Schröder-Bernstein. Como bien lo vimos, dicho ejemplo nos proporciona una gran cantidad de conjuntos numerables y, al mismo tiempo, muestra una propiedad interesante del conjunto de números naturales.

Ejemplo.

Si $A\subseteq\mathbb{N}$ es un conjunto infinito, entonces, $A$ es numerable.

Demostración.

Sea $A\subseteq\mathbb{N}$ un conjunto infinito. La función $\iota:A\to\mathbb{N}$ definida por medio de $\iota(n)=n$ para cada $n\in\mathbb{N}$ es una función inyectiva. Ahora vamos a exhibir una función inyectiva de $\mathbb{N}$ en $A$.
Para cada $n\in A$ definamos $n^{\uparrow}:=\{m\in A:n<m\}$. Notemos que para cada $n\in A$, $n^{\uparrow}\not=\emptyset$, pues en caso contrario existiría $n\in A$ tal que para cada $m\in A$, $m\leq n$ y en consecuencia, $A\subseteq s(n)=n\cup\{n\}$, lo cual implicaría que $A$ es finito, contradiciendo la hipótesis sobre $A$. Así pues, por el buen orden de $\mathbb{N}$, para cada $n\in A$ existe $min(n^{\uparrow})$. Una vez hecho lo anterior elijamos $n_0=min(A)$ y definamos $g:A\to A$ por medio de $g(n)=min(n^{\uparrow})$. Por el teorema de recursión, existe una única función $f:\mathbb{N}\to A$ tal que $f(0)=n_0$ y $f(n+1)=g(f(n))$ para cada $n\in\mathbb{N}$. Veamos que $f$ es una función inyectiva. Para ello, veamos que $f(n)<f(n+1)$ para cada $n\in\mathbb{N}$. Sea $n\in\mathbb{N}$. Luego, $f(n+1)=g(f(n))=min(f(n)^{\uparrow})$ por lo que $f(n+1)\in f(n)^{\uparrow}$ y así $f(n)<f(n+1)$. Por lo tanto $f$ es una función inyectiva de $\mathbb{N}$ en $A$. Por el teorema de Cantor-Schröder-Bernstein podemos concluir que $\mathbb{N}$ y $A$ son equipotentes.

$\square$

Como probarás en los ejercicios de esta entrada, la función $f:\mathbb{N}\to A$ que aparece en el ejemplo precedente es de hecho biyectiva. Por otro lado, como lo habíamos mencionado previo al ejemplo, éste nos proporciona una gran cantidad de conjuntos numerables; por mencionar algunos tenemos los conjuntos $A_n:=\{m\in\mathbb{N}:n<m\}$ para cada $n\in\mathbb{N}$, o también algunos que ya conocíamos como el conjunto de números pares $\{2k:k\in\mathbb{N}\}$, el cual ya sabíamos que era equipotente a $\mathbb{N}$, y algunos otros más interesantes, como el conjunto de números primos pues dicho conjunto es infinito. Para conocer la definición de número primo puedes consultar el siguiente enlace Álgebra Superior II: Números primos y sus propiedades.
Otra consecuencia del ejemplo anterior es el siguiente corolario.

Corolario. Si $B$ es un conjunto numerable y $A\subseteq B$ es un conjunto inifinito, entonces, $A$ es un conjunto numerable.

Demostración.

Dado que $B$ es numerable, existe una función biyectiva $g:B\to\mathbb{N}$. Luego, la restricción de $g$ al conjunto $A$, $g\upharpoonright_{A}:A\to\mathbb{N}$, es una función inyectiva y, más aún, es una biyección entre $A$ y $g[A]\subseteq\mathbb{N}$. Dado que $A$ es infinito, también lo es $g[A]$, pero por el ejemplo anterior sabemos que $g[A]$ es numerable y, en consecuencia, $A$ es numerable.

$\square$

Hasta ahora, en los dos ejemplos que hemos visto, si bien hicimos uso del teorema de Cantor-Schröder-Bernstein y nos facilitó probar la equipotencia de tales conjuntos con $\mathbb{N}$, también es factible exhibir o mostrar directamente la existencia de una función biyectiva. En los ejemplos subsecuentes será más clara la utilidad e importancia del teorema de Cantro-Schröder-Bernstein, y además un tanto más interesantes, pues sin dicho teorema probar la equipotencia con $\mathbb{N}$ es bastante más complicado.

Para introducir el siguiente ejemplo es necesario mencionar un resultado importante del conjunto de números enteros, conocido como el teorema fundamental de la aritmética. Tal teorema asegura que dado cualquier número entero positivo mayor a 1, éste tiene una expresión única como producto de números primos, es decir, si $z\in\mathbb{Z}^{+}$ es cualquier entero positivo mayor a 1, existen únicos números primos $p_1,\ldots,p_n$ y únicos números naturales distintos de cero $\alpha_1,\ldots,\alpha_n$ tales que $z=p_1^{\alpha_1}\cdots p_n^{\alpha_n}=\Pi_{i=1}^{n}p_i^{\alpha_i}$. Puedes consultar el teorema fundamental de la aritmética y su prueba en el siguiente enlace Álgebra Superior II: Teorema fundamental de la aritmética e infinidad de números primos; más aún, en dicho enlace puedes encontrar la prueba de que el conjunto de números primos es inifinito y, de acuerdo al último ejemplo que enunciamos, éste conjunto es numerable.

Ejemplo.

$[\mathbb{N}]^{<\mathbb{N}}:=\{A\subseteq\mathbb{N}:A\ \textnormal{es finito}\}$ es numerable.

Demostración.

Notemos que la función $f:\mathbb{N}\to[\mathbb{N}]^{<\mathbb{N}}$ definida por medio de $f(n)=\{n\}$ es una función inyectiva, de modo que para aplicar el teorema de Cantor-Schröder-Bernstein hace falta exhibir una función inyectiva de $[\mathbb{N}]^{<\mathbb{N}}$ en $\mathbb{N}$.
Para construir tal función inyectiva, consideremos en primer lugar al conjunto de números primos $\mathbb{P}:=\{p\in\mathbb{Z}^{+}:p\ \textnormal{es primo}\}$. Dado que $\mathbb{P}$ puede ser visto como un subconjunto de $\mathbb{N}$, sabemos, por el ejemplo anterior, que existe una función (biyectiva) $f:\mathbb{N}\to \mathbb{P}$ tal que $f(0)=min(\mathbb{P})$ y tal que $f(n)<f(n+1)$ para cada $n\in\mathbb{N}$. Así, si denotamos como $p_n:=f(n)$ para cada $n\in\mathbb{N}$, podemos escribir $\mathbb{P}=\{p_n:n\in\mathbb{N}\}$ y se satisface que $p_n<p_{n+1}$ para cada $n\in\mathbb{N}$. Vamos a considerar para el resto de la prueba que $\mathbb{P}$ está enumerado de esta manera.
Ahora bien, si $A\subseteq\mathbb{N}$ es un conjunto finito y no vacío, digamos $|A|=n+1$ con $n\in\mathbb{N}$, entonces, $A$ puede ser enumerado de manera similar a como lo hicimos con $\mathbb{P}$; esto es, existe una función biyectiva (de hecho única) $f_A:n+1\to A$ tal que $f_A(0)=min(A)$ y $f_A(k)<f_A(m)$ si y sólo si $k<m$. Así, si denotamos como $a_k:=f_A(k)$ para cada $k\in n+1$, tenemos que $A=\{a_k:k\in n+1\}$ y que $a_k<a_m$ si y sólo si $k<m$. Para el resto de la prueba utilizaremos estas enumeraciones con cualquier subconjunto finito no vacío de $\mathbb{N}$, es decir, dado $A\subseteq\mathbb{N}$ no vacío, con $|A|=n+1$, escribiremos $A=\{a_k:k\in n+1\}$ y se entenderá que $a_k<a_m$ si y sólo si $k<m$.

Una vez mencionado lo anterior definamos $F:[\mathbb{N}]^{<\mathbb{N}}\setminus\{\emptyset\}\to\mathbb{Z}^{+}$ por medio de $F(A)=\Pi_{k=0}^{n}p_k^{a_k}$ si $A=\{a_k:k\in n+1\}$, para cada $A\in[\mathbb{N}]^{<\mathbb{N}}\setminus\{\emptyset\}$. Veamos que tal función es inyectiva. Supongamos que $A,B\in[\mathbb{N}]^{<\mathbb{N}}\setminus\{\emptyset\}$ son conjuntos tales que $F(A)=F(B)$. Si $|A|=n+1$ y $|B|=m+1$ con $n,m\in\mathbb{N}$, y además $A=\{a_k:k\in n+1\}$ y $B=\{b_k:k\in m+1\}$, entonces, $F(A)=\Pi_{k=0}^{n}p_k^{a_k}$ mientras que $F(B)=\Pi_{k=0}^{m}p_k^{b_k}$; luego, como $\Pi_{k=0}^{n}p_k^{a_k}=\Pi_{k=0}^{m}p_k^{b_k}$ se tiene $n=m$, pues si $n<m$, entonces, $m>0$ y $b_m>0$, ya que $b_m>b_0$ y $b_0\geq0$, por lo que $p_m^{b_m}$ es una potencia positiva del primo $p_m$ que no aparece en el producto $\Pi_{k=0}^{n}p_k^{a_k}$, pero que sí aparece en el producto $\Pi_{k=0}^{m}p_k^{b_k}$, lo cual contradice el teorema fundamental de la aritmética. Análogamente, no puede ocurrir que $m<n$. Por tanto, $n=m$ y, por consiguiente, $a_k=b_k$ para cada $k\in n+1$. En consecuencia, $A=B$. Por tanto, $F$ es una función inyectiva. Finalmente, como $\mathbb{Z}^{+}$ es numerable, existe $G:\mathbb{Z}^{+}\to\mathbb{N}\setminus\set{0}$ función biyectiva y así $G\circ F:[\mathbb{N}]^{<\mathbb{N}}\setminus\set{\emptyset}\to\mathbb{N}\setminus\set{0}$ es una función inyectiva. Por consiguiente, la función $\tilde{F}:[\mathbb{N}]^{<\mathbb{N}}\to\mathbb{N}$ definida por medio de $$\tilde{F}(A)=\left\{ \begin{array}{lcc}
0 & \textnormal{si}\ A=\emptyset \\
(G\circ F)(A) & \textnormal{si}\ A\not=\emptyset
\end{array}
\right.$$

es inyectiva. El teorema de Cantor-Schröder-Bernstein nos permite concluir que $[\mathbb{N}]^{<\mathbb{N}}$ es numerable.

$\square$

Para el último ejemplo que trataremos en esta entrada vamos a definir lo que es una sucesión.

Definición. Si $A$ es un conjunto y $f:\mathbb{N}\to A$ es una función, diremos que $f$ es una sucesión en $A$. Por otro lado, si $n\in\mathbb{N}$ y $g:n\to A$ es una función, diremos que $g$ es una sucesión finita de longitud $n$ en $A$.

Dado un conjunto $A$ vamos a denotar como $^nA$ al conjunto de todas las sucesiones finitas de longitud $n$ en $A$.

Ejemplo.

El conjunto $\mathbb{N}^{<\mathbb{N}}:=\cup_{n\in \mathbb{N}}\ ^n\mathbb{N}$ es numerable.

Demostración.

Primero vamos a dar una función inyectiva de $\mathbb{N}$ en $\mathbb{N}^{<\mathbb{N}}$. Para cada $n\in\mathbb{N}\setminus\{0\}$ definamos $x_n:1\to\mathbb{N}$ como $x_n(0)=n$. Si $n\in\mathbb{N}\setminus\{0\}$, $x_n$ es una sucesión finita de longitud $1$ en $\mathbb{N}$, es decir, $x_n\in{^1\mathbb{N}}$. Ahora, para $n=0$ definamos $x_0:=\emptyset:0\to\mathbb{N}$ la función vacía, es decir, la única sucesión finita de longitud $0$ en $\mathbb{N}$, de modo que $x_0\in{^0\mathbb{N}}$. Una vez definidas estas sucesiones finitas vamos a considerar la función $f:\mathbb{N}\to\mathbb{N}^{<\mathbb{N}}$ dada por $f(n)=x_n$ para cada $n\in\mathbb{N}$. Notemos que $f$ es inyectiva, pues si $n,m\in\mathbb{N}$ son naturales distintos podemos suponer que $n<m$; luego, si $n=0$, entonces $f(n)=f(0)=x_0=\emptyset$ mientras que $m>0$ y $f(m)=x_m=\{(0,m)\}$, de modo que $f(n)\not=f(m)$. Si ahora $0<n$, entonces también $0<m$ y $f(n)=x_n=\{(0,n)\}$ mientras que $f(m)=x_m=\{(0,m)\}$, pero dado que $(0,n)\not=(0,m)$ pues $n\not=m$, concluimos que $f(n)\not=f(m)$. Por tanto $f$ es inyectiva.

Ahora vamos a dar una función inyectiva de $\mathbb{N}^{<\mathbb{N}}$ en $\mathbb{N}$. En el penúltimo ejemplo consideramos al conjunto de números primos enumerado como $\mathbb{P}=\{p_n:n\in\mathbb{N}\}$ de tal manera que $p_n<p_{n+1}$ para cada $n\in\mathbb{N}$. Retomando dicha enumeración del conjunto de números primos definamos $g:\mathbb{N}^{<\mathbb{N}}\to\mathbb{N}\times\mathbb{Z}$ por medio de $$g(x)=\left\{\begin{array}{lcc}
(n+1,\Pi_{k=0}^{n}p_k^{x(k)}) & \textnormal{si}\ x\in{^{n+1}\mathbb{N}} \\
(0,0) & \textnormal{si}\ x=\emptyset
\end{array}
\right.
$$

Probar que la función $g$ es inyectiva requiere, esencialmente, del teorema fundamental de la aritmética; si $x\in{^{n+1}\mathbb{N}}$ y $y\in{^{m+1}\mathbb{N}}$ con $n\not=m$, entonces, $n+1\not=m+1$ y por ende $g(x)=(n+1,\Pi_{k=0}^{n}p_k^{x(k)})\not=(m+1,\Pi_{k=0}^{m}p_k^{y(k)})=g(y)$. Si $x=\emptyset$ y $y\in{^{n+1}\mathbb{N}}$ con $n\in\mathbb{N}$, entonces $g(y)=(n+1,\Pi_{k=0}^{n}p_k^{y(k)})\not=(0,0)=g(x)$. Por tanto, para concluir que $g$ es inyectiva, basta comprobar que si $n\in\mathbb{N}$ y $x,y\in{^{n+1}\mathbb{N}}$ son elementos distintos, entonces $g(x)\not=g(y)$, lo cual dejamos como un ejercicio al final de esta entrada.

Por el teorema de Cantor-Schröder-Bernstein, $\mathbb{N}^{<\mathbb{N}}$ es numerable.

$\square$

Tarea moral

  • Sea $A\subseteq\mathbb{N}$ conjunto inifinito. Para cada $n\in A$ definimos $n^{\uparrow}:=\{m\in A:n<m\}$. Definimos $g:A\to A$ por medio de $g(n)=\textnormal{min}(n^{\uparrow})$ y consideremos la única función $f:\mathbb{N}\to A$ tal que $f(0)=\textnormal{min}(A)$ y $f(n+1)=g(f(n))$ para cada $n\in\mathbb{N}$. Demuestra que $f$ es una biyección.
  • Prueba que la función $g:\mathbb{N}^{<\mathbb{N}}\to\mathbb{N}\times\mathbb{Z}$ definida por medio de $g(x)=\left\{\begin{array}{lcc} (n+1,\Pi_{k=0}^{n}p_k^{x(k)}) & \textnormal{si}\ x\in^{n+1}\mathbb{N} \\ (0,0) & \textnormal{si}\ x=\emptyset
    \end{array}
    \right.$ es inyectiva.
  • Demuestra lo siguiente:
    $(a)$ Si $A\subseteq\mathbb{N}$ es un conjunto finito no vacío con $|A|=n+1$, $n\in\mathbb{N}$, existe una única función biyectiva $f_A:n+1\to A$ tal que $f_A(0)=\textnormal{min}(A)$ y que $f_A(m)<f_A(k)$ si y sólo si $m<k$ para cualesquiera $m,k\in n+1$.
    $(b)$ Utilizando el hecho de que $\mathbb{N}^{<\mathbb{N}}$ es numerable muestra que $[\mathbb{N}]^{<\mathbb{N}}$ es numerable. Puede que te ayude de algo el inciso $(a)$.
  • Demuestra que si $B\subseteq A$ son conjuntos tales que $B$ es numerable pero $A$ no, entonces, $A\setminus B$ no es numerable.
  • Diremos que una sucesión $x$ en $\mathbb{N}$ es semiconstante si existe $n_0\in\mathbb{N}$ tal que para cada $n\geq n_0$, $x(n)=x(n_0)$. Demuestra que si $\mathcal{S}$ es el conjunto de todas las sucesiones semiconstantes en $\mathbb{N}$, entonces $\mathcal{S}$ es numerable.

Más adelante…

En la siguiente entrada concluiremos el contenido acerca de conjuntos infinitos y veremos ejemplos de conjuntos no numerables.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Geometría Moderna II: Teorema de Pascal, Brianchon y Pappus

Por Armando Arzola Pérez

Introducción

Tres teoremas importantes en la razón cruzada son el Teorema de Pascal, Brianchon y Pappus. Con estos se muestran propiedades de colinealidad y concurrencia.

Teorema de Pascal

Teorema. Sea un hexágono inscrito en una circunferencia, los puntos de intersección de sus lados opuestos son colineales.

Demostración. Sea el hexágono inscrito $ABCDEF$ en la circunferencia $O$, donde sus lados opuestos $AB,DE$, $BC,EF$ y $CD,FA$ se intersecan en los puntos $P,Q$ y $R$ son colineales. Ahora $FA$ interseca a $DE$ en $H$ y $EF$ interseca a $CD$ en $K$.

Pascal 1

Por propiedades de razón cruzada en la circunferencia se tiene $A\{EDBF\}=C\{EDBF\}$ y por lo cual $\{EDPH\}=\{EKQF\}$, como se observa en la siguiente imagen.

Pascal 2


Así mismo se tiene que al unir $R$ con estos puntos se cumple la propiedad $R\{EDPH\}=R\{EKQF\}$. Donde $RE$ coincide con $RE$, $RD$ coincide con $RK$ y $RH$ coincide con $RF$, por ende estos dos haces coinciden en la primera, segunda y cuarta recta, y al tener 3 rectas y una constante distinta de -1, es posible construir una única cuarta recta tal que la razón cruzada sea la constante elegida por ello $RP$ coincide con $RQ$. Y, por lo tanto, $PQR$ son colineales y a esta es la línea de Pascal del hexágono.

Pascal 3

$\square$

Teorema de Brianchon

Este es un teorema dual al de Pascal, el cual es aplicable a hexágonos circunscritos a cualquier sección cónica. En nuestro caso se mostrará para una circunferencia.

Teorema. Sea un hexágono circunscrito a una circunferencia, entonces las líneas que unen sus vértices opuestos son concurrentes.

Demostración. Sea el hexágono $ABCDEF$ circunscrito a la circunferencia $O$, ahora los puntos de tangencia de los lados del hexágono $ABCDEF$ son los vértices del hexágono $A’B’C’D’E’F’$.

Brianchon 1

Si observamos los lados opuestos del hexágono $A’B’C’D’E’F’$ estos se intersecan de la siguiente forma:

  • $A’B’$ y $D’E’$ en $P$
  • $B’C’$ y $E’F’$ en $Q$
  • $C’D’$ y $F’A’$ en $R$
Brianchon 2

Por propiedad de los Polos y Polares, las polares de $A$ y $D$ pasan por $P$ y la polar de $P$ es $AD$. De igual forma, la polar de $Q$ es $BE$ y la polar de $R$ es $CF$, y por el Teorema de Pascal el hexágono inscrito $A’B’C’D’E’F’$ los puntos de intersección de sus lados opuestos $P$, $Q$ y $R$ son colineales, y por lo cual sus polares $AD$, $BE$ y $CF$ son concurrentes y a este es el punto de Brianchon.

Brianchon 3

$\square$

Teorema de Pappus

Teorema. Si los vértices de un hexágono están alternativamente en dos líneas rectas, entonces la intersección de los pares de lados opuestos genera puntos los cuales son colineales.

Demostración. Este es un caso especial del Teorema de Pascal para un hexágono inscrito en una sección cónica. Sea el hexágono $ABCDEF$, donde la intersección de los lados opuestos son:

  • $AB$ y $DE$ en $P$
  • $BC$ y $EF$ en $Q$
  • $CD$ y $FA$ en $R$

Se tiene que $AF$ interseca a $ED$ en $H$, y $EF$ interseca a $CD$ en $K$.

Pappus 1

Por lo cual $A\{EBDF\}$ es igual a $C\{EBDF\}$, entonces $\{EPDH\}=\{EQKF\}$.

Pappus 2

Uniendo $RQ$ los cuatro puntos de las líneas $ED$ y $EF$, se tiene que $R\{EPDH\}=R\{EQKF\}$.
Ahora como $RE$ coincide con $RE$, $RD$ coincide con $RK$ y $RH$ coincide con $RF$, entonces $RP$ y $RQ$ coinciden, por lo tanto, $P$, $Q$ y $R$ son colineales.

Pappus 3

$\square$

Más adelante…

Otro tema interesante por abordar es la involución tanto en Hileras de puntos como Haces de líneas.

Entradas relacionadas

Álgebra Moderna I: Teorema de Jordan-Hölder

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Éste es un momento emotivo. Hemos llegado a la última entrada del curso. Así que sin mucho preámbulo comencemos a hablar del tema que nos compete.

El Teorema de Jordan-Hölder nos dice que cada par de series de composición de un grupo $G$ siempre son del mismo tamaño y con factores de composición isomoforfos entre sí. De nuevo, es un teorema que nos describe cómo es un grupo y los subgrupos que lo conforman.

Debido a que los factores de composición son grupos simples, obtenemos una descomposición del grupo $G$ en elementos mínimos (en el sentido de que no tienen una subestructura del mismo tipo) y de nuevo, podemos hacer una analogía con el Teorema fundamental de la aritmética, aunque esto se ve mejor cuando $G = \z_n.$

Por último, así como el Cuarto teorema de isomorfía justifica que los factores de composición son simples, en la demostración del Teorema de Jordan-Hölder usamos mucho el Segundo teorema de isomorfía para justificar la isomorfía que existe entre los factores de composición, así que es recomendable repasarlo.

El último teorema del curso

Teorema. (de Jordan – Hölder) Sean $G$ un grupo finito y
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$. Entonces $s = t$ y existe una permutación $\sigma \in S_t$ tal que para toda $i\in\{1,2,\dots ,s\}$
\begin{align*}
G_i/G_{i+1} \cong H_{\sigma(i)}/ H_{\sigma(i)+1}.
\end{align*}

Demostración.

Sea $G$ un grupo finito.
Por inducción sobre $|G|$.

H.I. Supongamos que el resultado se cumple si el orden del grupo es menor que $|G|.$

Sean
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$.

Caso 1. $G_2 = H_2$, entonces
\begin{align*}
G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son series de composición de $G_2$.

Dado que $G_1/G_2$ es simple, en particular $G_1/G_2\neq \{e_{G_1/G_2}\}$ y así $G=G_1\neq G_2$. En consecuencia $G_2\leq G$ y $|G_2|<|G|$ y por H.I. $s-1 = t-1$ y existe $\sigma\in S_{t-1}$ tal que
\begin{align*}
G_i/ G_{i+1} \cong H_{\sigma(i)} / H_{\sigma(i) + 1} \quad \forall i\in\{2,\dots,t\}.
\end{align*}

Como $G_1 = G = H_1$ y $G_2 = H_2$, entonces $G_1/G_2 = H_1/H_2$.

Así, $s=t$ y $\alpha\in S_t$ con $\alpha(1) = 1$, $\alpha(i) = \sigma(i)$ para $i\in\{2,\dots, t\}$ cumple que
\begin{align*}
G_i/G_{i+1} \cong H_{\alpha(i)} / H_{\alpha(i)+1} \quad \forall i \in \{1,\dots, t\}.
\end{align*}

Caso 2. $G_2 \neq H_2$

Como $G_2 \unlhd G$ y $H_2 \unlhd G$ se tiene que $G_2H_2 \unlhd G$.

Además
\begin{align*}
G_2 &\leq G_2H_2 \unlhd G \\
H_2 &\leq G_2H_2 \unlhd G.
\end{align*}

Como $G/G_2$ es simple, por el ejercicio 2 de Grupos simples y series de grupos se tiene que $G_2$ es un subgrupo normal de $G$ máximo. Así, $G_2H_2 = G$ ó $G_2H_2 = G_2$. Análogamente $G_2H_2 = G$ ó $G_2H_2 = H_2$. Pero si $G_2H_2 = G_2$ y $G_2H_2 = H_2$ tendríamos que $G_2=H_2$, lo que es una contradicción. Por lo tanto \begin{equation}\label{ec1}G_2H_2 = G.\end{equation}

Como $G_2\unlhd G$ entonces usamos el 2do Teorema de Isomorfía y nos dice que $G_2\cap H_2 \unlhd H_2$ y

\begin{align*}
G_2H_2/G_2 \cong H_2/(G_2\cap H_2).
\end{align*}

Pero, como también $H_2 \unlhd G$, el 2do teorema de isomorfía también nos dice que $G_2 \cap H_2 \unlhd G_2$ y
\begin{align*}
G_2H_2/H_2 \cong G_2/(G_2\cap H_2).
\end{align*}

Por (\ref{ec1}) tenemos que $G = G_2H_2$ obteniendo así que

\begin{align*}
G/G_2 &\cong H_2/(G_2\cap H_2)\\
G/H_2 &\cong G_2/(G_2\cap H_2).
\end{align*}

Diagrama de retícula para el Segundo Teorema de Isomorfía.

Como $G/G_2$ es simple, $H_2/(G_2\cap H_2)$ también lo es. Así, $G_2\cap H_2$ es un subgrupo normal máximo de $H_2$.

Análogamente como $G/H_2$ es simple, $G_2/(G_2\cap H_2)$ también lo es. Así, $G_2 \cap H_2$ es un subgrupo normal máximo de $G_2$.

Sea $K_3 = G_2\cap H_2$. Consideremos una serie de composición para $K_3$
\begin{align*}
K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}.
\end{align*}

Tenemos las siguientes series de composición
\begin{align}
G &= G_1\unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\} \\
G &= G_1 \unrhd G_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align}

Por el caso 1 aplicado a $(2)$ y $(3)$, $s= r$ y los factores de composición de
\begin{align*}
G_2 &\unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.

Por el caso 1 aplicado a $(4)$ y $(5)$, $r=t$ y los factores de composición de
\begin{align*}
H_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}\\
H_2 &\unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.
Tenemos entonces que $s = t$.

Consideremos $G_i/G_{i+1}$ con $i\in\{2,\dots,t\}$:

Si $G_i/G_{i+1} \cong K_j/K_{j+1}$ con $j\in \{3,\dots, t\}$, entonces sabemos que existe $l\in\{2,\dots, t\}$ tal que $K_j/K_{j+1} \cong H_l/H_{l+1}.$

Por otro lado si $G_i/ G_{i+1} \cong G_2/K_3$, entonces $G_2/K_3=G_2/(G_2\cap H_2) \cong G/H_2=H_1/H_2.$

Entonces, para $i\in\{2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Finalmente consideremos el cociente $G/G_2$. Tenemos que $G/G_2\cong H_2/(G_2\cap H_2)=H_2/K_3 \cong H_m/H_{m+1}$, para alguna $m\in \{2,\dots, t\}$.

Por lo tanto para $i\in\{1,2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Así, los factores de composición de las series $(1)$ y $(4)$ son isomorfos salvo por el orden en que aparecen.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que el Teorema de Jordan-Hölder induce el Teorema fundamental de la aritmética.
    1. Toma el grupo cíclico $\z_n$ con $n \in \z$ no necesariamente primo.
    2. Encuentra el orden de un subgrupo máximo de $\z_n$.
    3. Observa la forma de las series de composición de $\z_n$.
    4. Usa el teorema de Jordan-Hölder para concluir el Teorema fundamental de la aritmética.

Más adelante…

Nuestro curso abarca hasta este teorema, pero el estudio del álgebra continúa en un curso de Álgebra Moderna II donde se estudia la Teoría de anillos y la Teoría de Galois. Estas dos teorías son igualmente interesantes y apasionantes y tienen muchas aplicaciones.

Entradas relacionadas

Álgebra Moderna I: Grupos simples y series de grupos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como hemos visto en las entradas anteriores, muchas pruebas de grupos se realizan por inducción sobre $|G|$ usando información de un subgrupo normal $N$ y el cociente $G/N$.

Pero para poder usar $G/N$ se requiere que exista un subgrupo normal $N$ de $G$ con $1\lneq |N| \lneq |G|.$ Y en ocasiones no existe un $N$ normal que no sea el mismo $G$ o $\{e_G\}$, entonces conviene estudiar a los grupos $G$ no triviales tales que tienen sólo dos subgrupos normales.

Por otro lado, ¿es posible tener una serie de grupos normales contenidos entre sí? A esta situación lo conocemos como una serie de composición.

Esta entrada está dedicada a los conceptos de Grupos simples y Series de composición de grupos, será útil para que, más adelante, entendamos el Teorema de Jordan Hölder.

Qué simples son los grupos simples

Definición. Sea $G$ un grupo con $G\neq \{e\}$. Decimos que $G$ es simple si sus únicos subgrupos normales son $G$ y $\{e\}$.

Ejemplo.
Sea $p\in \z^+$ un número primo, $G$ un grupo con $|G| = p$. Entonces $G$ es un grupo simple ya que si $N\unlhd G$ se tiene que $|N| \Big| |G| = p$ y así $|N| = 1$ ó $|N| = p$, esto implica que $N = \{e\}$ ó $N = G$.

Observación. Todo grupo finito simple abeliano es isomorfo a $\z_p$.

Demostración.
Sea $G$ un grupo finito simple abeliano. Dado que $G\neq\{e\}$ consideremos $a\in G, a\neq e$. Como $G$ es abeliano, todo subgrupo es normal, así
\begin{align*}
\{e\} \lneq \left< a \right> \unlhd G
\end{align*}
pero $G$ es simple, entonces $\left< a \right> = G$ y $G$ es cíclico.

Más aún, $G\cong \z_n$ con $n= |G|$. Veamos que $n$ es primo.

P. D. $n$ es primo.

Supongamos por reducción al absurdo que $n$ es compuesto, es decir $n = st$ con $s,t\in \z^+$, donde $s<n$ y $t< n$.

Entonces $a^s \neq e$ ya que $s<n = o(a)$, por lo que $\{e\} \lneq \left< a^s\right>$.

Además $$(a^s)^t = e$$ y así $o(a^s)\Big| t$, lo que implica que $o(a^s) \leq t < n$ y en consecuencia $\left< a^s\right> \lneq \; G$.

Por lo tanto $\{e\} \lneq \left< a^s\right> \lneq \; G$. Pero como $G$ es un grupo abeliano todos sus subgrupos son normales, por lo que $\left< a^s\right>$ sería un subgrupo normal de $G$ distinto de $\{e\} $ y de $G$, lo que es una contradicción.

Concluimos que $n$ es primo y así $G\cong \z_n$ con $n$ primo.

$\blacksquare$

Nota. Hay grupos simples no abelianos finitos e infinitos.

Series de grupos

Definición. Sea $G$ un grupo. Una secuencia de subgrupos
\begin{align*}
G = G_1 \geq G_2 \geq \cdots \geq G_{k+1} = \{e\}
\end{align*}
es una serie de composición para $G$ si $G_{i+1} \unlhd G_{i}$ y $G_i/G_{i+1}$ es simple para toda $i\in\{1,\dots, k\}$.
Esto cocientes se llaman factores de composición.

A pesar de que estamos dando una definición, es importante señalar que en el caso de un grupo finito es el Cuarto teorema de isomorfía el que justifica que en efecto estas series de composición existen:

Observación 1. Sean $G$ un grupo finito y $N$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad, es decir tal que si $N\leq H\lneq G$ con $H$ normal en $G$, entonces $N=H$. Se tiene que $G/N$ es simple.

Demostración.

Sean $G$ un grupo finito y $N$ un subgrupo normal de $G$ tal que es máximo con esta propiedad. Supongamos que $\mathcal{H}$ es un subgrupo normal de $G/N$ con $$\{e_{G/N}\}\leq \mathcal{H}\lneq G/N.$$ Por el Cuarto teorema de isomorfía sabemos que $\mathcal{H}=H/N$ para algún $N\leq H\lneq G.$ Además, como $\mathcal{H}\unlhd G/N$ sabemos que $H\unlhd G$. Pero al ser $N$ un subgrupo normal máximo tenemos que $N=H$ por lo cual $\mathcal{H}=N/N=\{e_{G/N}\}$. Así, $G/N$ es simple.

Observación 2. Si $G$ es finito, estas series de composición existen.

Demostración (sencilla).

Si $G$ es trivial entonces $G$ mismo es una serie de composición para $G$.

Supongamos entonces que $G$ es no trivial. Consideramos $G_1=G$ y $G_2$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad. Entonces por la observación 1 $G_1/G_2$ es simple.

Si $G_2=\{e\}$, $G_1\geq G_2$ es una serie de composición para $G$.

Si $G_2\neq\{e\}$ tomamos $G_3$ un subgrupo normal propio de $G_2$, máximo, y así sucesivamente. Como $G$ es finito este proceso termina y da lugar a una serie de composición para $G$.

$\blacksquare$

Ejemplos

Ejemplo 1. Tomemos $\z_{12}$. Notemos que en este caso el grupo es abeliano por lo que todos sus subgrupos son normales. Proponemos
\begin{align}\label{ejemplo1}
\z_{12} \unrhd \left<\bar{3}\right> \unrhd \left<\bar{6}\right> \unrhd\{\bar{0}\}.
\end{align}

Como $\left| \left<\bar{3}\right>\right| = 4$, entonces $\left| \z_{12} \Big/ \left<\bar{3}\right>\right| = \frac{12}{4} = 3$ y así $\z_{12} \Big/ \left<\bar{3}\right> \cong \z_3$ que es simple.

Sabemos que $\left| \left<\bar{6}\right> \right|= 2$, así $\left| \left<\bar{3}\right> \Big/ \left<\bar{6}\right>\right| = \frac{4}{2} = 2$ y entonces $ \left<\bar{3}\right> \Big/ \left<\bar{6}\right> \cong \z_2$ que es simple.

Finalmente $ \left<\bar{6}\right> \Big/ \{\bar{0}\} \cong \left<\bar{6}\right> \cong \z_2$ que es simple. Así $(\ref{ejemplo1})$ es una serie de composición para $\z_{12}$.

También $\z_{12} \unrhd \left<\bar{2}\right> \unrhd \left<\bar{6}\right> \unrhd \{\bar{0}\}$ lo es.

Ejemplo 2. Tomemos $D_{2(4)} = \{\text{id}, a, a^2, a^3, b, ab, a^2b, a^3b\}$. Donde $a$ es la rotación de $\frac{\pi}{4}$ y $b$ es la reflexión respecto al eje $x$.

Tenemos que
\begin{align*}
\left<a^2,b\right> = \{\text{id}, a^2, b, a^2b\}
\end{align*}
es de orden cuatro, entonces $\left[ D_{2(4)} : \left<a^2,b\right> \right] = 2$. Así $D_{2(4)} \unrhd \left< a^2, b \right>$ y $D_{2(4)}/ \left< a^2,b \right> \cong \z_2$ que es simple.

También $\left[ \left<a^2,b\right> : \left< b \right> \right] = 2$ y $ \left<a^2,b\right> / \left<b\right>\cong \z_2$ que es simple. Finalmente $\left< b \right> / \{\text{id}\} \cong \z_2$ que es simple.

Así,
\begin{align*}
D_{2(4)} \unrhd \left< a^2, b\right> \unrhd \left<b\right> \unrhd \{\text{id}\}
\end{align*}
es una serie de composición para $D_{2(4)}$.

También
\begin{align*}
D_{2(4)} \unrhd \left< a \right> \unrhd \left< a^2 \right> \unrhd \{\text{id}\}.
\end{align*}

Observación 3. En una serie de composición $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.

Observación 4. Puede ser que dos grupos no isomorfos tengan los mismos factores de composición salvo isomorfía.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera la nota que aparece en esta entrada: hay grupos simples no abelianos finitos e infinitos.
    • Encuentra un grupo simple no abeliano finito.
    • Encuentra un grupo simple no abeliano infinito.
    • ¿Qué pasará con los grupos abelianos infinitos? ¿existirán los grupos abelianos infinitos simples?
  2. Encuentra un grupo $G$ que cumpla la observación: $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.
  3. Describe un ejemplo de grupos tales que no sean isomorfos y tengan los mismos factores de composición salvo isomorfía.
  4. En cada uno de los siguientes casos encuentra todas las series de composición de $G$ y compara los factores de composición obtenidos:
    • $G = \z_{60}$.
    • $G = \z_{48}$.
    • $S_3 \times \z_2.$

Más adelante…

Estos conceptos que pueden parecer muy sencillos, al combinarlos nos dan el último teorema que veremos en este curso: el Teorema de Jordan-Hölder. Una poderosa herramienta que nos dice que los factores de composición de dos series distintas de un mismo grupo son los mismos salvo isomorfía.

Entradas relacionadas

Álgebra Moderna I: Teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El temario de este curso consiste principalmente en el estudio de la Teoría de grupos, comenzamos su construcción desde las operaciones binarias, estudiamos distintos tipos de grupos y funciones entre ellos (homomorfismos) y seguimos intentando describir a los grupos. El primer gran escalón de nuestro curso fueron los Teoremas de isomorfía, luego los Teoremas de Sylow y ahora llegamos al tercero: el Teorema fundamental de los grupos abelianos finitos.

Otros dos teoremas fundamentales que seguramente conoces son el Teorema fundamental del álgebra y el Teorema fundamental de la aritmética, conviene recordar el segundo. Básicamente nos dice que a todo número entero lo podemos ver como un producto de primos, además nos dice que estos primos son únicos excepto por el orden en que aparecen. Este teorema es importante porque intuitivamente nos dice que los números primos son los ladrillos básicos para construir a cualquier número.

¿Cuáles son estos mismos ladrillos para los grupos abelianos finitos? En la entrada de Producto directo interno vimos un teorema en el que para ciertos casos podemos descomponer a un grupo finito $G$ en sus $p$-subgrupos de Sylow, donde cada $p$ corresponde a un factor primo del orden del grupo. ¿Qué podría ser más fundamental que eso?

Usaremos el teorema que vimos en Producto directo interno y veremos que un grupo abeliano finito $G$ es isomorfo a un producto directo de grupos ajenos a $G$ en lugar de los $p$-subgrupos de Sylow que dependen del grupo que los contiene. ¿Qué grupos finitos relacionados con primos conocemos aparte de los $p$-subgrupos? Los candidatos ideales son $\z_n$, con $n$ una potencia de un primo, que de acuerdo a lo que hemos estudiado son abelianos y finitos.

Así, el Teorema fundamental de los grupos abelianos finitos nos presenta a los $\z_n$, con $n$ una potencia de un primo, como nuestros ladrillos elementales para describir cualquier grupo abeliano finito $G$.

Último lema numerado

Como prometimos en la entrada anterior, aquí está el tercer lema numerado que usaremos para demostrar el Teorema fundamental de los grupos abelianos finitos.

Lema 3. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Tenemos que $G$ es un producto directo interno de grupos cíclicos.

Demostración.
Por el segundo principio de inducción.

Sea $p\in\z^+$ un primo, $G$ un $p$-grupo abeliano.

Sea $g\in G$ un elemento de orden máximo (podemos suponer que $g\neq e$ ya que si $g = e$, entonces $G = \{e\}$).

H.I. Supongamos que todo $p$-grupo abeliano de orden menor que el orden de $G$ es un producto directo interno de grupos cíclicos.

Por el lema 2, $G$ es el producto directo de $\left< g \right>$ y un subgrupo $H$ de $G$. Entonces $|G| = |\left< g \right>|\,|H|$ lo que implica que $\displaystyle |H| = \frac{|G|}{|\left< g \right>|}$ y, esto implica que $ \displaystyle |H| < |G|$.

Además, $H$ también es un $p$-grupo abeliano. Así que por la hipótesis de inducción $H$ es el producto directo de grupos cíclicos.

Por lo tanto $G$ es producto directo de grupos cíclicos, a saber $\left< g \right>$ y los grupos cíclicos cuyo producto directo es $H$.

$\blacksquare$

Teorema fundamental de los grupos abelianos finitos

Recordemos que los isomorfismos preservan la estructura algebraica de los grupos. Recordemos que los grupos $\z_n$, con $n$ una potencia de un primo, son abelianos y finitos, por lo que sólo pueden ser isomorfos a otros grupos abelianos y finitos. Más aún, todo grupo abeliano finito es isomorfo a un producto directo de este tipo de grupos.

Teorema. (Fundamental de los Grupos Abelianos Finitos) Todo grupo abeliano finito $G$ es isomorfo a un producto directo de grupos cíclicos de la forma $$\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}$$ con $p_1,\dots, p_r,\alpha_1,\dots, \alpha_r \in \z^+$ y $p_1,\dots,p_r$ primos no necesariamente distintos.

Demostración.

Sea $G$ un grupo abeliano finito. Por ser $G$ abeliano todos sus subgrupos son normales, en particular sus subgrupos de Sylow.

Por el teorema de la entrada Producto directo interno, $G$ es isomorfismo al producto directo de sus subgrupos de Sylow, y por el lema 3 cada uno de ellos es un producto directo de subgrupos cíclicos. Además, como los subgrupos de Sylow son de orden una potencia de un primo, sus subgrupos también, por lo que son isomorfos a $\z_{p^\alpha}$ con $p,\alpha \in \z^+$ y $p$ un primo.

Así, $G$ es isomorfo a un producto directo de la forma
\begin{align*}
\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}
\end{align*}
con $p_1,\dots,p_r,\alpha_1,\dots, \alpha_r \in\z^+$, $p_1,\dots,p_r$ primos no necesariamente distintos.

$\blacksquare$

Apreciemos cómo la demostración de los lemas anteriores, nos facilitaron la demostración de este teorema fundamental.

Ejemplo.

Sea $G$ un grupo abeliano de orden $180 = 4\cdot 45 = 2^2\cdot 3^2 \cdot 5$.

Entonces, de acuerdo con el Teorema fundamental de los grupos abelianos finitos, $G$ es isomorfo a alguno de

  • $\z_2\times\z_2\times\z_3\times\z_3\times\z_5$,
  • $\z_4\times\z_3\times\z_3\times\z_5$,
  • $\z_2\times\z_2\times\z_9\times\z_5$ ó
  • $\z_4\times\z_9\times\z_5$.

Podría ser isomorfo a cualquiera de ellos, pero para saber a cuál requeriríamos más información. De cualquier modo este primer análisis nos ayuda mucho a entender cómo debe ser el grupo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Si $G$ es un grupo abeliano finito, definimos $v_k(G)$ como el número de elementos de $G$ de orden $k$.
    Prueba que si dos grupos finitos abelianos, $G$ y $G^*$ son isomorfos si y sólo si $v_k(G) = v_k(G^*)$ para todo entero $k$. (Este resultado no es cierto para grupos no abelianos).
  2. Prueba el Teorema Fundamental de la Aritmética aplicando el Teorema Fundamental de Grupos Abelianos Finitos a $G = \z_n$, con $n\in\n$.
  3. Usa el Teorema Fundamental de Grupos abelianos finitos para describir a…
    • Un grupo de orden $144.$
    • Un grupo de orden $360.$
    • Un grupo de orden $2783.$
  4. Encuentra para cuáles $n \in \z^+$ los grupos de orden $n$ son cíclicos.
  5. Prueba que $A$ es un grupo abeliano finito de orden $n$ si y sólo si para cada $d$ divisor de $n$, hay a lo más $d$ elementos $a\in A$ tales que $a^d = 1_A.$

Más adelante…

Esta entrada fue un tema muy anticipado. Ahora comenzaremos otro tema que, aunque sea corto, es igual de importante que el Teorema fundamental de grupos finitos abelianos. De hecho, comparte que también es semejante con el Teorema fundamental de la aritmética. Comenzaremos a estudiar el Teorema de Jordan-Hölder

Entradas relacionadas