Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Lineal II: Proceso de Gram-Schmidt en espacios euclideanos

Introducción

En la entrada anterior recordamos algunas de las aplicaciones que pueden tener las bases ortogonales y ortonormales. Esto nos da la pista de que siempre es bueno intentar conseguir una base ortonormal. ¿Es esto siempre posible? En el primer curso de Álgebra Lineal vimos que si tenemos en espacio euclideano, entonces sí. Esto está explicado a detalle en la entrada del Proceso de Gram-Schmidt.

Esta entrada está escrita únicamente en formato de recordatorio. Enunciamos los resultados principales, pero las demostraciones y más ejemplos se encuentran en otras entradas.

Teorema de Gram-Schmidt

El teorema de Gram-Schmidt asegura que dado un conjunto de vectores linealmente independientes en un espacio vectorial real con un producto interior dado, podemos encontrar otros vectores que ahora sean ortonormales, que generen lo mismo y que además «apunten hacia un lado similar» a los vectores originales. Además, asegura que estos vectores son únicos. El resultado concreto es el siguiente.

Teorema. Sea $V$ un espacio vectorial real con producto interior $\langle \cdot, \cdot \rangle$. Sean $v_1,\ldots,v_d$ vectores linealmente independientes. Entonces, existen únicos vectores ortonormales $e_1,\ldots,e_d$ tales que para toda $k\in\{1,2,\ldots,d\}$ se tiene que $$\text{span}(e_1,\ldots,e_k)= \text{span}(v_1,\ldots,v_k)$$ y $\langle e_k, v_k \rangle >0$.

Muy a grandes rasgos, esta forma de escribir el teorema permite hacer inducción en $d$. Al pasar a un nuevo $d$, podemos usar hipótesis inductiva para construir $e_1,\ldots,e_{d-1}$. Así, sólo hay que ver cómo construir $e_d$ para que sea ortogonal a todos los anteriores y para que tenga norma $1$. Para encontra a un buen candidato, se debe poner a $e_d$ en términos de los $e_1,\ldots,e_{d-1}$ y $v_d$, y se debe suponer que cumple lo deseado. Al hacer algunos productos interiores esto nos dice que $e_d$ forzosamente se construye definiendo

$$f_d=v_d-\sum_{i=1}^{d-1}\langle v_d, e_i\rangle e_i$$

y tomando $e_d=\frac{f_d}{\norm{f_d}}$.

En los detalles de la prueba se ve que este $e_d$ en efecto cumple todo lo deseado.

Si estamos en un espacio euclideano, entonces tenemos una base finita. Podemos usar esta en la hipótesis del teorema de Gram-Schmidt para concluir lo siguiente.

Corolario. Todo espacio euclideano tiene una base ortonormal.

Algoritmo de Gram-Schmidt

La demostración del teorema de Gram-Schmidt a su vez da un algorimo para encontrar de manera explícita la base ortonormal buscada. Es un algoritmo que poco a poco va contruyendo los vectores. Supongamos que nos dan los vectores $v_1,\ldots,v_n$.

Para empezar, normalizamos $v_1$ para obtener $e_1=\frac{v_1}{\norm{v_1}}$. De aquí en adelante procedemos recursivamente. Si ya construimos $e_1,\ldots,e_k$, entonces podemos construir $e_{k+1}$ a través de la fórmula que pusimos, es decir, primero definimos

$$f_{k+1}=v_{k+1}-\sum_{i=1}^{k}\langle v_{k+1}, e_i\rangle e_i,$$

para luego tomar $e_{k+1}$ como la normalización de $f_{k+1}$, es decir, como $\frac{e_{k+1}}{\norm{e_{k+1}}.$ Seguimos de esta manera hasta terminar.

El siguiente diagrama da una idea un poco más visual de cómo vamos haciendo las operaciones. Comenzamos con los vectores $v_1,\ldots,v_d$ de la fila superior. Luego, vamos construyendo a los $e_i$ y $f_i$ en el orden indicado por las flechas: $e_1,f_2,e_2,\ldots,f_{d-1},e_{d-1},f_d,e_d$. Para construir un $f_i$ usamos la fórmula con productos interiores. Para construir el $e_i$ correspondiente, normalizamos.

Intuición geométrica

Ya tenemos el lenguaje para entender mucho mejor el proceso de Gram-Schmidt. Si te das cuenta, cuando tomamos $$f_{k+1}=v_{k+1}-\sum_{i=1}^{k}\langle v_{k+1}, e_i\rangle e_i$$ justamente estamos aprovechando la descomposición

$$v_{k+1}= \left(\sum_{i=1}^{k}\langle v_{k+1}\right)+ f_{k+1}$$

de $v_{k+1}$ como suma de un elemento en espacio generado por $e_1,\ldots, e_k$ y uno en su ortogonal. El elemento del espacio generado lo obtenemos a través de la fórmula que sale de la descomposición de Fourier que vimos en la entrada anterior. El hecho de que $f_{k+1}$ esté en el ortogonal es lo que hace que cada nuevo vector sea ortogonal a los anteriores. Al final hay que normalizar $f_{k+1}$ para que la base sea ortonormal y no sólo ortogonal. Habría dos formas de hacerlo. Una es tomar $\frac{f_{k+1}}{\norm{f_{k+1}}}$. La otra es tomar $-\frac{f_{k+1}}{\norm{f_{k+1}}}$. El producto escalar positivo que pedimos es lo que nos da la unicidad.

Ejemplo de aplicación del algoritmo de Gram-Schmidt

Hagamos un ejemplo muy sencillo. Será sólo de práctica y como recordatorio. Hay ejemplos más interesantes en la entrada Problemas de bases ortogonales, Fourier y proceso de Gram-Schmidt.

Es sencillo verificar que $\langle (a,b,c), (x,y,z)\rangle =4ax+3by+2cz$ es un producto interior en $\mathbb{R}^3$. Vamos a ortonormalizar la base $(1,1,1)$, $(0,1,1)$, $(0,0,1)$.

En la notación del algoritmo, tenemos entonces $v_1=(1,1,1)$, $v_2=(0,1,1)$ y $v_3=(0,0,1)$. El primer paso es tomar $e_1=\frac{v_1}{\norm{v_1}}$. La norma de $v_1$ con este producto interior es $\sqrt{4+3+2}=3$. De este modo, $e_1=\left(\frac{1}{3}, \frac{1}{3} , \frac{1}{3} \right)$.

Teniendo $e_1$, podemos definir $f_2$ con la fórmula dada:

\begin{align*}
f_2&=v_2-\langle v_2, e_1 \rangle e_1\\
&=(0,1,1)-\left(4\cdot 0\cdot \frac{1}{3}+3\cdot 1 \cdot \frac{1}{3} + 2 \cdot 1 \cdot \frac{1}{3}\right)\left(\frac{1}{3},\frac{1}{3},\frac{1}{3} \right)\\
&=(0,1,1)-\frac{5}{3} \left(\frac{1}{3},\frac{1}{3},\frac{1}{3} \right)\\
&=\left(-\frac{5}{9},\frac{4}{9},\frac{4}{9}\right).
\end{align*}

De aquí, debemos normalizar $f_2$. Su norma es $$\sqrt{ \frac{100}{81}+\frac{48}{81}+\frac{32}{81} } = \frac{\sqrt{180}}{9}=\frac{2\sqrt{5}}{3}=\frac{10}{3\sqrt{5}}.$$ De este modo, $$e_2=\left(-\frac{\sqrt{5}}{6},\frac{2\sqrt{5}}{15},\frac{2\sqrt{5}}{15}\right)$$

Teniendo $e_1$ y $e_2$, podemos definir $f_3$ con la fórmula dada:

\begin{align*}
f_3&=v_3-\langle v_3, e_1 \rangle e_1 – \langle v_3, e_2 \rangle e_2\\
&=(0,0,1)-\frac{2}{3} \left(\frac{1}{3}, \frac{1}{3} , \frac{1}{3} \right) – \frac{4\sqrt{5}}{15} \left(-\frac{\sqrt{5}}{6},\frac{2\sqrt{5}}{15},\frac{2\sqrt{5}}{15}\right)\\
&=(0,0,1)-\left(\frac{2}{9}, \frac{2}{9} , \frac{2}{9} \right)-\left(-\frac{2}{9},\frac{8}{45},\frac{8}{45}\right)\\
&=\left(0, -\frac{2}{5},\frac{3}{5}\right).
\end{align*}

De aquí, debemos normalizar $f_3$. Su norma es $$\sqrt{\frac{12}{25}+\frac{18}{25}}=\frac{\sqrt{6}}{\sqrt{5}}=\frac{6}{\sqrt{30}}.$$ De este modo, $$e_3=\left( 0, -\frac{\sqrt{30}}{15}, \frac{\sqrt{30}}{10}\right).$$

Hemos encontrado la base ortonormal buscada $e_1,e_2,e_3$.

$\square$

Más adelante…

Con esta entrada-recordatorio terminamos la segunda unidad del curso. A partir de ahora es importante que recuerdes que todo espacio euclideano tiene una base ortonormal. También es útil que recuerdes cómo se obtiene, así que asegúrate de practicar el proceso de Gram-Schmidt.

Todo lo que hemos mencionado tiene su análogo en espacios vectoriales sobre los complejos con un producto interior hermitiano. Asegúrate de entender las diferencias y de realizar los ejercicios que te permitirán entender los resultados correspondientes.

En la siguiente unidad desarrollaremos la teoría necesaria para poder enunciar y demostrar tanto el teorema espectral real, como el teorema espectral complejo.

Tarea moral

  1. Haz la demostración del teorema de Gram-Schmidt a partir del esquema comentado en la entrada. En caso de que se te dificulte, revisa los detalles en la entrada de blog correspondiente.
  2. Para verificar que todo esté en orden, verifica que los vectores $e_1,e_2,e_3$ del ejemplo en efecto son una base ortonormal con el producto interior dado.
  3. En el teorema de Gram-Schmidt, ¿es importante el orden en el que elijamos $v_1$ hasta $v_n$? ¿Cambia el conjunto resultante si cambiamos el orden? ¿Es conveniente tomar algún otro orden para simplificar las cuentas?
  4. Aplica el proceso de Gram-Schmidt a los vectores \begin{align*}(1,1,1,1)\\ (0,1,1,1)\\ (0,0,1,1)\\ (0,0,0,1)\end{align*} en $\mathbb{R}^4$ con el producto interior canónico (el producto punto).
  5. Enuncia y demuestra un teorema de Gram-Schmidt para espacios vectoriales sobre $\mathbb{C}$ con un producto interior hermitiano. Obtén el corolario correspondiente para los espacios hermitianos. Aplica este proceso a los vectores $(1+i,1+i,1+i),(0,1+i,1+i),(0,0,1+i)$ de $\mathbb{C}^3$ con el producto hermitiano canónico para obtener una base ortonormal.

Entradas relacionadas

Álgebra Lineal II: Ortogonalidad en espacios euclideanos

Introducción

Anteriormente, cuando hablamos del espacio dual de un espacio vectorial, definimos qué quería decir que una forma lineal y un vector fueran ortogonales. Esa noción de ortogonalidad nos ayudó a definir qué era un hiperplano de un espacio vectorial y a demostra que cualquier subespacio de dimensión $k$ de un espacio de dimensión $n$ podía ponerse como intersección de $n-k$ hiperplanos.

Hay otra noción de ortogonalidad en álgebra lineal que también ya discutimos en el primer curso: la ortogonalidad de parejas de vectores con respecto a un producto interior. En el primer curso vimos esta noción muy brevemente. Lo que haremos ahora es profundizar en esta noción de ortogonalidad. De hecho, gracias a las herramientas que hemos desarrollado podemos conectar ambas nociones de ortogonalidad.

Esta teoría la veremos de manera explícita en el caso real en la entrada. El caso en $\mathbb{C}$ queda esbozado en los ejercicios.

Definición de ortogonalidad

Comenzamos con las siguientes definiciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos vectores $x,y$ en $V$ son ortogonales (con respecto a $b$) si $b(x,y)=0$.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Sea $S$ un subconjunto de vectores de $V$. El conjunto ortogonal de $S$ (con respecto a $b$) consiste de todos aquellos vectores en $V$ que sean ortogonales a todos los vectores de $S$. En símbolos:

$$S^{\bot}:=\{v \in V : \forall s \in S, b(s,v)=0.$$

Es un buen ejercicio verificar que $S^\bot$ siempre es un subespacio de $V$. Finalmente, definimos la ortogonalidad de conjuntos.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos subconjuntos $S$ y $T$ son ortogonales (con respecto a $b$) si $S \subseteq T^{\bot}$.

En otras palabras, estamos pidiendo que todo vector de $S$ sea ortogonal a todo vector de $T$.

Observación. Si tenemos un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$, entonces tenemos la fórmula $$\norm{x+y}^2=\norm{x}^2+2\langle x,y\rangle +\norm{y}^2.$$

De esta forma, $x$ y $y$ son ortogonales si y sólo si $$\norm{x+y}^2= \norm{x}^2+\norm{y}^2.$$ Podemos pensar esto como una generalización del teorema de Pitágoras.

Descomposición en un subespacio y su ortogonal

Comenzamos esta sección con un resultado auxiliar.

Teorema. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$V=W\oplus W^\bot.$$

Demostración. Sea $\langle \cdot,\cdot \rangle$ el producto interior de $V$. Para demostrar la igualdad que queremos, debemos mostrar que $W$ y $W^\bot$ están en posición de suma directa y que $V=W+W^\bot$.

Para ver que $W$ y $W^\bot$ están en posición de suma directa, basta ver que el único elemento en la intersección es el $0$. Si $x$ está en dicha intersección, entonces $\langle x, x \rangle =0$, pues por estar en $W^\bot$ debe ser ortogonal a todos los de $W$, en particular a sí mismo. Pero como tenemos un producto interior, esto implica que $x=0$.

Tomemos ahora un vector $v\in V$ cualquiera. Definamos la forma lineal $f:W\to \mathbb{R}$ tal que $f(u)=\langle u, v \rangle$. Por el teorema de representación de Riesz aplicado al espacio vectorial $V$ y a su forma lineal $f$, tenemos que existe un (único) vector $x$ en $W$ tal que $f(u)=\langle u, x \rangle$ para cualquier $u$ en $W$.

Definamos $y=v-x$ y veamos que está en $W^\bot$. En efecto, para cualquier $u$ en $W$ tenemos:

\begin{align*}
\langle u, y\rangle &= \langle u, v-x \rangle\\
&=\langle u, v \rangle – \langle u , x \rangle\\
&=f(u)-f(u)\\
&=0.
\end{align*}

De esta manera, podemos escribir $v=x+y$ con $x\in W$ y $y\in W^\bot$.

$\square$

En particular, el teorema anterior nos dice que la unión disjunta de una base de $W$ y una base de $W^\bot$ es una base de $V$. Por ello, tenemos el siguiente corolario.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$\dim{W}+\dim{W^\bot}=\dim{V}.$$

Tenemos un corolario más.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$(W^\bot)^\bot=W.$$

Demostración. Tanto $W$ como $(W^\bot)^\bot$ son subespacios de $V$. Tenemos que $W\subseteq (W^\bot)^\bot$ pues cualquier elemento de $W$ es ortogonal a cualquier elemento de $W^\bot$. Además, por el corolario anterior tenemos:

\begin{align*}
\dim{W}+\dim{W^\bot}&=\dim{V}\\
\dim{W^\bot}+\dim{(W^\bot)^\bot}&=\dim{V}.
\end{align*}

De aquí se sigue que $\dim{W} = \dim{(W^\bot)^\bot}$. Así, la igualdad que queremos de subespacios se sigue si un subespacio está contenido en otro de la misma dimensión, entonces deben de ser iguales.

$\square$

Proyecciones ortogonales

Debido al teorema anterior, podemos dar la siguiente definición.

Definición. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. La proyección ortogonal hacia $W$ es la transformación lineal $p_W:V\to W$ tal que a cada $v$ en $V$ lo manda al único vector $p_W(v)$ tal que $x-p_W(v)$ está en $W^\bot$.

Dicho en otras palabras, para encontrar a la proyección de $v$ en $W$ debemos escribirlo de la forma $v=x+y$ con $x\in W$ y $y\in W^\bot$ y entonces $p_W(v)=x$.

Distancia a subespacios

Cuando definimos la distancia entre conjuntos que tienen más de un punto, una posible forma de hacerlo es considerando los puntos más cercanos en ambos conjuntos, o en caso de no existir, el ínfimo de las distancias entre ellos. Esto da buenas propiedades para la distancia. En particular, cuando queremos definir la distancia de un punto $x$ a un conjunto $S$ hacemos lo siguiente.

Definición. Sea $V$ un espacio vectorial real con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $S$ un subconjunto de $V$ y $v$ un vector de $S$. Definimos la distancia de $v$ a $S$ como la menor posible distancia de $v$ hacia algún punto de $S$. En símbolos:

$$d(v,S):=\inf_{s\in S} d(v,s).$$

En general, puede ser complicado encontrar el punto que minimiza la distancia de un punto a un conjunto. Sin embargo, esto es más sencillo de hacer si el conjunto es un subespacio de un espacio con producto interior: se hace a través de la proyección al subespacio. Esto queda reflejado en el siguiente resultado.

Proposición. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $W$ un subespacio de $V$ y sea $v$ un vector en $V$. Entonces $$d(v,W)=\norm{v-p_W(v)}.$$

Más aún, $p_W(v)$ es el único punto en $W$ para el cual se alcanza la distancia mínima.

Demostración. Por el teorema de descomposición en un subespacio y su ortogonal, sabemos que podemos escribir $v=x+y$ con $x$ en $W$ y con $y$ en $W^\bot$.

Tomemos cualquier elemento $w$ en $W$. Tenemos que $x-w$ está en $W$ y que $y$ está en $W^\bot$. Así, usando el teorema de Pitágoras tenemos que:

\begin{align*}
\norm{v-w}^2&=\norm{y+(x-w)}^2\\
&=\norm{y}^2+\norm{x-w}^2\\
&\geq \norm{y}^2\\
&=\norm{v-x}^2.
\end{align*}

Esto muestra que $\norm{v-w}\geq \norm{v-x}$. Como $x\in W$, esto muestra que la distancia de $v$ a $W$ en efecto se alcanza con $x=p_W(v)$, pues cualquier otra distancia es mayor o igual.

La igualdad en la cadena anterior de alcanza si y sólo si $\norm{x-w}^2=0$, lo cual sucede si y sólo si $x=w$, como queríamos.

$\square$

Más adelante…

En la siguiente entrada recordaremos varias de las ventajas que tiene contar con una base de un espacio vectorial en la que cualesquiera dos vectores sean ortogonales entre sí. Y en la entrada después de esa, recordaremos algunas hipótesis bajo las cuales podemos garantizar encontrar una de esas bases.

Tarea moral

  1. Resuelve los siguientes ejercicios:
    1. Sea $\mathbb{R}^3$ con el producto interno canónico y $W=\{(0,0,a_3) : a_3 \in \mathbb{R} \}$. Encuentra a $W^{\bot}$ y define la proyección ortogonal $p_W$ hacia $W$.
    2. Encuentra el vector en $\text{Span}((1,2,1), (-1,3,-4))$ que sea el más cercano (respecto a la norma euclidiana) al vector $(-1,1,1)$.
  2. Sea $V$ un espacio euclidiano y $T : V \to V $ una transformación lineal tal que $T^2=T$. Prueba que T es una proyección ortogonal si y solo si para cualesquiera $x$ y $y$ en $V$ se tiene que $$\langle T(x),y\rangle =\langle x,T(y)\rangle.$$
  3. Resuelve los siguientes ejercicios:
    1. Demuestra que una proyección ortogonal reduce la norma, es decir, que si $T$ es una proyección ortogonal, entonces $\norm{T(v)}\leq \norm{v}$.
    2. Prueba que una proyección ortogonal únicamente puede tener como eigenvalores a $0$ ó a $1$.
  4. Demuestra que la composición de dos proyecciones ortogonales no necesariamente es una proyección ortogonal.
  5. En el teorema de descomposición, ¿es necesaria la hipótesis de tener un producto interior? ¿Qué sucede si sólo tenemos una forma bilineal, simétrica y positiva?

Entradas relacionadas

Teoría de los conjuntos I: Funciones (parte II)

Introducción

En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de como se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.

Propiedades

Teorema: Sean $X$ y $Y$ conjuntos y sea $f:X\to Y$ una función. Sean $X_1,X_2\subseteq X$ y $Y_1, Y_2\subseteq Y$. Entonces se cumplen las siguientes propiedades:

  1. Si $X_1\subseteq X_2$, entonces $f[X_1]\subseteq f[X_2]$,
  2. $f[X_1\cup X_2]=f[X_1]\cup f[X_2]$,
  3. $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$,
  4. $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$,
  5. Si $Y_1\subseteq Y_2$, entonces $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$,
  6. $f^{-1}[Y_1\cup Y_2]=f^{-1}[Y_1]\cup f[Y_2]$,

Demostración:

1) Supongamos que $X_1\subseteq X_2$ y veamos que $f[X_1]\subseteq f[X_2]$.
Sea $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Dado que $X_1\subseteq X_2$, entonces existe $x\in X_2$ tal que $f(x)=y$, esto es $y\in f[X_2]$.
Por lo tanto, $f[X_1]\subseteq f[X_2]$.

2) Veamos que $f[X_1\cup X_2]=f[X_1]\cup f[X_2]$.

$\subseteq$] Sea $y\in f[X_1\cup X_2]$, entonces existe $x\in X_1\cup X_2$ tal que $f(x)= y$. Entonces existe $x\in X_1$ o $x\in X_2$ tal que $f(x)=y$.
Si $x\in X_1$ tal que $f(x)=y$ entonces $y\in f[X_1]$ y por lo tanto $y\in f[X_1]\cup f[X_2]$.
Si $x\in X_2$ tal que $f(x)=y$ entonces $y\in f[X_2]$ y por lo tanto $y\in f[X_1]\cup f[X_2]$.
Por lo tanto, $f[X_1\cup X_2]\subseteq f[X_1]\cup f[X_2]$.

$\supseteq$] Sea $y\in f[X_1]\cup f[X_2]$, entonces $y\in f[X_1]$ o $y\in f[X_2]$.

Si $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Luego, como $X_1\subseteq X_1\cup X_2$, tenemos que $x\in X_1\cup X_2$. Por lo tanto, existe $x\in X_1\cup X_2$ tal que $f(x)=y$, esto es $y\in f[X_1\cup X_2]$.

Si $y\in f[X_2]$, entonces existe $x\in X_2$ tal que $f(x)=y$. Luego, como $X_2\subseteq X_1\cup X_2$, tenemos que $x\in X_1\cup X_2$. Por lo tanto, existe $x\in X_1\cup X_2$ tal que $f(x)=y$, esto es $y\in f[X_1\cup X_2]$.

Por lo tanto, $f[X_1]\cup f[X_2]\subseteq f[X_1\cup X_2]$.

De las contenciones que demostramos tenemos que $f[X_1]\cup f[X_2]=f[X_1\cup X_2]$.

3) Ahora veamos que $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$.

Sea $y\in f[X_1\cap X_2]$, entonces existe $x\in X_1\cap X_2$ tal que $f(x)= y$. Entonces existe $x\in X_1$ y $x\in X_2$ tal que $f(x)=y$.

Entonces existe $x\in X_1$ tal que $f(x)=y$ y existe $x\in X_2$ tal que $f(x)=y$, de donde $y\in f[X_1]$ y $y\in f[X_2]$. Por lo tanto, $y\in f[X_1]\cap f[X_2]$.

Así, $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$.

4) A continuación mostraremos que $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$.

Sea $y\in f[X_1]\setminus f[X_2]$, entonces $y\in f[X_1]$ y $y\notin f[X_2]$.

Dado que $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Luego, como $y\notin f[X_2]$ entonces para cualquier $a\in X_2$, $f(a)\not=y$. Resulta que $x\notin X_2$ pues de lo contrario $f(x)\not=y$ lo cual no puede ocurrir.

Por lo tanto, existe $x\in X_1\setminus X_2$ tal que $f(x)=y$, esto es, $y\in f[X_1\setminus X_2]$.

5) Supongamos que $Y_1\subseteq Y_2$ y veamos que $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$.
Sea $x\in f^{-1}[Y_1]$, entonces existe $y\in Y_1$ tal que $f(x)=y$. Dado que $Y_1\subseteq Y_2$, entonces existe $y\in Y_2$ tal que $f(x)=y$, esto es $x\in f^{-1}[Y_2]$.
Por lo tanto, $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$.

6) Finalmente veamos que $f^{-1}[Y_1\cup Y_2]=f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

Sea $x\in f^{-1}[Y_1\cup Y_2]$, entonces existe $y\in Y_1\cup Y_2$ tal que $f(x)=y$. Luego, como $y\in Y_1\cup Y_2$ se tiene que $y\in Y_1$ o $y\in Y_2$.

Si $y\in Y_1$, entonces existe $y\in Y_1$ tal que $f(x)=y$, es decir, $x\in f^{-1}[Y_1]$. Por lo tanto $x\in f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

Si $y\in Y_2$, entonces existe $y\in Y_2$ tal que $f(x)=y$, es decir, $x\in f^{-1}[Y_2]$. Por lo tanto $x\in f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

$\square$

¿Por qué $f[X_1\cap X_2]\not=f[X_1]\cap f[X_2]$?

Ya vimos que $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$, por lo que al igual que con la unión podríamos pensar que se da la igualdad entre los conjuntos. Sin embargo, vamos a ver que $f[X_1]\cap f[X_2]\not\subseteq f[X_1\cap X_2]$.

Con el siguiente ejemplo mostraremos que no siempre es posible que $f[X_1]\cap f[X_2]\not\subseteq f[X_1\cap X_2]$.

Ejemplo:

Sean $X=\set{0,1,2}$ y $Y=\set{1,2,3}$ conjuntos y sea $f:X\to Y$ una función dada por el conjunto $f(x)=2$ Sean $X_1=\set{0,1}$ y $X_2=\set{2}$ subconjuntos de $X$.

Por un lado tenemos que $X_1\cap X_2=\set{0,1}\cap \set{2}=\emptyset$, por lo que $f[X_1\cap X_2]=f[\emptyset]= \emptyset$.

Por otro lado, $f[X_1]=f[\set{0,1}]=\set{2}$ y $f[X_2]=f[\set{2}]=\set{2}$. Así, $f[X_1]\cap f[X_2]=\set{2}$.

Por lo tanto, $f[X_1]\cap f[X_2]\not\subseteq f[X_1\cap X_2]$.

$\square$

¿Por qué $f[X_1\setminus X_2]\not=f[X_1]\setminus f[X_2]$?

Ya vimos que $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$, pero va a resultar que la contención de regreso no es posible, es decir, $f[X_1\setminus X_2]\not\subseteq f[X_1]\setminus f[X_2]$.

Con el siguiente ejemplo mostraremos que no siempre es posible que $f[X_1\setminus X_2]\not\subseteq f[X_1]\setminus f[X_2]$.

Ejemplo:

Sean $X=\set{0,1,2}$ y $Y=\set{1,2,3}$ conjuntos y sea $f:X\to Y$ una función dada por el conjunto $f(x)=2$ Sean $X_1=\set{0,1}$ y $X_2=\set{1,2}$ subconjuntos de $X$.

Por un lado tenemos que $X_1\setminus X_2=\set{0,1}\setminus \set{1,2}=\set{0}$, por lo que $f[X_1\setminus X_2]=f[\set{0}]= \set{2}$.

Por otro lado, $f[X_1]=f[\set{0,1}]=\set{2}$ y $f[X_2]=f[\set{1,2}]=\set{2}$. Así, $f[X_1]\setminus f[X_2]=\emptyset$.

Por lo tanto, $f[X_1\setminus X_2]\not\subseteq f[X_1]\setminus f[X_2]$.

$\square$

Composición de funciones

Definición: Sean $f:X\to Y$ y $g:Y\to Z$ funciones. Definimos a la composición de $f$ con $g$ como la función $g\circ f:X\to Z$ dada por $g\circ f(x)= g(f(x))$ para cualquier $x\in X$.

Teorema: Si $f:X\to Y$ y $g:Y\to Z$ son funciones, entonces $g\circ f:X\to Z$ es función.

En la sección de composición de relaciones vimos que si $f$ y $g$ son relaciones, entonces $g\circ f$ es relación, por lo que resta ver que si $(a,b)\in g\circ f$ y $(a,c)\in g\circ f$, entonces $b=c$.

Supongamos que $(a,b)\in g\circ f$ y $(a,c)\in g\circ f$, esto es $b=g(f(a))$ y $c=g(f(a))$ y por lo tanto, $b=c$.

$\square$

Ejemplo:

Sea $f:\set{1,2}\to \set{2,4}$ y $g:\set{2,4}\to \set{3,5}$ funciones dadas por $f(x)= 2x$ y $g(x)=x+1$ respectivamente. Entonces $g\circ f:\set{1,2}\to \set{3,5}$ está dada por:

$g\circ f(x)=g(f(x))=g(2x)=2x+1$

Por lo que,

  • $g\circ f(1)=2(1)+1=2+1=3$,
  • $g\circ f(2)= 2(2)+1=4+1=5$.

De modo que los elementos de $g\circ f$ son $(1,3)$ y $(2,5)$.

$\square$

Tarea moral

a) Demuestra que si $X$ y $Y$ son conjuntos y $f:X\to Y$ una función. Sean $X_1\subseteq X$ y $Y_1, Y_2\subseteq Y$. Entonces se cumplen las siguientes propiedades:

  1. $f^{-1}[Y_1\cap Y_2]=f^{-1}[Y_1]\cap f[Y_2]$,
  2. $f^{-1}[Y_1\setminus Y_2]=f^{-1}[Y_1]\setminus f[Y_2]$,
  3. $X_1\subseteq f^{-1}[f[X_1]]$,
  4. $f[f^{-1}[B_1]]\subseteq B_1$.

b) Demuestra que la composición de funciones es asociativa.

Más adelante

La siguiente sección estará dedicada a funciones inyectivas y sobreyectivas. Este tema será de gran importancia pues en muchas ocasiones tendremos que verificar si se satisfacen estas propiedades.

Enlaces

Álgebra Superior I: Introducción a funciones

Teoría de los Conjuntos I: Funciones

Introducción

Esta sección estará dedicada a un tipo de relaciones a las que llamaremos funciones. Este tema será de gran importancia pues utilizaremos funciones con mucha frecuencia a partir de ahora, es por ello que dedicaremos una serie de entradas para tratarlas. En esta primera parte abordaremos la definición de función, algunas de sus propiedades y ejemplos.

¿Qué es una función?

Definición: Sea $f$ una relación de $A$ en $B$ (lo denotaremos por $f:A\to B$), diremos que $f$ es función si $(a,b)\in f$ y $(a,c)\in f$ implica que $b=c$.

La definición de función nos dice que dados dos conjuntos y una relación de $A$ en $B$ podremos hablar de función si y sólo si cada uno de los elementos de $A$ bajo una regla de correspondencia (relación) va a dar a uno y sólo uno de $B$. Como se muestra en la siguiente imagen:

Para abordar la definición desde otra perspectiva revisaremos el siguiente ejemplo que nos muestra que no toda relación es función.

Ejemplo:

Sea $A=\set{1,2}$ y $B=\set{1,2,3}$. Sea $f$ una relación de $A$ en $B$ dada por $f=\set{(1,1), (1,2), (2,1)}$.

Resulta que $f$ no es función pues $(1,1)\in f$ y $(1,2)\in f$, sin embargo no es cierto que $1=2$.

$\square$

Ahora veamos el ejemplo de una relación que si es función.

Ejemplo:

Sea $A=\set{1,2,3}$ y $B=\set{1,2}$. Sea $f$ una relación de $A$ en $B$ dada por $f=\set{(1,1), (2,1), (3,1)}$.

En este ejemplo tenemos que $f$ es función pues cada elemento de $A$ va a dar a uno y sólo uno de $B$, es decir, para cualesquiera $(a,b)\in f$ y $(a,c)\in f$ se cumple que $b=c$.

$\square$

Después de revisar estos ejemplos es importante mencionar que aunque no toda relación es función, siempre ocurrirá que una función es una relación, este último hecho se sigue de la definición de función.

Función vacía

Sea $X=\emptyset$ y $Y$ un conjunto cualquiera, definimos a la función vacía de $X$ en $Y$ como $f=\emptyset$. En la sección de relaciones vimos que el conjunto vacío en efecto es una relación, nos resta ver que para cualesquiera $(a,b)\in f$ y $(a,c)\in f$ se cumple que $b=c$, sin embargo este enunciado se cumple por un argumento por vacuidad.

Por lo tanto, la relación vacía es función.

Función constante

Sean $X$, $Y$ un conjunto y $c\in Y$. Definimos la función constante $f$ de $X$ en $\set{c}$ como $f(x)=c$ para toda $x\in X$. Nuestra función se verá de la siguiente forma:

Función identidad

Sea $X$ un conjunto, la relación identidad es función. Recordemos que la relación identidad $Id_X$ esta definida como sigue:

$Id_X=\set{(x,y): x,y\in X\ y\ x=y}$

Dado que para cualesquiera $(x,y)\in Id_X$ y $(x,w)\in Id_X$ tenemos que $x=y$ y $x=w$ por definición de la relación $Id_X$, por lo tanto, $y=w$ y así concluimos que $Id_X$ es función.

Función característica

Sean $A$ y $X$ conjuntos tales que $A\subseteq X$, definimos a la función característica como $\chi_A$ de $A$ en $\set{\emptyset, \set{\emptyset}}$ dada por:

\begin{align*}
\chi_A(x) = \left\{ \begin{array}{lcc}
\set{\emptyset} &  \text{si}  & x \in A \\
\emptyset &  \text{si} & x\notin A
\end{array}
\right.
\end{align*}

Función inclusión

Sea $X$ un conjunto cualquiera, definimos a la función inclusión $\iota:A\to X$ como el siguiente conjunto:

$\iota_A= \set{(x,x):x\in A}$.

Restricción de una función

Definición: Sea $f:X\to Y$ una función y sea $A\subseteq X$ decimos que la restricción de $f$ en $A$ es la función $f\upharpoonright_{A} :A\to Y$ dada por $f\upharpoonright_{A} (x)= f(x)$ para todo $x\in A$.

Ejemplo: Sean $X=\set{1,2,3,4}$ y $Y=\set{1,2,3,4,5}$. Sea $f:X\to Y$ una función dada por $\set{(1,1), (2,2), (3,3), (4,1)}$, si queremos hacer que la función $f$ sea igual a la identidad en el conjunto $\set{1,2,3}$ podemos considerar a $f\upharpoonright_{A}$ con $A=\set{1,2,3}$. Así, $f\upharpoonright_A=\set{(1,1), (2,2), (3,3)}$.

$\square$

Dominio e imagen

De manera similar que con las relaciones trataremos las definiciones de dominio, imagen e imagen inversa, sin embargo ahora lo haremos para funciones.

Definición: Sea $f$ una función de A en B, definimos el dominio de la $f$ como:

$dom(f)=\set{x\in A:\exists y\in B\ tal\ que\ f(x)=y}$.

Ejemplo:

Sea $A=\set{1,2,3,4}$ y $B=\set{1,2,3,4}$. Sea $f:A\to B$ una función dada por el conjunto $f=\set{(1,1), (2,2), (3,3), (4,4)}$.

Tenemos que,

$dom(f)=\set{x\in \set{1,2,3,4}:\exists y\in \set{1,2,3,4}\ tal\ que\ f(x)=y}=\set{1,2,3,4}$.

$\square$

Definición: Sea $f$ una función de A en B, definimos la imagen de la función $r$ como:

$im(f)=\set{y\in B:\exists x\in A\ tal\ que\ f(x)=y}$.

Ejemplo:

Sea $A=\set{1,2,3,4}$ y $B=\set{1}$. Sea $f:A\to B$ una función dada por $f(x)=1$ para todo $x\in A$.

Tenemos que,

$im(f)=\set{y\in B: \exists x\ tal\ que\ f(x)=y}=\set{1}$.

$\square$

Definición: Sea $f$ una función de $A$ en $B$ y sea $D\subseteq A$. Definimos la imagen de $D$ bajo la función $f$ como el conjunto:

$f[D]=\set{f(x)\in B: \exists x\in D\ tal\ que\ f(x)=y}$.

Ejemplo:

Sea $A=\set{1,2,3,4}$ y $B=\set{2,4,6,8}$. Sea $f:A\to B$ una función dada por $f(x)=2x$ para todo $x\in A$. Sea $A’=\set{2,4}\subseteq A$.

Tenemos que,

$f[A’]=\set{f(x)\in B: \exists x\in A’\ tal\ que\ f(x)=y}=\set{4,8}$.

$\square$

Definición: Sea $f$ una función de $A$ en $B$ y sea $B’\subseteq B$. Definimos la imagen inversa de $B’$ bajo la función $f$ como el conjunto:

$f^{-1}[B’]=\set{x\in A: \exists y\in B’\ tal\ que\ f(x)=y}$.

Ejemplo:

Sea $A=\set{1,2,3,4}$ y $B=\set{2,4,6,8}$. Sea $f:A\to B$ una función dada por $f(x)=2x$ para todo $x\in A$. Sea $B’=\set{2,4}\subseteq B$.

Tenemos que,

$f^{-1}[B’]=\set{x\in A: \exists y\in B’\ tal\ que\ f(x)=y}=\set{1,2}$.

$\square$

Tarea moral

Los siguientes ejercicios te ayudarán a reforzar los conceptos de función, dominio e imagen.

  • Sea $f$ una función de $\set{1,2}$ en $\set{2.4,5}$ dada por $f=\set{(1,2), (2,4)}$. Describe al dominio y la imagen de $f$.
  • Sean $A=\set{1,2,3,4,5,6,7,8,9}$ y $B=\set{1,2,3,4,5,6,7}$ conjuntos. Responde si las siguientes relaciones son o no funciones:
    1. $f_1=\set{(1,1), (1,2), (2,1), (3,4)}$,
    2. $f_2=\set{(1,1), (2,2), (3,3), (4,4) (5,5)}$,
    3. $f_3=\set{(1,1), (2,1), (3,1), (4,1), (5,1)}$.

Más adelante

La siguiente sección estará dedicada a hablar acerca de algunas de las propiedades que tiene la imagen de un conjunto bajo una función respecto a la unión, la intersección y la diferencia. Además hablaremos acerca de la composición de funciones, en esta parte retomaremos el concepto de composición de relaciones.

Enlaces

En el siguiente enlace podrás encontrar información acerca del tema de funciones abordado desde el álgebra superior:

Álgebra Superior I: Introducción a funciones

Álgebra Lineal II: Problemas de formas bilineales, cuadráticas y teorema de Gauss

Introducción

En las entradas anteriores nos dedicamos a recordar las definiciones y algunas propiedades de formas bilineales y cuaráticas en $\mathbb{R}^n$ con el fin de enunciar y demostrar el teorema de Gauss. La prueba da un método para representar cualquier forma cuadrática de este modo, pero es mucho más claro cómo se hace este método mediante ejemplos. En esta entrada veremos un par de problemas para seguir repasando formas bilineales y cuadráticas y luego veremos al teorema de Gauss en acción.

Ver que una función es una forma bilineal

Problema. Tomemos $V= \mathbb{R}^n$ y vectores $x,y$ en $V$ de coordenadas $x=(x_1, . . . , x_n)$ y $y =(y_1, . . . , y_n)$. Tomemos reales $a_1,\ldots, a_n$. Definamos a $b:V\times V\to \mathbb{R}$ como sigue:
\begin {align*} b(x,y)=a_1x_1y_1+ . . . + a_nx_ny_n.\end{align*}

Probemos que así definida, $b$ es una forma bilineal.

Solución. Para probar que $b$ es bilineal, probaremos que la función $b(x, \cdot)$ es lineal para cada $x \in \mathbb{R}^n$ fijo.

Sean $p,q \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$. Tenemos que:
\begin{align*} b(x,\lambda p+q)=a_1x_1(\lambda p_1 + q_1) + a_2x_2(\lambda p_2 + q_2)+ \dots a_nx_n(\lambda p_n + q_n).\end{align*}

Como todos los miembros de esta operación son números reales, utilicemos las propiedades distributiva y conmutativa. Obtenemos:

\begin{align*} b(x,\lambda p+q)=&\lambda a_1x_1p_1 + \lambda a_2x_2 p_2 + \dots + \lambda a_nx_n p_n + a_1x_1q_1+a_2x_2q_2+ \dots + a_nx_nq_n \\
&=\lambda (a_1x_1p_1 + a_2x_2 p_2 + \dots + a_nx_n p_n)+ (a_1x_1q_1+a_2x_2q_2+ \dots + a_nx_nq_n)\\&=\lambda b(x,p) + b(x,q). \end{align*}

La demostración de que la función $b(\cdot,y)$ también es lineal para cada $y\in \mathbb{R}^n$ fijo es análoga.

$\square$

En particular, si tenemos que $a_1, \ldots, a_n =1$, obtenemos que $b$ es el producto interno canónico de $\mathbb{R}^n$, es decir el producto punto.

Ver que una función no es una forma cuadrática

Problema. Sea $q: \mathbb{R}^2 \rightarrow \mathbb{R}$ dada como sigue

\begin{align*} q(x,y)=x^2+y^2-8x. \end{align*}

¿Es $q$ una forma cuadrática?

Solución. La respuesta es que no. Con el fin de encontrar una contradicción, supongamos que $q$ sí es una forma cuadrática. Entonces su forma polar $b$ debe cumplir:

\begin{align*} b((x,y),(x,y))=x^2+y^2-8x.\end{align*}

Aplicando lo anterior al par $(-x,-y)$ obtendríamos:

\begin{align*} b((-x,-y),(-x,-y))=x^2+y^2+8x.\end{align*}

Por otro lado, sacando escalares en ambas entradas:

\begin{align*} b((-x,-y),(-x,-y))&=(-1)(-1)b((x,y),(x,y))\\&=b((x,y),(x,y)).\end{align*}

Juntando las igualdades, concluimos que

\begin{align*} x^2+y^2-8x=x^2+y^2+8x \end{align*}

por lo que

\begin{align*} 16x=0. \end{align*}

Pero esto no es cierto en general pues falla, por ejemplo, para la pareja $(1,0)$. Este error nació de suponer que $q$ era una forma cuadrática. Por lo tanto $q$ no es forma cuadrática.

$\square$

El teorema de Gauss en acción

Para simplificar el lenguaje, si logramos escribir a una forma cuadrática $q$ como nos dice el teorema de Gauss, es decir, de la forma \begin{align*} q(x)= \sum_{i=1}^r \alpha _i (l_i(x))^2,\end{align*} entonces diremos que $q$ es combinación cuadrática de las $l_i$ con coeficientes $\alpha_i$.

Problema. Toma la forma cuadrática $q$ de $\mathbb{R}^3$ definida como sigue:

\begin{align*} q(x,y,z)= 4xy+yz+xz \end{align*}

Escribe a $q$ como combinación cuadrática de formas lineales linealmente independientes.

Solución. Revisando la demostración dada en la entrada anterior, tenemos tres casos:

  • Que la forma cuadrática sea la forma cuadrática cero.
  • Que tenga «términos puros».
  • Que no tenga «términos puros», es decir, que tenga sólo «términos cruzados».

Como en este caso la forma $q$ no es la forma cero, ni aparecen términos $x^2$, $y^2$ o $z^2$, estamos en el tercer caso. La estrategia era tomar dos de las variables y separar los términos que sí las tengan de los que no. Luego, hay que usar las identidades:

\begin{align} AXY+BX+CY=A\left(X+\frac{C}{A}\right) \left(Y+\frac{B}{A}\right)-\frac{BC}{A},\end{align}

\begin{align} DE= \frac{1}{4}(D+E)^2 – \frac{1}{4} (D-E)^2.\end{align}

Tomemos por ejemplo $x$ y $y$. En la forma cuadrática todos los términos tienen $x$ ó $y$, así que podemos usar la identidad $(1)$ para escribir (nota que reordenamos algunos términos para hacer más cómodas las cuentas con las identidades):

\begin{align*}
4xy+zx+zy&= 4 \left(x+\frac{z}{4}\right) \left(y+\frac{z}{4}\right)-\frac{z^2}{4}
\end{align*}

Luego, continuamos mediante la identidad $(2)$:

\begin{align*}
= \left(x+y+\frac{z}{2}\right)^2 – (x-y)^2- \frac{1}{4} z^2.
\end{align*}

Esta expresión ya tiene la forma buscada. Tenemos que $q$ es combinación cuadrática de las formas lineales $x+y+\frac{z}{2}$, $x-y$ y $z$. Verifica que en efecto estas formas lineales son linealmente independientes.

$\square$

Cambiando el orden de los pasos

Problema. ¿Qué pasaría si en el ejemplo anterior en vez de hacer el paso inductivo con $x$ y $y$ hacemos el paso inductivo con $y$ y $z$?

Solución. Las cuentas cambian y obtenemos una nueva forma de escribir a $q$. En efecto, aplicando las identidades $(1)$ y $(2)$ pero ahora a $y$ y $z$ obtendríamos:

\begin{align*}
yz+4xy+xz&= (y+x) (z+4x)-4x^2\\
&=\frac{1}{4}(y+z+5x)^2-\frac{1}{4}(y-z-3x)^2-4x^2.
\end{align*}

Esta es otra forma válida de expresar a $q$ como combinación cuadrática de formas lineales linealmente independientes. Lo que nos dice es que la expresión para $q$ no necesariamente es única.

Sin embargo, un poco más adelante veremos que aunque haya muchas formas de expresar a $q$, en todas ellas permanece constante cuántos sumandos positivos y cuántos negativos hay.

$\square$

Cuidado con la independencia lineal

Problema. Toma la forma cuadrática $q$ de $\mathbb{R}^3$ definida como sigue:

\begin{align*} q(x,y,z)= (x – y)^2+(y – z)^2+ (z – x)^2 \end{align*}

Escribe a $q$ como combinación cuadrática de formas lineales linealmente independientes.

Solución. Sería fácil asumir que $q$ ya está de la forma deseada, sin embargo, una revisión rápida nos deja ver qué $x – y$, $y-z$ y $z-x$ no son linealmente independientes en $(\mathbb{R}^3)^*$.

Primero desarrollemos todo

\begin{align*} q(x,y,z)= 2x^2+2y^2+2z^2 -2xy-2xz-2yz \end{align*}

Ahora sí hay «términos puros» pues en particular el coeficiente de $x^2$ no es cero.

En este caso hay que pensar a $q$ como polinomio de segundo grado en $x$ para completar un cuadrado:

\begin{align*} 2x^2+&2y^2+2z^2 -2xy-2xz-2yz\\
&= 2 \left( x- \frac{y+z}{2}\right)^2 – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz \end{align*}

La demostración asegura que inductivamente los términos sin $x$ (en este caso $ – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz$)se pueden escribir como una combinación cuadrática de formas lineales linealmente independientes. Es decir, a ese término ahora podemos aplicar nuevamente el procedimiento hasta llegar a un caso pequeño.

Sin embargo, para nuestra suerte, una pequeña manipulación muestra que
\begin{align*} – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz = \frac{3}{2}(y – z)^2.\end{align*}

También, afortunadamente, $y-z$ es linealmente independiente con $x- \frac{y+z}{2}$. De este modo, una posible combinación cuadrática es la siguiente:

\begin{align*} q(x,y,z)= 2 \left( x- \frac{y+z}{2}\right)^2 + \frac{3}{2}(y – z)^2 \end{align*}

$\square$

El algoritmo

Con esto visto, podemos describir un algoritmo para encontrar una combinación cuadrática en 4 pasos.

  1. Desarrollar todos los términos $q$ si es necesario.
  2. Revisar qué forma tiene $q$ con respecto a los 3 casos que se vieron en la demostración.
  3. Reproducir el caso elegido de la demostración, dependiendo de la forma de $q$.
  4. Dentro de este paso, puede ser necesario repetir desde el paso 1.

Entradas relacionadas