Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Teoría de los Conjuntos I: Conjuntos inductivos y axioma del infinito

Introducción

En esta entrada, hablaremos acerca de los conjuntos inductivos, así como de un nuevo axioma que nos permitirá establecer la existencia de conjuntos con una cantidad infinita de elementos, este axioma será pieza importante pues los axiomas que tenemos hasta ahora no nos permiten probar que la colección de números naturales es un conjunto.

Concepto

Comenzaremos definiendo a un conjunto inductivo.

Definición: $A$ es un conjunto inductivo si:

  1. $0\in A$,
  2. Si $x\in A$, entonces $s(x)\in A$.

Si lo pensamos, los números naturales conforman a un conjunto inductivo. En la entrada anterior probamos un teorema que nos asegura que si $x$ es un número natural, entonces $s(x)$ es un número natural. Sin embargo, no hemos demostrado que la colección de todos los números naturales sea un conjunto pues hasta ahora no hay nada que nos permita probarlo.

A continuación haremos mención de un nuevo axioma: el axioma del infinito. Tal como lo dice su nombre este axioma nos asegurará la existencia de un conjunto infinito, al que hemos definido como conjunto inductivo.

Axioma: Existe un conjunto inductivo.

Los naturales y conjuntos inductivos

Ahora que hemos definido a los conjuntos inductivos y aseguramos por el axioma de existencia que existe al menos uno, veremos que si $N=\set{x:x\ \text{es un natural}}$ y $A$ es cualquiera conjunto inductivo, entonces $N\subseteq A$.

Teorema: Sea $A$ un conjunto inductivo. Si $x$ es un natural, entonces $x\in A$.

Demostración:

Sea $A$ un conjunto inductivo. Supongamos en busca de una contradicción que $N\not\subseteq A$, es decir, existe $x\in N$ tal que $x\notin A$.

Como $x\in N$, entonces $x$ es un natural y así, $s(x)$ es un natural. Luego, $x\in s(x)\setminus A$ donde $s(x)\setminus A$ es un subconjunto no vacío de $s(x)$, por lo que tiene elemento mínimo.

Sea $b=\min(s(x)\setminus A)$, por definición de elemento mínimo se tiene que $b\in s(x)\setminus A$ y así $b\notin A$, por lo que $b\not=0$ pues al ser $A$ un conjunto inductivo sabemos que $0\in A$.

Luego, como $b$ es no vacío y $b\in s(x)\setminus A$, entonces $b$ tiene elemento máximo. Sea $z=\max(b)$, se cumple que $z\in b$ y como $b\in s(x)$, por la transitividad de $\in$ en $s(x)$, $z\in s(x)$. Además $z\in A$ pues de lo contrario, $z\in s(x)\setminus A$, lo que contradice el hecho de que $b=\min(s(x)\setminus A)$.

Así, como $z\in A$, por ser $A$ conjunto inductivo se satisface que $s(z)\in A$.

Afirmación: $s(z)=b$

Demostración de la afirmación:

Veamos primero que $s(z)\subseteq b$. Sea $y\in s(z)=z\cup \set{z}$, entonces $y\in z$ o $y=z$.

Caso 1: Si $y\in z$, como $z\in b$ concluimos que $y\in b$ por transitividad de $\in$ en $b$.

Caso 2: Si $y=z$, entonces $y\in b$.

Por lo tanto, $s(z)\subseteq b$.

Ahora veamos que $b\subseteq s(z)$.

Si $y\in b$, dado que $z\in b$ y los elementos de $b$ son $\in$-comparables, entonces $y\in z$ o $z\in y$ o $y=z$.

El caso $z\in y$ no puede ocurrir pues $z=\max(b)$. Así, $y\in z$ o $y=z$, esto es, $y\in z\cup\set{z}=s(z)$. Por lo tanto, $b\subseteq s(z)$.

Por lo tanto, $b=s(z)$ y así $b\in A$ pues $s(z)\in A$ lo cual no puede ocurrir pues $b\notin A$.

Dado que la contradicción vino de suponer que $N\not\subseteq A$, podemos inferir que para cualquier conjunto inductivo $A$, se tiene que $N\subseteq A$.

$\square$

El conjunto de los naturales

Con el teorema anterior y el axioma del infinito podemos demostrar que la colección $N$ es un conjunto.

Corolario: $N$ es un conjunto.

Demostración:

Por el teorema anterior sabemos que si $x$ es un natural, entonces $x\in A$ para cualquier conjunto inductivo $A$. Entonces, si $A$ es un conjunto inductivo se tiene

$N=\set{x:x\ \text{es natural}}=\set{x\in A: x\ \text{es natural}}$.

Así, por el axioma de comprensión $N$ es un conjunto.

$\square$

A este conjunto le llamaremos conjunto de los naturales y lo denotaremos por $\mathbb{N}$.

Tarea Moral

Los siguientes ejercicios te permitirán reforzar el contenido que hemos visto hasta este momento acerca de números naturales.

  • Demuestra que si $n\in \mathbb{N}$, entonces no existe $k\in \mathbb{N}$ tal que $n<k<s(n)$. (Esto prueba que entres dos naturales no hay ningún otro natural)
  • Escribe un conjunto inductivo distinto a los naturales.

Más adelante

En la siguiente sección definiremos al principio de inducción y al principio de buen orden. Estos principios nos ayudarán a demostrar resultados que cumple el conjunto de los naturales.

Enlaces

Los siguientes enlaces te ayudarán a reforzar en contenido acerca de los naturales y tener un acercamiento con el principio de inducción.

Definición y ejemplos de SUBESPACIO GENERADO por un conjunto

Introducción

Queremos saber:
¿Podemos describir el conjunto de todas las combinaciones lineales de un conjunto dado?
Dado un elemento de un conjunto $A$, ¿cómo saber si podemos obtenerlo como combinación lineal de otro conjunto $B$?
¿Qué características cumple el conjunto de todas las combinaciones lineales de un conjunto cualquiera?

SUBESPACIO GENERADO

Definición: Sean $V$ un $K$ – espacio vectorial y $S$ un subconjunto de $V$. El subespacio de $V$ generado por $S$ es:
el conjunto de combinaciones lineales de $S$, si $S\not=\emptyset$,
o bien, $\{\theta_V\}$, si $S=\emptyset$.
Se denota por $\langle S\rangle$.

Se dice que $S$ genera a $V$, o que $S$ es un conjunto generador de $V$, si $\langle S\rangle =V$.

Observación: La proposición de la entrada anterior nos menciona tres importantes propiedades del conjunto de todas las combinaciones de un subconjunto dado, en particular, que forma un subespacio.

Nota: Es común que en algunos libros se denote como $span(S)$ en lugar de $\langle S\rangle$. Además, se suele escribir $\langle v_1,…,v_n\rangle$ cuando $S=\{v_1,…,v_n\}$.

Ejemplos:

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(0,1,0),(0,0,1)\}=\{e_1,e_2,e_3\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(0,1,0)+c(0,0,1)=(a,b,c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=x\,e_1+y\,e_2+z\,e_3\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_2(\mathbb{R})$ y $S=\{1,1-x,1-x-x^2\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$, tenemos que $\lambda_1(1)+\lambda_2(1-x)+\lambda_3(1-x-x^2)$
$=(\lambda_1+\lambda_2+\lambda_3)+(-\lambda_2-\lambda_3)x+(-\lambda_3)x^2\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $a+bx+cx^2\in V$, tenemos que $a+bx+cx^2=(a+b)(1)+(c-b)(1-x)+(-c)(1-x-x^2)\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(1,-1,0)+c(1,1,-1)=(a+b+c,-b+c,-c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=(x+y+2z)(1,0,0)+(-y-z)(1,-1,0)+(-z)(1,1,-1)\in S$, por lo que $V\subseteq\langle S\rangle.$

  • Sean $K=\mathbb{R}$, $V=\mathcal{M}_{2\times 2}(\mathbb{R})$ y $S=\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$.
    $\langle S\rangle =\left\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert a,b\in\mathbb{R}\right\}$.

Justificación: \begin{align*}
\langle S\rangle &= \bigg\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \bigg\vert \,\lambda,\mu\in\mathbb{R}\bigg\}\\
&= \bigg\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} + \begin{pmatrix} \mu & \mu \\ 0 & \mu \end{pmatrix} \bigg\vert \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} \lambda +\mu & \lambda + \mu \\ \lambda & \lambda +\mu \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ (\lambda +\mu)\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ a\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, a,b\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert \,a,b\in\mathbb{R}\bigg\}
\end{align*}

Nota: Puede ocurrir que $W\subseteq\langle S\rangle$ y $W\not=\langle S\rangle$. En ese caso, $S$ no genera a $W$.
Por ejemplo, si $W=\{(a,a)|a\in\mathbb{R}\}$ y $S=\{e_1,e_2\}$, es claro que $\langle S\rangle =\mathbb{R}^2$, por lo cual, $W\subseteq\langle S\rangle$, pero no son iguales.

Observación: Si $S\subseteq W$, entonces $\langle S\rangle\subseteq W$.
Si además todo vector en $W$ es combinación lineal de vectores de $S$, entonces $W\subseteq\langle S\rangle$ y en ese caso tendremos que $\langle S\rangle= W.$

Como el subespacio generado por un conjunto es un conjunto, nos interesa analizar algunas operaciones y ver qué relaciones encontramos.

Sea $V=\mathbb{R}^2$ con $K=\mathbb{R}$.
Sean $S_1=\{(1,0)\}$, $S_2=\{(0,1)\}$ y $S_3={(1,1)}$.

  • $S_1\cup S_2=\{(1,0),(0,1)\}$
  • $S_1\cap S_2=\emptyset$
  • $S_1\cup S_3=\{(1,0),(1,1)\}$
  • $S_1\cap S_3=\emptyset$
  • $\langle S_1\rangle =\{(x,0)|x\in\mathbb{R}\}$
  • $\langle S_2\rangle =\{(0,y)|y\in\mathbb{R}\}$
  • $\langle S_3\rangle =\{(x,x)|x\in\mathbb{R}\}$
  • $\langle S_1\cup S_2\rangle$$=\langle\{(1,0),(0,1)\}\rangle$
    Sean $a\in\mathbb{R}$, $b\in\mathbb{R}$
    Como $a(1,0)+b(0,1)=(a,0)+(0,b)=(a,b)$ y $a$ y $b$ son números reales cualesquiera, entonces para cualquier $(x,y)\in\mathbb{R}$ podremos encontrar una combinación lineal de $S_1\cup S_2$ cuyo resultado sea $(x,y)$
    Por lo tanto, $\langle S_1\cup S_2\rangle=\mathbb{R}^2$.
  • $\langle S_1\rangle\cup\langle S_2\rangle$$=\{(x,0)|x\in\mathbb{R}\}\cup\{(0,y)|y\in\mathbb{R}\}$
    Es decir, únicamente podemos obtener valores en los ejes de nuestro plano cartesiano.
  • $\langle S_1\cap S_3\rangle$$=\emptyset$$=(0,0)$
  • $\langle S_1\rangle\cap\langle S_3\rangle$$=\langle\{(x,0)|x\in\mathbb{R}\}\rangle\cap\langle\{(x,x)|x\in\mathbb{R}\}\rangle$
    Una combinación lineal pertenece a este conjunto si el resultado puede expresarse con únicamente elementos de $S_1$ y con únicamente elementos de $S_2$.
    ¿Qué elementos de $\mathbb{R}^2$ tienen en la segunda entrada al cero y en ambas entradas al mismo número? Solo en $(0,0)$
    Por lo tanto, $\langle S_1\rangle\cap\langle S_3\rangle =(0,0)$.

Tarea Moral

  1. Encuentra un $K_1$ campo y un $K_1$ – espacio vectorial donde puedas definir un subconjunto infinito $S_1$ tal que $\langle S_1\rangle$ sea finito.
  2. Encuentra un $K_2$ campo y un $K_2$ – espacio vectorial donde puedas definir un subconjunto $S_2$ de un solo elemento tal que $\langle S_2\rangle$ sea infinito.
  3. Toma en cuenta los subconjuntos definidos al final de esta entrada donde $K=\mathbb{R}$ y $V=\mathbb{R}^2$. Describe la relación que existe entre:
    • $\langle S_1\cup S_3\rangle$ y $\langle S_1\rangle\cup\langle S_3\rangle$
    • $\langle S_1\cap S_2\rangle$ y $\langle S_1\rangle\cap\langle S_2\rangle$

Más adelante…

Muchas veces en matemáticas buscamos el mayor / menor conjunto con el cual obtengamos ciertas propiedes. Siguiendo esta idea, veremos un nuevo concepto: conjunto linealmente independiente.

Entradas relacionadas

Definición y ejemplos de COMBINACIÓN LINEAL

INTRODUCCIÓN

Tenemos nuestros ingredientes: los vectores y los escalares.
Tenemos nuestras parejas: resultado del producto un vector por un escalar.
Tenemos nuestros equipos: resultado de la suma de parejas.

La combinación lineal es el “equipo” que formamos por medio de nuestras “parejas” (puede ser una pareja solita). Por medio de este concepto, entrelazamos todo lo que hemos visto: campos y espacios vectoriales (con sus operaciones y propiedades).

COMBINACIÓN LINEAL

Definición: Sea $V$ un $K$ – espacio vectorial. Consideremos $m\in \mathbb{N}^{+}$ y $v_1,…,v_m\in V$. Una combinación lineal de $v_1,…,v_m$ es una expresión de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $\lambda_1,…,\lambda_m\in K$.

Nota: De modo más general, si $S$ es un subconjunto de $V$, entonces una combinación lineal de vectores de $S$ es un vector de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $v_1,…,v_m\in S$ y $\lambda_1,…,\lambda_m\in K$.

Ejemplos:

  • Sea $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $2(1,0,0)-(1,-1,0)+5(1,1,-1)=(6,6,-5)$;
    $-3(1,0,0)+0(1,-1,0)+(1,1,-1)=(-2,1,-1)$;
    $0(1,0,0)+(1,-1,0)+0(1,1,-1)=(1,-1,0)$
    son combinaciones lineales de vectores de $S$.
  • Sea $S=\{(\frac{1}{n},\frac{1}{n})|n\in\mathbb{N}^{+}\}$.
    $2(\frac{1}{2},\frac{1}{2})+3(\frac{1}{6},\frac{1}{6})-4(\frac{1}{12},\frac{1}{12})=(\frac{7}{6},\frac{7}{6})$
    es una combinación lineal de vectores de $S$.
  • Sea $S=\mathcal{P}_2(\mathbb{R})=\{a+bx+cx^2|a,b,c\in\mathbb{R}\}$.
    $\frac{1}{2}x+(1-2x+5x^2)-(8+3x)+3(4-2x+x^2)=5-\frac{21}{2}x+8x^2$
    es una combinación lineal de vectores de $S$.

Nota: Aun cuando el conjunto $S$ sea infinito, sólo consideraremos combinaciones lineales en las que se use una cantidad finita de vectores de $S$.

Observación: A menudo, uno o más vectores en un conjunto dado pueden expresarse como combinaciones lineales de otros vectores en el conjunto.

Proposición: Sean $V$ un $K$ – espacio vectorial, $S\not=\emptyset$ un subconjunto de $V$. El conjunto de todas las combinaciones lineales de vectores de $S$ cumple lo siguiente:

i) es un subespacio de $V$.

ii) contiene a $S.$

iii) está contenido en cualquier subespacio de $V$ que contenga a $S$.

Demostración: Sea $V$ un $K$ – espacio vectorial, $S\subseteq V$, $S\not=\emptyset$.
Denotemos por $\mathcal{C}(S)$ al conjunto de todas las combinaciones lineales de vectores de $S$.

i) P.D. $\mathcal{C}(S)\leqslant V$

  • Primero, como $S\not=\emptyset$, podemos tomar $v\in S$.
    $\therefore\theta_V=0v\in \mathcal{C}(S)$.
  • Luego, sean $v,w\in\mathcal{C}(S)$.
    Es decir, existen $n,m\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n, \mu_1,…,\mu_m\in K$, $v_1,…,v_n,\omega_1,…,\omega_m\in S$ tales que:
    $v=\lambda_1v_1+…+\lambda_nv_n$
    $w=\mu_1\omega_1+…+\mu_m\omega_m$
    Veamos que $v+w\in\mathcal{C}(S)$.
    $v+w=(\lambda_1v_1+…+\lambda_nv_n)+(\mu_1\omega_1+…+\mu_m\omega_m)\in \mathcal{C}(S).$.
  • Por último, sean $v\in\mathcal{C}(S)$, $\lambda\in K$.
    Es decir, existen $n\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n\in K$ tales que
    $v=\lambda_1v_1+…+\lambda_nv_n$
    Veamos que $\lambda v\in K$.
    $\begin{align*} \lambda v & =\lambda(\lambda_1v_1+…+\lambda_nv_n) \\ & =\lambda(\lambda_1v_1)+…+\lambda(\lambda_nv_n) \\ & =(\lambda\lambda_1)v_1+…+(\lambda\lambda_n)v_n\in\mathcal{C}(S) \end{align*}.$

ii) P.D. $S\subseteq\mathcal{C}(S)$

Sea $v\in S$.
Tenemos que $v=1v\in\mathcal{C}(S).$

iii) P.D. Si $W \leq V$ es tal que $S\subseteq W$, entonces $\mathcal{C}(S)\subseteq W$.

Sea $W \leq V$ tal que $S\subseteq W$.
Tomaremos $v$ un elemento arbitrario de $\mathcal{C}(S)$:
Sean $v_n \in\mathcal{C}(S)$, existen $n\in\mathbb{N}^{+}$ y $v_1,\dots, v_n \in\mathcal{C}(S)$ de manera que
$v=\lambda_1v_1+…+\lambda_nv_n$
donde $\lambda_1,…,\lambda_n\in K$ y $v_1,…,v_n\in S$.
Tenemos que $\forall i$ $(v_i\in S\subseteq W)$
$\therefore v_i\in W$ para toda $i.$
Gracias a que $W$ es un subespacio y a que el producto por escalar y la suma son cerrados en los subespacios, se cumple que $\lambda_iv_i\in W$ para toda $i$ y por ende, $v=\lambda_1v_1+…+\lambda_nv_n\in W.$

Tarea Moral

  1. Describe (en lenguaje natural o algebraico) los elementos que se pueden obtener mediante combinaciones lineales de $S=\{(1,-1,0),(2,-2,0),(3,-3,0),…\}$.
  2. Obtén $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ como combinación lineal de $\begin{pmatrix} 2i & 6i \\ 4 & 2-2i \end{pmatrix}$ y $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ de 5 maneras distintas.
  3. ¿Existe algún conjunto $S$ infinito donde al menos un elemento no se pueda escribir como combinación lineal de otros elementos del conjunto? Puedes construirlo pensando en el ejercicio 1 – agregando un elemento -.

Más adelante…

Ahora que podemos tomar un subconjunto finito de vectores y obtener, por medio de combinaciones lineales, tanto conjuntos finitos como infinitos, analizaremos una propiedad muy peculiar del conjunto que resulta a partir de ello y el nombre que recibe.

Entradas relacionadas

Teoría de los Conjuntos I: Sucesor

Introducción

En esta nueva sección hablaremos acerca del sucesor de un número natural. Este nuevo concepto nos permitirá definir a los conjuntos inductivos e iniciar a descubrir el concepto del infinito desde la perspectiva de la teoría de conjuntos.

Concepto

Definición: Sea $x$ un conjunto, definimos al sucesor de $x$ como $s(x)=x\cup \set{x}$.

Ejemplos:

  • El sucesor de $\emptyset$ es $s(\emptyset)=\emptyset\cup \set{\emptyset}=\set{\emptyset}$.
  • El sucesor de $\set{\emptyset}$ es $s(\set{\emptyset})=\set{\emptyset}\cup \set{\set{\emptyset}}=\set{\emptyset, \set{\emptyset}}$.
  • Luego, el sucesor de $\set{\emptyset, \set{\emptyset}}$ es $s(\set{\emptyset, \set{\emptyset}})=\set{\emptyset,\set{\emptyset}}\cup \set{\set{\emptyset, \set{\emptyset}}}=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$.
  • El sucesor de $\set{\set{\emptyset}}$ es $s(\set{\set{\emptyset}})=\set{\set{\emptyset}}\cup \set{\set{\set{\emptyset}}}= \set{\set{\emptyset}, \set{\set{\emptyset}}}$.

$\square$

Aunque podemos definir al sucesor para cualquier conjunto, dado que en esta unidad únicamente estaremos trabajando con números naturales, usaremos la definición de sucesor de un conjunto para conjuntos que son números naturales.

Bajo este hecho va a resultar que si $x$ es un número natural, entonces $s(x)$ es un número natural, vamos a demostrar esto, pero antes demostraremos algunos lemas que nos serán de utilidad.

Resultados previos

Lema 1: Para cualquier número natural $n$, no es posible que $n\in n$.

Demostración:

Sea $n$ un número natural, entonces $n$ es un orden total con la $\in$ y así, los elementos de $n$, son $\in$-comparables, es decir, para cualesquiera $w,z\in n$ se tiene que $w\in z$ o $z\in w$ o $z=w$.

Dado que $n=n$, no ocurre que $n\in n$.

$\square$

Lema 2: Si $n$, $m$ son números naturales, entonces no es posible que $n\in m$ y $m\in n$ al mismo tiempo.

Demostración:

Sean $n$ y $m$ números naturales. Si $n\in m$ y $m\in n$, entonces $n\in n$ por transitividad de $\in$ en $n$, lo cual contradice el lema anterior.

Por lo tanto, no es posible que $n\in m$ y $m\in n$ al mismo tiempo.

$\square$

El sucesor de un natural

Ahora que demostramos los lemas anteriores probaremos que el sucesor de un número natural es un número natural.

Teorema:

  1. $\emptyset$ es un número natural.
  2. Si $x$ es un número natural, entonces $s(x)$ es un número natural.

Demostración:

En la entrada anterior probamos que $\emptyset$ es un número natural, lo que prueba el punto uno del teorema.

Ahora, sea $x$ un número natural. Veamos que $s(x)$ es un número natural, para ello vamos a probar que $x\cup\set{x}$ es un conjunto transitivo, ordenado totalmente con $\in$ y que para cada subconjunto $b$ no vacío se cumple que $b$ tiene mínimo y máximo con la pertenencia en $b$.

Sea $y\in x\cup\set{x}$. Si $y\in x$ dado que $x$ es un número natural, entonces $x$ es un conjunto transitivo y por lo tanto, $y\subseteq x$. Así, $y\subseteq x\cup\set{x}$.

Si $y\in \set{x}$, entonces $y=x$ y en particular, $y\subseteq x$ y así, $y\subseteq x\cup\set{x}$.

Por lo tanto, $s(x)$ es un conjunto transitivo.

Ahora, queremos ver que $s(x)$ es un orden total con la $\in_{s(x)}$, para ello debemos probar que $\in_{s(x)}$ es una relación asimétrica y transitiva, además de que sus elementos son $\in_{s(x)}$ comparables.

Sean $y,z\in s(x)$ tales que $y\in_{s(x)} z$. Veamos que no es posible que $z\in_{s(x)} y$.

Dado que $y,z\in s(x)=x\cup \set{x}$, tenemos los siguientes casos:

Caso 1: Si $y\in x$ y $z\in x$, entonces por ser $\in_x$ una relación asimétrica en $x$ y $y\in z$, se tiene que no es posible que $z\in y$.

Caso 2: Si $y\in x$ y $z\in \set{x}$, entonces $z=x$. Dado que $y\in z$, si ocurriera que $z\in y$, entonces $x\in y$ y así, $x\in y$ y $y\in x$, lo cual probamos en el lema 2 que no ocurre, por lo tanto, $z\notin y$.

El caso $y\in \set{x}$ y $z\in x$, entonces $y=x$. Dado que $y\in z$, entonces $x\in z$, lo cual no puede ocurrir pues de ser así, $x\in z$ y $z\in x$ al mismo tiempo, lo que contradice al lema 2.

El caso en el que $y\in \set{x}$ y $z\in \set{x}$ no puede ocurrir pues de ser así, $y=x$ y $z=x$, en particular $y=z$ y por el primer lema de esta entrada vimos que no ocurre que $y\in y$.

Así, en cualquiera de los casos se satisface que $\in_{s(x)}$ es una relación asimétrica.

Ahora, veamos que $\in_{s(x)}$ es una relación transitiva. Para ello tomemos $w,y,z\in s(x)$ arbritarios tales que $w\in_{s(x)} y$ y $y\in_{s(x)} z$ y veamos que $w\in_{s(x)} z$.

Del hecho, $w\in_{s(x)} y$ y $y\in_{s(x)} z$ se derivan los siguientes casos:

Caso 1: Si $w\in x$, $y\in x$ y $z\in x$. Dado que $w\in y$ y $y\in z$, como $\in$ es una relación transitiva en $x$ se tiene que $w\in z$.

Caso 2: Si $w\in x$, $y\in x$ y $z\in \set{x}$, entonces $z=x$, por lo que $w\in z=x$.

El caso $w\in x$, $y\in \set{x}$ y $z\in \set{x}$, entonces $y=x=z$. Dado que $w\in y$ y $y\in z$, se tendría que $w\in y$ y $y\in y$, lo cual contradice al lema 1.

El caso $w,y,z\in\set{x}$ no es posible, pues de lo contrario $w=y=z=x$ y así $w\in w$, lo cual contradice al lema 1.

Por lo tanto, $\in_{s(x)}$ es una relación transitiva.

Finalmente, los elementos de $s(x)$ son $\in_{s(x)}$-comparables. En efecto, sean $y,z\in s(x)$.

Caso 1: Si $y\in x$ y $z\in x$, entonces como los elementos de $x$ son $\in$-comparables, debe ocurrir que $y\in z$ o $z\in y$ o $z=y$.

Caso 2: Si $y\in x$ y $z\in \set{x}$, entonces $z=x$. Por lo tanto, $y\in z$.

Caso 3: Si $y\in \set{x}$ y $z\in x$, entonces $y=x$. Por lo tanto, $z\in y$.

Caso 4: Si $y\in \set{x}$ y $z\in \set{x}$, entonces $y=x$ y $z=x$. Por lo tanto, $z=y$.

Por lo tanto, los elementos de $s(x)$ son $\in_{s(x)}$-comparables.

Así, $(s(x), \in)$ es un orden total.

Ahora, supongamos que $B$ conjunto no vacío es subconjunto de $s(x)$ y veamos que $B$ tiene máximo y mínimo.

Caso 1: Si $B\cap x=\emptyset$, entonces $B\subseteq \set{x}$ y como $B\not=\emptyset$ entonces $B=\set{x}$.

Luego, $x=\min (B)$ pues se satisface que para cualquier $y\in B\setminus \set{x}=\emptyset$, $x\in y$ por vacuidad.

Finalmente, $x=\max (B)$ pues se satisface que para cualquier $y\in B\setminus \set{x}=\emptyset$, $y\in x$ por vacuidad.

Caso 2: Si $B\cap x\not= \emptyset$, entonces $B\cap x$ es un subconjunto no vacío de $x$. Así, dado que $x$ es un natural, se satisface que $B\cap x$ tiene elemento mínimo y máximo con respecto a la $\in$ en $x$. Sea $b=\min (B\cap x)$ con respecto a la pertenencia en $x$ y $a=\max (B\cap x)$ con respecto a la pertenencia en $x$.

Veamos que $b=min(B)$ con respecto a $\in$ en $s(x)$. Sea $z\in B\setminus \set{b}$ arbitrario, vamos a probar que $b\in z$.

Caso 1: Si $z\in x$, entonces $z\in B\cap x$, entonces $b\in z$ pues $b=\min(B\cap x)$.

Caso 2: Si $z\notin x$, dado que $z\in s(x)=x\cup\set{x}$ entonces $z=x$. Como $b\in B\cap x$, entonces $b\in x$ y así, $b\in z$.

Así, $b=\min(B)$ para $B\subseteq s(x)$.

En la tarea moral será tu turno de probar que cualquier subconjunto no vacío de $s(x)$ tiene elemento máximo con respecto a la pertenencia en $s(x)$.

Por lo tanto, cualquier subconjunto de $s(x)$ tiene elemento mínimo y máximo con respecto a la $\in$ en $s(x)$.

Por lo tanto, $s(x)$ es un natural.

$\square$

Tarea moral

  • Describe al sucesor del natural $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}, \set{\emptyset, \set{\emptyset},\set{\emptyset, \set{\emptyset}}}}$.
  • Demuestra que si $s(n)=s(m)$, entonces $n=m$.
  • Prueba que $\bigcup s(x)=x$.
  • Demuestra que si $B$ es un subconjunto no vacío de $s(x)$, entonces $B$ tiene elemento máximo con respecto a la pertenencia en $s(x)$.

Más adelante

En la siguiente sección definiremos a los conjuntos inductivos, tales conjuntos nos darán la base para definir al conjunto de los naturales. Además hablaremos de un nuevo axioma: el axioma del infinito.

Enlaces

En el siguiente enlace podrás repasar el contenido acerca de números naturales. así mismo podrás ver más contenido acerca del tema:

Nota 16. Los números naturales.

Ecuaciones Diferenciales l – Introducción al Curso

¡Bienvenidos al curso de Ecuaciones Diferenciales I!

Hola, mi nombre es Omar y te doy la bienvenida al curso de Ecuaciones Diferenciales I el cual escribí como parte del proyecto PAPIME PE104721 Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM, cuyo objetivo principal es:

  • Comenzar un enfoque unificado y articulado para crear cursos completos, de acceso libre, gratuitos y de calidad, para la impartición y el autoaprendizaje de asignaturas de los primeros semestres de la Licenciatura en Matemáticas de la Facultad de Ciencias de la UNAM.

En este proyecto colaboran académicos y estudiantes de la Facultad de Ciencias de la UNAM, en particular, me ha tocado ser tu instructor en este curso escrito. Con este proyecto buscamos brindar a las nuevas generaciones de científicos alternativas de estudio en los temas relacionados con matemáticas, y no sólo eso, este material esta pensado para que sea utilizado por cualquier persona que quiera adquirir conocimientos en matemáticas a nivel universitario, en este caso particular, en ecuaciones diferenciales. Así mismo, se plantea fomentar una cultura de educación a distancia para que más profesores creen material de calidad y lo pongan a disposición del público en general, de manera gratuita y libre.

Este curso ha sido elaborado en base al temario oficial de la materia de Ecuaciones Diferenciales I impartido en la Facultad de Ciencias de la UNAM.

El curso de Ecuaciones Diferenciales I es una materia obligatoria para estudiantes de las licenciaturas en Actuaría, Matemáticas, Matemáticas Aplicadas, Física y Física Biomédica, todas ellas impartidas en la Facultad de Ciencias de la UNAM.

Esta materia es impartida en cuarto semestre, de manera que se considera que cuentas con conocimientos matemáticos sólidos de los tres semestres anteriores, particularmente de las materias de Calculo Integral y Diferencial I, II y III, además de materias como Geometría Analítica, Álgebra Superior I y II, Álgebra Lineal I y, aunque no es totalmente indispensable, Álgebra Lineal II y Calculo Integral y Diferencial IV (éstas últimas suelen llevarse de forma simultánea con Ecuaciones Diferenciales).

Sin embargo, es importante aclarar que este curso es un primer acercamiento a las ecuaciones diferenciales, lo que significa que partiremos de lo más básico y esencial de tal manera que el aprendizaje sea gradual, adecuado y confortante. Además, ha sido diseñado con un sentido propedéutico, pues se han tomado en cuenta una serie de consideraciones didácticas que hacen de la lectura más agradable, enriquecedora e integradora.

A lo largo de las clases notarás que las entradas cuentan con una presentación y diseño particular. En cada una de ellas hay una introducción al tema, una serie de definiciones precedidas por una motivación, la teoría matemática se construye a profundidad y con formalidad y posteriormente se pone en práctica dicha teoría a través de una serie de ejemplos resueltos paso a paso. Finalmente encontrarás una breve conclusión del tema y una motivación hacía el siguiente, así como una series de ejercicios que puedes realizar de forma optativa en los que pondrás a prueba tus conocimientos adquiridos.

Como complemento a este curso escrito, mi compañero Eduardo Vera ha elaborado una serie de videos en los que se desarrolla gran parte de la teoría que veremos en este curso escrito, si bien los temas en su mayoría son los mismos, el enfoque que se da en cada curso varía, además de que hay algunos temas que sólo encontrarás en la sección de videos o en la sección de notas, así que llevarlos de forma simultánea vuelve más enriquecedor el aprendizaje, sin embargo basta tomar sólo el curso escrito o sólo el curso audiovisual para conocer todo lo relacionado a la materia.

A los largo de las clases encontrarás hipervínculos que redirigen a la entrada anterior, a la posterior, a la página principal del curso y a los videos del tema correspondiente, así como a definiciones, teoremas o ejemplos anteriores, ya sea dentro del mismo curso o de un curso distinto dentro del blog, que requieran ser recordados, permitiendo una fluida conectividad en todo momento del curso.

Finalmente, en este curso se han incluido temas que presentan un mayor desarrollo matemático con el propósito de dar un fundamento teórico a los distintos métodos de resolución de las diferentes ecuaciones diferenciales que presentaremos a lo largo del curso, dichos temas están a disposición del estudiante, pero pueden considerarse opcionales para aquellos estudiantes que no requieran de un profundo conocimiento teórico en sus carreras, esto de ninguna manera interrumpirá el flujo de aprendizaje del curso. Si eres de la licenciatura de Matemáticas sí recomienda revisarlos.

Sin más, espero que disfrutes del curso, adquieras los conocimientos aquí planteados y avances en tu carrera ya sea como estudiante de la Facultad de Ciencias o como estudiante de algunas otras licenciaturas en las que las ecuaciones diferenciales son fundamentales o incluso como estudiante autodidacta interesado en aprender matemáticas.

Si en algún momento algo no queda lo suficiente claro siéntete libre de preguntar en los comentaros del blog, yo, así como otros estudiantes, estaremos atentos y procuraremos responder tus dudas.

¡Buen viaje!

Entradas relacionadas