Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna I: Postulados de Euclides

Introducción

En la primera entrada del curso definimos algunos objetos importantes que nos permitirán desarrollar la teoría y al final mostramos un ejemplo en donde varios de ellos entran en juego, sin embargo, dimos un par de cosa por ciertas, a saber, que es posible trazar los segmentos $AB$ y $ BC$ y que podemos extender dichos segmentos tanto como lo necesitemos.

Es importante mencionar que, para poder empezar a construir una teoría, se tienen que suponer algunas propiedades como ciertas. A este tipo de propiedades que se aceptan a priori les llamamos axiomas.

En Lógica Matemática requerimos que los axiomas de una teoría tengas las siguientes características: ser completos, esto es, que a partir de ellos todas las proposiciones referentes a objetos de la teoría puedan ser demostradas; que sean independientes o que ninguno de ellos pueda ser demostrado a partir de los demás, y que sean consistentes, es decir, que no se contradigan.

Postulados de Euclides

Euclides fue u matemático griego que vivió alrededor del año 300 AC. En su obra reunió los conocimientos fundamentales que los matemáticos griegos habían desarrollado hasta ese momento y los expuso de manera ordenada. Sus demostraciones geométricas se guiaban por el método deductivo, lo que garantizaba la validez de sus afirmaciones. El método deductivo sigue siendo útil no solo en la Geometría sino en las Matemáticas en general.

Euclides comenzó su obra definiendo los objetos con los que iba a trabajar, después establecido las reglas generales con que esos objetos se relacionaban es decir los postulados y después enuncio propiedades generales sobre la igualdad de magnitudes llamadas nociones comunes. Cabe destacar que los axiomas de Euclides no cumplen con la condición de ser completos, sin embargo, a partir de ellos se puede construir gran parte de la teoría geométrica que hoy se estudia.

Estos son los cinco axiomas a los que Euclides llamo postulados:

  1. Por dos puntos siempre es posible trazar una recta. Lo que nos permite trazar $AC$ y $BC$ en el ejemplo del final de la entrada pasada.
  2. Es posible prolongar una recta tanto como se quiera en cualquiera de sus dos direcciones. Así podemos extender $AC$ y $BC$ hasta los puntos $A’$ Y $B’$ respectivamente.

Definición 1. Al lugar geométrico de los puntos $P$ que equidistan a un punto fijo $O$ le llamamos circunferencia o circulo. Si la distancia entre $P$ y $O$ es $r$ denotamos como $C(O,r)$ a la circunferencia con centro en $O$ y radio $r$.

  1. Cualquier punto del plano y segmento pueden ser usados como centro y radio respectivamente de un círculo. Esta propiedad nos permite comparar tamaños de segmentos, pues en Geometría Moderna no se utilizan unidades preestablecidas. En nuestro problema pudimos hacer $AC$ = $CA’$ porque implícitamente trazamos una circunferencia con centro en $C$ y radio $AC$ de manera que al intersecar la recta que contiene al segmento $AC$ con el circulo $C(C, AC)$ pudimos encontrar $A’$.
  2. Todos los ángulos rectos son iguales. Con esta propiedad es posible definir una unidad angular, el ángulo recto.
  3. Si por dos rectas pasa una transversal tal que, de alguno de los lados de la transversal, la suma de los ángulos interiores es menor a dos ángulos rectos, entonces, si las dos rectas se prolongan lo suficientemente del lado en que dicha suma es menor a 2 ángulos rectos, las rectas se intersecaran.

El quinto postulado y sus consecuencias

Como podemos apreciar, los primeros cuatro postulados son aseveraciones intuitivas mientras que el quinto está enunciado de una forma que parece establecer condiciones a partir de las cuales ocurre algo, esto causo mucha controversia por más de dos mil años, pues aparenta ser una proposición que debe ser demostrada.

Hubo numerosos intentos por demostrar el que fuera conocido en aquel entonces como axioma de las paralelas. Como resultado se encontraron equivalencias, se llegó a la conclusión de que no era posible demostrar el quinto postulado a partir de los cuatro primeros y que además era posible aceptar otros axiomas como ciertos en lugar del quinto, lo que dio origen a las geometrías no euclidianas.

Estas son algunas de las equivalencias más sencillas del quinto postulado:

  1. 1. Dada una recta y un punto fuera de ella existe una única paralela a la recta dada que pasa por el punto.
  1. 2. Los ángulos alternos internos entre paralelas son iguales.

Definición 2. El ángulo exterior de un polígono es el ángulo entre cualquiera de sus lados y la extensión de otro de los lados con el que comparte un vértice.

  1. 3. Un ángulo exterior a un triángulo es igual a la suma de los dos ángulos interiores no adyacentes a él.
  1. 4. Para todo triángulo la suma de sus ángulos interiores es igual a dos ángulos rectos.

Debido a esta ultima propiedad denotaremos a la suma de los ángulos internos de un triangulo como $\pi$.

Nociones comunes

Las nociones comunes que enunció Euclides también son axiomas que se refieren al manejo de magnitudes del mismo tipo.

  1. Cosas que sean iguales a una tercera son iguales entre sí.
    Si $a = c$ y $c = b$ entonces $a = b$
  2. Si a cosas iguales se añaden cosas iguales las resultantes son iguales.
    Si $a = b$ entonces $a + c = b + c$
  3. Si de cosas iguales se substraen cosas iguales las resultantes son iguales.
    Si $a = b$ entonces $a – c = b – c$
  4. Cosas que coinciden una con otra son iguales entre sí.
    Esto se refiere más que nada a la superposición de objetos, es decir si al superponer dos objetos estos coinciden entonces tendrán las mismas magnitudes.
  5. El todo es mayor que cualquiera de sus partes.
    Si $c = a + b$ entonces $c > a$ y $c > b$, siempre que $a$ y $b$ representen magnitudes positivas.

Hay otras nociones que también usamos frecuentemente, por ejemplo, las primeras tres nociones se preservan si sustituimos igualdad por desigualdad.

Tricotomía. Para $a$ y $b$ magnitudes de la misma clase ocurre uno y solo uno de los siguientes:
$a = b$, $a < b$ o $b < a$.

Demostración por reducción al absurdo

Este tipo de demostración es comúnmente usada en Matemáticas y particularmente en este curso será muy útil cuando no es posible demostrar algo de manera directa. La idea general es suponer que dada una hipótesis no se cumple la tesis de la proposición y a partir de ahí tenemos que encontrar algún tipo de contradicción a algo que sabemos que si es cierto.

Para ejemplificar este de método de demostración, mostraremos una equivalencia del quinto postulado.

Proposición: El axioma de las paralelas y la afirmación 5.2 son equivalentes.

Demostración: Seguiremos el método de reducción al absurdo, primero veamos que 5 implica 5.2. Asumimos que se cumple el axioma de las paralelas y queremos demostrar que dadas dos rectas paralelas y una transversal a ella los ángulos alternos internos son iguales.

Sean $l_{1}$ y $l_{2}$ las rectas paralelas y $l_{3}$ la transversal a ellas y supongamos que los ángulos alternos internos $\alpha$ y $\beta$ no son iguales, por tricotomía uno es mayor que el otro.

Sin pérdida de generalidad supongamos que $\alpha > \beta$,

podemos sumar a ambos lados de la desigualdad $\gamma$, entonces $\alpha + \gamma > \beta + \gamma$,

dado que $\alpha + \gamma = \pi$ esto implica que $\pi > \beta + \gamma$.

Por el quinto axioma de Euclides sabemos que las rectas se cortan. Lo cual es una contradicción al hecho de que las rectas son paralelas. Así, nuestra suposición de que los ángulos alternos internos eran diferentes es errónea y, por lo tanto, los ángulos alternos internos son iguales.

$\blacksquare$

Ahora veamos que 5.2 implica 5. Nuestra hipótesis es que los ángulos alternas internos entre paralelas son iguales, queremos demostrar que si de un lado de una transversal que corta a dos rectas la suma de los ángulos internos es menor que dos ángulos rectos entonces dichas rectas se cortan en algún punto.

Supongamos lo contrario es decir, que las rectas $l_{1}$ y $l_{2}$ son paralelas por la afirmación 5.2 sabemos que los ángulos alternos internos son iguales, $\beta = \gamma$.

Y sabemos que los ángulos $\alpha$ y $\gamma$ son suplementarios, esto es, que su suma es igual a dos ángulos rectos.

Por lo tanto $\pi = \alpha + \gamma = \alpha + \beta$.

Lo que es una contradicción pues nuestra hipótesis era que la suma de los ángulos era menor que dos ángulos rectos. Por lo tanto, las rectas se cortarán en algún punto.

$\blacksquare$

De aquí en adelante usaremos cualquiera de las equivalencias del quinto postulado según nos convenga.

Volviendo a nuestro ejemplo del la entrada anterior recordemos que habíamos construido dos triángulos que tenían dos lados iguales y el ángulo entre dichos lados también igual.

Una manera de demostrar la igualdad del tercer lado seria suponer que podemos girar el triángulo $\triangle A’CB’$ en torno al punto $C$ de tal manera que el lado $CA’$ se encimara sobre el lado $CA$, dado que los ángulos $\angle ACB$ y $\angle A’CB’$ son iguales entonces el lado $CB’$ se encimaría con el lado $CB$ y ya que los lados superpuestos tienen la misma longitud los pares de puntos $A$, $A’$ y $B$, $B’$ coincidirían, de esta manera los segmentos $AB$ y $A’B’$ coincidirían, pero también los pares de ángulos $\angle CAB$, $\angle CA’B’$ y $\angle CBA$, $\angle CB’A’$ coincidirían, por la noción común numero 4 son iguales entre ellos.

Tarea moral

  1. Demuestra el reciproco de la afirmación 5.2; es decir, si por dos rectas distintas pasa una transversal y los ángulos alternos internos son iguales entonces las rectas son paralelas.
  2. Muestra que dos rectas paralelas a una tercer recta son paralelas entre si.
  3. Demuestra que la perpendicular a una recta desde un punto exterior a ella es única.
  4. Demuestra que la perpendicular a una recta desde un punto en ella es única.
  5. Demuestra las equivalencias que no se demostraron del quinto postulado de Euclides

Más adelante…

En la siguiente entrada hablaremos de manera más formal sobre la rotación que usamos al final de esta entrada y sobre otras transformaciones que nos permitirán demostrar que cuando dos triángulos tienen dos lados respectivamente iguales y el ángulo entre ellos también igual entonces podemos decir que los triángulos son iguales, abordaremos también otros criterios.

Entradas relacionadas

Geometría Analítica I: Intersección de rectas

Introducción

En entradas anteriores hemos definido las rectas en formas distintas y hemos realizado algunos ejercicios. El siguiente paso en nuestro curso es buscar el punto de intersección de dos rectas, pues sabemos (por lo que hemos discutido) que si dos rectas no son paralelas, entonces estas se intersectan en algún punto. Buscamos esto ya que no hay que olvidar nuestro objetivo principal, el mostrar todos lo enunciado por Euclides en su geometría.

El procedimiento de esta entrada será un poco particular pues antes de comenzar con el tema principal, discutiremos el paralelismo, sin embargo interrumpiremos momentáneamente este tema para razonar cómo es que se encuentra la intersección de dos rectas $l_1$ y $l_2$. De manera intuitiva, podemos imaginar que el punto de intersección de dos rectas es aquel que cumple con la ecuación de cada una al mismo tiempo ; esta idea será nuestra guía para desarrollar la teoría. Una vez que hayamos razonado este tema, volveremos para concluir la parte de paralelismo.

Paralelismo

Iniciemos entonces hablando de cuando dos rectas no se intersectan, esto es que sean paralelas.

Definición. Dos rectas $l_1$ y $l_2$ $\in \mathbb{R}^2$ son paralelas, si no se intersectan, esto es que

$L_1 \cap l_2 = \emptyset$

donde $\emptyset$ denota al conjunto vacío. Denotaremos dos rectas paralelas como $l_1 \parallel l_2$.

Pero no sólo dos rectas pueden ser paralelas; seguramente mientras leías estas últimas palabras, pensabas en los planos que es análogo a la definición anterior, sin embargo me refiero a los vectores.

Definición. Dados dos vectores $u,v \in \mathbb{R}^2$ distintos de $0$, decimos que $u$ es paralelo a $v$ si existe un número real $t$ tal que

$u=tv$

Denotaremos el paralelismo entre dos vectores como $u \parallel v$.

A partir de estas dos definiciones podemos enunciar el siguiente lema, pero aún no tenemos la experiencia suficiente para demostrarlo de manera completa. Por ahora, enunciémoslo y demostremos la parte que nos es posible.

Lema. Dos rectas diferentes en forma paramétrica

$l=\{ p+rq : r \in \mathbb{R} \}$ y $m= \{ u+sv : r \in \mathbb{R} \}$

son paralelas si y sólo si los vectores directores $q$ y $v$ son paralelos.

Demostración.

«Regreso»: Comencemos suponiendo que los vectores son paralelos por lo que debemos demostrar que $l\cap m =\emptyset$.

Si $q$ y $v$ son paralelos, entonces existe un $t \in \mathbb{R}$ tal que

$q=tv$

Si suponemos que la intersección es no vacía (dem. por contradiccióon), entonces tendríamos un punto perteneciente a las dos rectas, esto es

$u+sv=p+rq$

Para algún $s$ y algún $r$. Recordemos que por hipótesis $q=tv$, por lo que al sustituir este valor en la igualdad anterior tenemos

$u+sv=p+r(tv)$

Utilizando los axiomas de los reales podemos acomodar esta igualdad a nuestra conveniencia

$u-p=rtv-sv$

Al despejar $p$ tenemos que

\begin{align*}
p&=u-rtv+sv \\
&=u-v(rt-s)
\end{align*}

Al sustituir $p$ y $q$ en la definición de la recta $l$ obtenemos que

\begin{align*}
l&=\{ ((u-v(rt-s))+r(tv) : r,s,t \in \mathbb{R} \} \\
&=\{ u-rtv+sv+rtv : r,s,t \in \mathbb{R} \} \\
&= \{ u+sv-rtv+rtv : r,s,t \in \mathbb{R} \} \\
&= \{ u+sv : s \in \mathbb{R} \}
\end{align*}

$\Rightarrow l=m$

Pero esto es una contradicción ya que claramente al inicio de este lema se menciona que $l \neq m$.

$\therefore$ si $q$ y $v$ son paralelos, entonces $l \parallel m$ pues al suponer que $l \cap m \neq \emptyset$, llegamos a una contradicción.

«Ida»: Aunque parece extraño, aquí es cuando debemos de cortar con el tema de paralelismo e indagar un poco sobre la intersección de rectas pues es necesario lo que trataremos a continuación para poder concluir nuestra demostración.

$\dots$

Intersección de rectas

De manera intuitiva sabemos que dos rectas no paralelas se intersectan en un punto. En esta parte de la entrada, queremos encontrar ese punto.

Antes de estudiar el procedimiento general, realicemos un ejemplo para obtener una visión de lo que nos espera.

Ejemplo:

Tomemos dos rectas en su forma paramétrica dadas por

$l_1=\{ (2,-8)+r(7,-3) : r \in \mathbb{R} \}, \text{ } l_2={ (7,-4)+s(1,2) : s \in \mathbb{R} }$

Nuestro objetivo en este ejemplo es encontrar el punto $p$ en el cual $l_1$ y $l_2$ se intersectan, esto es el punto que cumpla ambas ecuaciones

\begin{align*}
(2,-8)+r(7,-3)&=p=(7,-4)+s(1,2) \\
\Rightarrow 2,-8)+r(7,-3)&=(7,-4)+s(1,2)
\end{align*}

Al juntar los terminos que contienen un parámetro de un lado del igual y aquellos que son puntos definidos del otro y desarrollar obtenemos

\begin{align*}
(2,-8)-(7,-4)&=s(1,2)-r(7,-3) \\
\Leftrightarrow (2-7,-8+4)&=(s-7r,2s+3r) \\
\Leftrightarrow (-5,-4)&=(s-7r,2s+3r)
\end{align*}

Dado que son vectores que queremos sean iguales, entonces deben ser iguales entrada a entrada; por lo que tenemos un sistema de ecuaciones

\begin{cases}
-5=s-7r \dots (a)\\
-4=2s+3r \dots (b)
\end{cases}

Afortunadamente, ya sabemos como resolver sistemas de ecuaciones. En este caso en especial, podemos multiplicar la ecuación $a$ por $-2$ para obtener $10=-2s+14r$ y sumar este resultado a la ecuación $b$:

\begin{align*}
10&=-2s+14r\\
-4&=2s+3r \\
\hline
6&=17r
\end{align*}

$\Rightarrow r=\frac{6}{17}$

Ya que obtuvimos el valor de $r$, podemos sustituirlo en alguna de las ecuaciones principales para obtener $s$ y obtenemos su valor

$s=\frac{-43}{17}$

Usando cualquiera de los dos valores, encontramos que el punto de intersección es

$(2,-8+\frac{6}{17}(7,-3)\approx (4.4705,-9.0588)\approx (7,-4)+\frac{-43}{17}(1,2)$

Procedimiento general

Usemos como base el ejemplo pasado para establecer un procedimiento general para enconrar el punto de intersección de dos rectas.

Comencemos con las rectas

$l_1={ (p_1,p_2)+r(q_1,q_2) : r \in \mathbb{R} }, \text{ } l_2={ (u_1,u_2)+s(v_1,v_2) : s \in \mathbb{R} }$

Con base en el ejemplo, el siguietne paso es establecer un punto digamos $w$ que cumpla ambas ecuaciones

\begin{align*}
(p_1,p_2)+r(q_1,q_2)&=w=(u_1,u_2)+s(v_1,v_2) \\
(p_1,p_2)+r(q_1,q_2)&=(u_1,u_2)+s(v_1,v_2)
\end{align*}

Colocamos de un lado del igual los elementos que se multiplican por un parámetro y lo demás del otro lado y desarrollamos

\begin{align*}
r(q_1,q_2)-s(v_1,v_2)&=(u_1,u_2)-(p_1,p_2) \\
(rq_1-sv_1,rq_2-sv_2)&=(u_1-p_1,u_2-p_2)
\end{align*}

Como tenemos la igualdad de dos vectores, deben ser iguales entrada a entrada, esto es

\begin{cases}
rq_1-sv_1= u_1-p_1 \dots (a)\\
rq_2-sv_2= u_2-p_2 \dots (b)
\end{cases}

En este punto, debemos solucionar el sistema de ecuaciones de manera general, para lo cual multiplicaremos $(a)$ por $q_2$ y $(b)$ opr $q_1$ y restaremos las expresiones resultantes

\begin{align*}
rq_1q_2-sv_1q_2&=u_1q_2-p_1q_2 \\
rq_2q_1-sv_2q_1&=u_2q_1-p_2q_1\\
\hline
sv_2q_1-sv_1q_2&=u_1q_2-p_1q_2-u_2q_1+p_2q_1
\end{align*}
A partir de esta última expresión podemos despejar el parámetro $s$ para obtener

$s=\frac{u_1q_2-p_1q_2-u_2q_1+p_2q_1}{v_2q_1-v_1q_2}$

Notemos que $s$ se puede indefinir si $v_2q_1-v_1q_2=0$, esto es que

$v_2q_1=v_1q_2$

pero la única manera de que esto suceda es si $l_1 \parallel l_2$, que no es el caso que estamos tratando. Por lo tanto, el sistema siempre tiene solución. Así, el punto de intersección $w$ está dado por

\begin{align*}
w&=(u_1,u_2)+s(v_1,v_2) \\
&=(u_1,u_2)+\frac{u_1q_2-p_1q_2-u_2q_1+p_2q_1}{v_2q_1-v_1q_2}(v_1,v_2)
\end{align*}

Es posible encontrar el punto $w$ al encontrar el valor del parámetro $r$ y es de manera análoga a lo que cabamos de realizar.

Recapitulemos ligeramente lo que acaba de pasar, pues acabamos de demostrar la parte faltante del lema enunciado en la sección de paralelismo. Por lo descrito arriba, resulta que si las rectas son paralelas, entonces no hay un punto de intersección, esto es que el sistema de ecuaciones no tiene solución, pero esto pasa solamente si los vectores son paralelos.

$\square$

Podemos enunciar esto último como una proposición.

Proposición. Si los vectores directores de dos rectas en su forma paramétrica no son paralelos, entonces las rectas se intersectan.

Continuación paralelismo

Concluyamos esta entrada con la teoría faltante de paralelismo.

Teorema. Dada una recta $l \in \mathbb{R}^2$ y un punto $p$ fuera de ella, siempre existe una recta $m$ que pasa por $p$ y es paralela a $l$.

Demostración.

Sea la recta $l$ en su forma paramétrica

$l=\{ u+rv : r \in \mathbb{R} \}$

Proponemos a la recta

$m=\{ p+rv : r \in \mathbb{R} \}$

como una recta que pasa por $p$ y es paralela a $l$. Por como $m$ está definida, esta recta cumple que pasa por $p$. Además, sabemos que $1\dot v=v$, por lo que (por definición de vectores paralelos) $v$ es paralelo a $v$ y esto implica que $m$ es paralela a $l$ (por el lema).

$\therefore$ Existe una recta que pasa por $p$ y es paralela a $l$.

El siguiente corolario es lo última de esta entrada y la demostración se deja como tarea moral ya que hemos desarrolado las herramientas suficientas para probarlo.

Corolario. Dada una recta $l$ y $p$ un punto fuera de ella, la recta que pasa por $p$ y es paralela a $l$ es única.

Tarea moral

  • En el desarrollo general para encontrar la intersección de dos rectas, existe un caso en el que el sistema de ecuaciones no tiene solución, esto es cuando $v_2q_1=v_1q_2$. Justifica porqué este caso no es posible si dos rectas se intersectan.
  • Encuentra el parámetro $r$ en esta la sección antes mencionada, para encontrar a $w$ en términos de la otra recta.
  • Demuestra el corolario.
  • Encuentra las intersecciones de las rectas
    • $l_1=\{ (3,2)+t(2,0) : t \in \mathbb{R} \}$
    • $l_2=\{ (5,1)+s(-4,3) : s \in \mathbb{R} \}$
    • $l_3=\{ (-6,-1)+r(0,-7) : r \in \mathbb{R} \}$
  • Prueba que las rectas $l=\{(-1,5)+t(4,-2) : t \in \mathbb{R}\}$ y $m=\{ (0,2)+s(-20,10) : s \in \mathbb{R} \}$

Más adelante…

En esta entrada tratamos la intersección de rectas en su forma paramétrica, conforme avancemos en el curso, hablaremos de la recta en otras formas a partir de las cuales también nos será posible encontrar la intersección entre rectas.

Álgebra lineal II: Diagonalizar

Introducción

En la entrada anterior estudiamos la triangularización de matrices, que consistía en llevar matrices a una forma triangular superior. En esta fortaleceremos esta idea, y buscaremos maneras de llevar una matriz a una matriz diagonal: a este proceso se le conoce como diagonalizar.

Matrices y transformaciones diagonalizables

A lo largo de esta sección fijamos $F$ un campo. Todos los espacios vectoriales se asumirán de dimensión finita.

Definición.

  1. Una matriz $A\in M_n(F)$ es llamada diagonalizable si es similar a una matriz diagonal en $M_n(F)$.
  2. Una transformación lineal $T:V\to V$ sobre un espacio vectorial $V$ se llama diagonalizable si existe una base de $V$ tal que la matriz de $T$ respecto a esa base sea diagonal.

Es decir una matriz $A\in M_n(F)$ es diagonalizable si y sólo si podemos escribir

\begin{align*}
A=PDP^{-1}
\end{align*}

para alguna matriz invertible $P\in M_n(F)$ y una matriz diagonal $D=[d_{ij}]\in M_n(F)$. Nota que la definición implica que cualquier matriz similar a una matriz diagonalizable es a su vez diagonalizable. De misma manera, una transformación lineal es diagonalizable si su representación es diagonalizable respecto a cualquier base (aunque no será necesariamente diagonal en cualquier base).

Damos la siguiente caracterización de transformaciones diagonalizables.

Teorema.

Una transformación lineal $T:V\to V$ es diagonalizable si y sólo si $V$ tiene una base compuesta por eigenvectores de $T$.

Demostración. Supongamos que $T$ es diagonalizable. Por tanto existe una base $v_1,\dots, v_n$ de $V$ tal que la matriz asociada a $T$ en esta base es diagonal. Si $(a_{ii})_{i=1}^{n}$ son las entradas diagonales de $A$, entonces por definición $T(v_{i})=a_{ii} v_i$ para todo $i=1,\dots, n$. Luego $v_1,\dots, v_n$ es una base de $V$ compuesta por eigenvectores de $T$.

Conversamente, supongamos que $T$ tiene una base $v_1,\dots, v_n$ compuesta por eigenvectores de $T$. Si $T(v_i)=d_i v_i$ entonces la matriz respecto a $v_1,\dots, v_n$ de $T$ es diagonal con entradas $d_i$.

$\square$

Primeras propiedades

Tenemos dos observaciones inmediatas.

Observación. El teorema nos proporciona una manera de diagonalizar explícitamente una matriz. Si $A\in M_n(F)$ es diagonalizable, entonces encontramos una base de $V=F^n$ formada por eigenvectores y los acomodamos como columnas de una matriz $P$. Entonces $P^{-1}AP=D$ es diagonal y $A=PDP^{-1}$.

Observación. Supongamos que $A$ es diagonalizable y que $A=PDP^{-1}$ para alguna matriz diagonal $D$ y una matriz invertible $P$.

  1. El polinomio característico de $A$ y de $D$ es el mismo, puesto que son matrices similares. De esto deducimos que
    \begin{align*}
    \prod_{i=1}^{n}(X-d_{ii})=\chi_{A}(X).
    \end{align*}
    En particular, los eigenvalores de $A$ son las entradas diagonales de $D$ (contados con multiplicidad).
  2. Sea $\lambda\in F$ un eigenvalor de $A$. Entonces la multiplicidad algebraica es igual al número de índices $i=1,\dots, n$ tales que $d_{ii}=\lambda$ (esto por el inciso anterior). Por otro lado, la dimensión geométrica de $\lambda$ como eigenvalor de $A$ o $D$ es la misma puesto que la asignación $X\mapsto P^{-1}X$ induce un isomorfismo entre $\ker(\lambda I_n-A)$ y $\ker(\lambda I_n-D)$. Pero además la multiplicidad geométrica de $\lambda$ como eigenvalor de $D$ también coincide con el número de índices $i=1,\dots, n$ tales que $\lambda_{ii}=n$, ya que el sistema $DX=\lambda X$ es equivalente a $(d_{ii}-\lambda )x_i=0$. Concluimos que en una matriz diagonalizable, la multiplicidad algebraíca y la multiplicidad geométrica coinciden.

Un par de problemas

A continuación resolvemos un par de problemas: el primero sirve para aplicar lo que hemos visto hasta ahora, y el segundo nos será útil más adelante.

Problema. Demuestra que la matriz

\begin{align*}
A=\begin{pmatrix}
1 & a\\ 0 & 1\end{pmatrix}
\end{align*}

no es diagonalizable si $a\neq 0$.

Solución. Supongamos que $A$ es diagonalizable y escribamos $A=PDP^{-1}$ con $P$ invertible y $D$ diagonal. Como $A$ es triangular superior con entradas diagonales iguales a $1$, deducimos que $1$ es el único eigenvalor de $A$. Por la observación anterior tenemos que las entradas diagonales de $D$ son $1$, por tanto $D=I_n$. Pero entonces $A=PI_nP^{-1}=I_n$ una contradicción si $a\neq 0$.

$\square$

El siguiente problema es más técnico, y nos servirá para demostrar uno de los teoremas fundamentales que caracteriza a las matrices diagonalizables.

Problema. Sea $k>1$ y sean $P_1,\dots, P_k$ polinomios primos relativos dos a dos. Si $P=P_1\cdot P_2\cdots P_k$ es su producto y $Q_i=\frac{P}{P_i}$, demuestra que los $Q_1,\dots, Q_k$ son primos relativos (es decir, no existe un polinomio que los divida a todos simultáneamente).

Solución. Supongamos que existe un polinomio $Q$ irreducible que divide a todos los $Q_i$. Puesto que $Q\mid Q_1=P_2\cdots P_k$ deducimos que $Q$ divide a $P_j$ para algún $j\in \{2,\dots, k\}$. Pero como $Q$ divide también a $Q_j$, esto quiere decir que $Q$ divide a $P_i$ para algún $i\neq j$, lo que contradice que los $P_i$ son primos relativos dos a dos.

$\square$

Un teorema de descomposición

Terminamos esta entrada con un teorema algo técnico que será de mucha utilidad en la próxima entrada, cuando caractericemos a las matrices diagonalizables.

Teorema.

Sea $T$ una transformación lineal de algún espacio $V$ en si mismo (no necesariamente de dimensión finita). Entonces para cualesquiera polinomios $P_1,\dots, P_k\in F[X]$ primos relativos dos a dos se cumple que

\begin{align*}
\ker P(T)=\bigoplus_{i=1}^{k} \ker P_i(T),
\end{align*}

dónde $P=P_1\cdots P_k$.

Demostración. Consideramos a los polinomios $Q_i=\frac{P}{P_i}$ como en el problema anterior. Como son primos relativos, el teorema de Bezout nos dice que existen polinomios $R_1,\dots, R_k$ tales que

\begin{align*}
Q_1 R_1+\dots +Q_k R_k=1.
\end{align*}

Como $P_i$ divide a $P$, se sigue que $\ker P_i(T)\subset \ker P(T)$ para todo $i\in \{1,\dots, k\}$. Por otro lado si $x\in \ker P(T)$ y escribimos $x_i=(Q_i R_i)(T)(x)$, la relación anterior nos dice que

\begin{align*}
x=x_1+\dots+x_k
\end{align*}

Más aún $P_i(T)(x_i)=(P_i Q_i R_i)(T)(x)$ y $P_iQ_i R_i$ es un múltiplo de $P$. Dado que $x\in \ker P(T)\subset \ker(P_i Q_i R_i)(T)$, se sigue que $x_i\in \ker P_i(T)$, y como $x=x_1+\dots +x_k$ concluimos que

\begin{align*}
\ker P(T)=\sum_{i=1}^{k} \ker P_i(T).
\end{align*}

Queda por demostrar que si $x_i\in \ker P_i(T)$ y $x_1+\dots + x_k=0$ entonces $x_i=0$ para todo $i\in \{1,\dots, k\}$. Tenemos que

\begin{align*}
Q_1(T)(x_1)+Q_1(T)(x_2)+\dots+ Q_1(T)(x_k)=0.
\end{align*}

Pero $Q_1(T)(x_2)=\dots= Q_1(T)(x_k)=0$ dado que $Q_1$ es un múltiplo de $P_2,\dots, P_k$ y $P_2(T)(x_2)=\dots=P_k(T)(x_k)=0$. Entonces $Q_1(T)(x)=0$ y similarmente $Q_j(T)(x_j)=0$ para $j\in \{1,\dots, k\}$. Pero entonces

\begin{align*}
x_1=(R_1 Q_1)(T)(x_1)+\dots+ (R_k Q_k)(T)(x_k)=0
\end{align*}

y similarmente se demuestra que $x_2=\dots =x_k=0$. Queda demostrado el teorema.

$\square$

Más adelante

En la próxima entrada usaremos lo demostrado en esta entrada para dar una caracterización de las matrices diagonalizables, como hicimos con las matrices triangularizables.

Tarea moral

Estos ejercicios no forman parte de la evaluación del curso, pero son útiles para practicar los conceptos vistos en esta entrada.

  1. Diagonaliza la matriz
    \begin{align*}
    A=\begin{pmatrix}
    -1 & 2\\ 4 & 1\end{pmatrix}\in M_2(\mathbb{C}).
    \end{align*}
  2. ¿Es la siguiente matriz diagonalizable?
    \begin{align*}
    B=\begin{pmatrix}
    5 & 0 & 0\\ 0 & 5 & 0\\ 1 & 0 & 5\end{pmatrix}\in M_3(\mathbb{R}).
    \end{align*}
  3. Sea $V$ un espacio vectorial de dimensión finita y $T:V\to V$ lineal. Demuestra que si $T$ es diagonalizable, entonces $T^2$ también lo es y además $\ker T=\ker T^2$.
  4. Sean $A,B\in M_n(F)$ dos matrices tales que $A$ es invertible y $AB$ es diagonalizable. Demuestra que $BA$ también lo es.
  5. Sea $A\in M_n(\mathbb{C})$ tal que existe $d>0$ con $A^{d}=I_n$. Demuestra que $A$ es diagonalizable.

Ecuaciones Diferenciales I – Videos: Ecuaciones exactas

Introducción

En la entrada anterior comenzamos el estudio de las ecuaciones no lineales de primer orden. En particular, resolvimos ecuaciones diferenciales que llamamos separables. Ahora, en esta nueva entrada resolveremos otro tipo de ecuaciones no lineales que llamaremos ecuaciones diferenciales exactas, que podemos escribir en la forma $M(t,y)+N(t,y)\frac{dy}{dt}=0$ y donde las funciones $M$ y $N$ cumplen ciertas condiciones que hacen a la ecuación exacta.

Por otro lado, muchas veces las funciones $M$ y $N$ no cumplen las condiciones que hacen a la ecuación diferencial exacta. Revisaremos entonces un método para hacer a las ecuaciones diferenciales exactas. Este método es llamado método del factor integrante, que es bastante similar al método del factor integrante para las ecuaciones lineales no homogéneas, cuyo tema puedes revisar en la entrada Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante y por variación de parámetros, o ver específicamente el video relacionado aquí.

Ecuaciones exactas

En el primer video introducimos el concepto de ecuación diferencial exacta, y analizamos cuáles son las condiciones que deben satisfacer las funciones $M(t,y)$ y $N(t,y)$ para que una ecuación sea exacta, esto mediante un teorema de caracterización para este tipo de ecuaciones.

En el segundo video resolvemos un par de ejemplos de ecuaciones exactas.

Ecuaciones no exactas y método del factor integrante

En el primer video revisamos el caso cuando una ecuación no satisface las condiciones para ser exacta. Resolvemos este tipo de ecuaciones mediante el método del factor integrante, donde buscamos una función $\mu$ que al multiplicarla por la ecuación diferencial, hace a esta ecuación exacta.

En el segundo video resolvemos un par de ejemplos por el método del factor integrante.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que la ecuación diferencial $2t+y^{2}+(2ty)\frac{dy}{dt}=0$ es exacta y encuentra su solución.
  • Encuentra la solución al problema de condición inicial para la ecuación del ejercicio anterior para $y(1)=0$.
  • Determina el valor de $a$ para que la ecuación diferencial $\frac{1}{t^{2}}+\frac{1}{y^{2}}+\frac{at+2}{y^{3}}\frac{dy}{dt}=0$ sea exacta y encuentra su solución.
  • Verifica que $\mu(t)=t$ y $\mu(t,y)=\frac{1}{ty(2t+y)}$ son factores integrantes para la ecuación $3ty+y^{2}+(t^{2}+ty)\frac{dy}{dt}=0$. Es decir, una ecuación diferencial puede tener más de un factor integrante.
  • Encuentra la condición para que un factor integrante $\mu$ de $M(t,y)+N(t,y)\frac{dy}{dt}=0$ dependa únicamente de $y$ y encuentra la expresión para $\mu(y)$. (Recuerda los pasos que seguimos en el tercer video de esta entrada para el caso $\mu(t)$).
  • Verifica que la ecuación $3t^{2}y+2ty+y^{3}+(t^{2}+y^{2})\frac{dy}{dt}=0$ no es exacta; encuentra un factor integrante para esta ecuación y resuélvela.

Más adelante

En la siguiente entrada continuaremos con el estudio a las ecuaciones no lineales de primer orden y revisaremos dos ecuaciones no lineales particulares: la ecuación de Bernoulli y la ecuación de Riccati.

Entradas relacionadas

Cálculo Diferencial e Integral I: Límites en el infinito y límites infinitos

Introducción

Previamente se revisó el concepto de límite de una función así como el de límites laterales. En la revisión de estos temas nos habíamos enfocado en revisar el límite de una función $f$ en un punto $x_0$. Ahora ampliaremos el concepto estudiando $f$ para el caso cuando $x$ tiende a $\infty$.

Límite en el infinito

La intuición detrás de la definición de límite en el infinito es que $f$ tiene límite $L$ cuando $x$ tiende a infinito si para valores lo suficientemente grandes de $x$ nos acercamos arbitrariamente a $L$.

Definición. Sea $f: A \rightarrow \mathbb{R}$. Decimos que $f$ tiende al límite $L$ cuando $x$ tiende a infinito si para cualquier $\epsilon > 0$ existe $M \in \mathbb{R}$ tal que para cualquier $x>M$ se tiene que $|f(x)-L|<\epsilon$ y lo denotamos $$\lim_{x \to \infty} f(x) = L.$$

Ejemplo. Prueba que $$\lim_{x \to \infty} \frac{1}{x} = 0$$
Demostración.

Sea $\epsilon > 0$. Consideremos $M = \frac{1}{\epsilon}$. Entonces para todo $x > M \Rightarrow x > \frac{1}{\epsilon}$, así se tiene que $-\epsilon < 0 <\frac{1}{x} < \epsilon$, es decir $|\frac{1}{x}-0|< \epsilon$.
$$\therefore \lim_{x \to \infty} \frac{1}{x} = 0$$

$\square$

Podemos observar que la definición es bastante natural una vez hemos entendido el concepto de límite, por lo cual procederemos directamente a revisar algunas de sus propiedades.

Propiedades de los límites en el infinito

Al igual que la definición revisada para el límite de una función en un punto, el límite de una función cuando $x$ tiende a infinito también es único.

Proposición. El límite de una función cuando $x$ tiende a infinito es único, es decir, si $f$ tiende a $L$ cuando $x \rightarrow \infty$ y $f$ tiende a $L’$ cuando $x \rightarrow \infty$, entonces $L = L’$.

La demostración es muy similar a la realizada en la entrada de definición formal del límite, por lo cual se omitirá, pero de ser necesario puedes realizarla para repasar los conceptos.

Análogamente a las entradas anteriores, tenemos una relación entre el límite al infinito de una función y el límite de una sucesión.

Teorema. Sea $f: A \rightarrow \mathbb{R}$. Los siguientes enunciados son equivalentes.

  1. $$\lim_{x \to \infty} f(x) = L$$
  2. Para cualquier sucesión $\{a_n\}$ en $A$ que diverge a infinito se tiene que la sucesión $\{f(a_n)\}$ converge a $L$

(Notemos que para que el límite en el infinito tenga sentido, se debe cumplir que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}$.)

Demostración.

$1) \Rightarrow 2)]$ Sea $\epsilon >0$. Supongamos que $$\lim_{x \to \infty} f(x) = L$$
Y sea $\{ a_n \}$ en $A$ que diverge a infinito.

Por hipótesis $f$ converge a $L$ cuando $x$ tiende a infinito, entonces existe $M \in \mathbb{R}$ tal que si $x > M$, entonces $|f(x)-L| < \epsilon$

Además como $\{a_n\}$ diverge a infinito, entonces para $M$ existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ entonces $a_n > M$ y por lo tanto $|f(a_n)-L| < \epsilon$
$$\therefore \lim_{x \to \infty} f(x) = L$$


$1) \Leftarrow 2)]$ Quedará como tarea moral.
Hint: Revisar la entrada Teoremas sobre límite de una función.

$\square$

Después de este teorema, nuevamente logramos obtener las mismas propiedades que conocemos del límite de una sucesión.

Proposición. Sean $f: A \rightarrow \mathbb{R}$, $g: A \rightarrow \mathbb{R}$ con $A \subset \mathbb{R}$ tal que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}$. Si además

$$\lim_{x \to \infty} f(x) = L \quad \text{ y } \quad \lim_{x \to \infty} g(x) = T$$

entonces

  1. $$\lim_{x \to \infty} c \cdot f(x) = cL$$
  2. $$\lim_{x \to \infty} (f+g)(x) = L+T$$
  3. $$\lim_{x \to \infty} (f-g)(x) = L-T$$
  4. $$\lim_{x \to \infty} (f \cdot g)(x) = LT$$
  5. Si $T \neq 0$ y $g(x) \neq 0$ para $x > a$, entonces $$\lim_{x \to \infty} \frac{f}{g}(x) = \frac{L}{T}$$

Ahora veremos una proposición que nos será útil para el cálculo de límites.

Proposición. Para todo $k \in \mathbb{N}$ se tiene que $$\lim_{x \to \infty} \frac{1}{x^k} = 0$$

Demostración.

Procederemos a realizar esta demostración mediante inducción.
Caso base: $k = 1$
En el ejemplo anterior se probó mediante la definición que $$\lim_{x \to \infty} \frac{1}{x^1} = \lim_{x \to \infty} \frac{1}{x} = 0.$$
Hipótesis de inducción: $$\lim_{x \to \infty} \frac{1}{x^k} = 0$$
Ahora veamos que también se cumple para $k+1$.

\begin{align*}
\lim_{x \to \infty} \frac{1}{x^{k+1}} = & \lim_{x \to \infty} \frac{1}{x^k} \cdot \frac{1}{x^1} \\ \\
= & \lim_{x \to \infty} \frac{1}{x^k} \lim_{x \to \infty} \frac{1}{x^1} \\ \\
= & 0 \cdot 0 = 0
\end{align*}

\begin{gather*}
\therefore \lim_{x \to \infty} \frac{1}{x^{k+1}} = 0 \\ \\
\therefore \lim_{x \to \infty} \frac{1}{x^k} = 0 \text{, } \forall k \in \mathbb{N}
\end{gather*}

$\square$

Revisaremos un par de ejemplos donde aplicaremos las propiedades enunciadas.

Ejemplo. Determina $$\lim_{x \to \infty} \frac{8x+5}{x^3+10}$$

Notemos que
\begin{align*}
\lim_{x \to \infty} \frac{8x+5}{x^3+10} = & \lim_{x \to \infty} \frac{8x+5}{x^3+10} \cdot \frac{\frac{1}{x^3}}{\frac{1}{x^3}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{8x}{x^3} + \frac{5}{x^3}}{\frac{x^3}{x^3}+\frac{10}{x^3}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{8}{x^2} + \frac{5}{x^3}}{1+\frac{10}{x^3}} \\ \\
= & \frac{\lim_{x \to \infty} \frac{8}{x^2} + \frac{5}{x^3}}{\lim_{x \to \infty} 1+\frac{10}{x^3}} \\ \\
= & \frac{0 + 0}{1+0} \\ \\
= & \frac{0}{1} \\ \\
= & 0
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{8x+5}{x^3+10} = 0$$

Ejemplo. Calcula el siguiente límite $$\lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x}$$

Como consideraremos que $x \rightarrow \infty$, podemos suponer, particularmente, que $x>0$, entonces

\begin{align*}
\frac{1}{\sqrt{x^2-2x}-x} = & \frac{1}{\sqrt{x^2-2x}-x} \cdot \frac{\sqrt{x^2-2x}+x}{\sqrt{x^2-2x}+x} \\ \\
= & \frac{\sqrt{x^2-2x}+x}{\left( \sqrt{x^2-2x} \right)^2 – x^2}\\ \\
= & \frac{\sqrt{x^2-2x}+x}{x^2-2x – x^2} \\ \\
= & \frac{\sqrt{x^2-2x}+x}{-2x} \\ \\
= & -\frac{\sqrt{x^2-2x}}{2x} – \frac{x}{2x} \\ \\
= & -\frac{\sqrt{x^2-2x}}{\sqrt{4x^2}} – \frac{1}{2} \text{, pues x es positivo} \\ \\
= & -\sqrt{\frac{x^2-2x}{4x^2}} – \frac{1}{2} \\ \\
= & -\sqrt{\frac{x^2}{4x^2} – \frac{2x}{4x^2}} – \frac{1}{2} \\ \\
= & -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2}
\end{align*}
$$\Rightarrow \frac{1}{\sqrt{x^2-2x}-x} = -\sqrt{\frac{1}{4x^2} – \frac{1}{2x}} – \frac{1}{2}$$

Entonces tenemos que
\begin{align*}
\lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x} = & \lim_{x \to \infty} \left( -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2} \right) \\
= & -\sqrt{\frac{1}{4} – 0} – \frac{1}{2} \\
= & -\frac{1}{2} -\frac{1}{2} \\
= & -1
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x} = -1$$

A continuación enunciaremos el teorema del sándwich para este tipo de límites.

Proposición. Sean $f$, $g$, $h: A \rightarrow \mathbb{R}$ con $A \subset \mathbb{R}$ tal que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}$. Si existe $M_1 \in \mathbb{R}$ tal que para todo $x >M_1$ se tiene que $$f(x) \leq g(x) \leq h(x) \quad \text{ y } \quad \lim_{x \to \infty} f(x) = L = \lim_{x \to \infty} h(x)$$

Entonces $$ \lim_{x \to \infty} g(x) = L$$

Nuevamente, omitiremos la demostración pues es análoga a la revisada en una entrada anterior.

Extensión del límite en el infinito

Así como tenemos el límite en el infinito, existe una definición análoga que considera el límite de una función cuando $x$ tiende a $- \infty$.

Definición. Sea $f: A \rightarrow \mathbb{R}$. Decimos que $f$ tiende al límite $L$ cuando $x$ tiende a $- \infty$ si para cualquier $\epsilon > 0$ existe $m \in \mathbb{R}$ tal que para cualquier $x<m$ se tiene que $|f(x)-L|<\epsilon$ y lo denotamos $$\lim_{x \to -\infty} f(x) = L.$$

La definición nos indica que $f$ tiene límite $L$ cuando $x$ tiende a $-\infty$ si para valores lo suficientemente pequeños de $x$ nos acercamos arbitrariamente a $L$.

Esta extensión de límite tiene propiedades análogas revisadas en esta entrada.

Límites infinitos

¿Qué sucede cuando f no se aproxima a un número real cerca de un punto $x_0$? Así como en las sucesiones, el límite de una función en un punto también puede divergir.

Definición. Sea $A \subset \mathbb{R}$, $f: A \rightarrow \mathbb{R}$

$i$) Se dice que $f$ tiende a $\infty$ cuando $x \rightarrow x_0$ y lo denotamos como $$\lim_{x \to x_0} f(x) = \infty$$
si para toda $M \in \mathbb{R}$ existe $\delta > 0$ tal que para toda $x \in A$ con $0 < |x-x_0|< \delta$, entonces $f(x) > M$

$ii$) Se dice que $f$ tiende a $- \infty$ cuando $x \rightarrow x_0$ y lo denotamos como $$\lim_{x \to x_0} f(x) = -\infty$$
si para toda $m \in \mathbb{R}$ existe $\delta > 0$ tal que para toda $x \in A$ con $0 < |x-x_0|< \delta$, entonces $f(x) < m$

Iniciaremos con uno de los ejemplos clásicos

Ejemplo. Prueba que $$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Demostración.

Sea $M \in \mathbb{R}$, sin pérdida de generalidad, supongamos que $M > 0$; consideremos $\delta = \frac{1}{\sqrt{M}}$. Si $0 < |x-0| = |x| < \delta = \frac{1}{\sqrt{M}}$, entonces $|x| < \frac{1}{\sqrt{M}} \Rightarrow \frac{1}{x^2} > M$.

$\square$

Antes de dar el siguiente ejemplo, demostraremos un teorema que nos ayudara a hacer el cálculo de este tipo de límites.

Proposición. Sea $A \subset \mathbb{R}$, $f: A \rightarrow \mathbb{R}$ y $x_0 \in A$. Supongamos que $f(x) \leq g(x)$ para toda $x \in A$ con $x \neq x_0$.

$i$) Si $$\lim_{x \to x_0} f(x) = \infty, \quad \text{ entonces } \quad \lim_{x \to x_0} g(x) = \infty$$
$ii$) Si $$\lim_{x \to x_0} g(x) = -\infty, \quad \text{ entonces } \quad \lim_{x \to x_0} f(x) = -\infty$$

Demostración.
$i$] Sea $M \in \mathbb{R}$. Como $f$ tiende a $\infty$ cuando $x \rightarrow x_0$, existe $\delta > 0$ tal que si $0 < |x-x_0| < \delta$, entonces $f(x) > M$. Por hipótesis $f(x) \leq g(x)$ para toda $x \in A$ con $x \neq x_0$, de esta forma tenemos que si $0 < |x-x_0| < \delta$, entonces $g(x) \geq f(x) > M$, es decir, $g(x) > M$. Por lo tanto $$\lim_{x \to x_0} g(x) = \infty$$

$ii$] La demostración es análoga.

$\square$

De la misma forma, podemos extender esta definición para los límites al infinito.

Definición.
$i$) Sea $A \subset \mathbb{R}$, $f: A \rightarrow \mathbb{R}$. Supongamos que $(a, \infty) \subset A$ para alguna $a \in A$. Se dice que $f$ tiende a $\infty$ cuando $x \rightarrow \infty$ y lo denotamos como $$\lim_{x \to \infty} f(x) = \infty$$ si para cualquier $M \in \mathbb{R}$ existe $K$ tal que para cualquier $x>K$, entonces $f(x) > M$.
$ii$) Sea $A \subset \mathbb{R}$, $f: A \rightarrow \mathbb{R}$. Supongamos que $(a, \infty) \subset A$ para alguna $a \in A$. Se dice que $f$ tiende a $- \infty$ cuando $x \rightarrow \infty$ y lo denotamos como $$\lim_{x \to \infty} f(x) = -\infty$$ si para cualquier $m \in \mathbb{R}$ existe $K$ tal que para cualquier $x>K$, entonces $f(x) < m$.

Ejemplo. Prueba que $$\lim_{x \to \infty} x = \infty$$

Demostración.

Sea $M \in \mathbb{R}$, consideremos $K = M+1$. Si $x > K$, entonces $f(x) = x > K = M+1 > M$, es decir, $f(x) > M$.

Ejemplo. Prueba que $$\lim_{x \to \infty} 3x^2 = \infty$$

Demostración.

Sea $M \in \mathbb{R}$, consideremos $K = \sqrt{\frac{M}{3}}$. Si $x > K = \sqrt{\frac{M}{3}}$, entonces $f(x) = 3x^2 > M$, es decir, $f(x) > M$.

De los dos ejemplos vistos, podemos realizar generalizar esta idea y así tenemos el siguiente ejemplo.

Ejemplo. Sea $p: \mathbb{R} \rightarrow \mathbb{R}$ definida como $p(x) = \alpha_n x^n + \alpha_{n-1} x^{n-1} + \cdot + \alpha_1 x \alpha_0$. Demuestra que $$\lim_{x \to \infty} p(x) = \infty \text{, si } a_n > 0 \quad \text{ y } \quad \lim_{x \to \infty} p(x) = -\infty \text{, si } a_n < 0$$

La prueba se quedará como tarea moral.

Tarea moral

  1. Demostrar que si $f: A \rightarrow \mathbb{R}$ es tal que $$\lim_{x \to \infty} x f(x) = L$$ con $L \in \mathbb{R}$, entonces $$\lim_{x \to \infty} f(x) = 0$$
  2. Sean $f$ y $g$ dos funciones definidas en $(a, \infty)$ tales que $$\lim_{x \to \infty} f(x) = L \quad \text{ y } \quad \lim_{x \to \infty} g(x) = \infty$$
    Entonces se tiene que $$\lim_{x \to \infty} f(g(x)) = L$$
  3. Prueba que $$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(-x)$$
  4. Prueba que $$\lim_{x \to 0^-} f(\frac{1}{x}) = \lim_{x \to -\infty} f(x)$$
  5. Calcula los siguientes límites
    $i$) $$\lim_{x \to \infty} \frac{\sqrt{x+1}}{x} \text{, definido para } x >0$$
    $ii$) $$\lim_{x \to \infty} \frac{\sqrt{x}-x}{\sqrt{x}+x} \text{, definido para } x >0$$
  6. Sea $A \subset \mathbb{R}$, sean $f$, $g: A \rightarrow \mathbb{R}$ y suponer que $(a, \infty) \subset A$ para alguna $a \in \mathbb{R}$. Si $g(x) > 0$ para toda $x > a$ y para alguna $L \in \mathbb{R}$, $L \neq 0$, se tiene que $$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L,$$ entonces
    $i$) Si $L > 0$, entonces $$\lim_{x \to \infty} f(x)= \infty \iff \lim_{x \to \infty} g(x)= \infty$$
    $ii$)Si $L < 0$, entonces $$\lim_{x \to \infty} f(x)= -\infty \iff \lim_{x \to \infty} g(x)= \infty$$
  7. Sea $p: \mathbb{R} \rightarrow \mathbb{R}$ definida como $p(x) = \alpha_n x^n + \alpha_{n-1} x^{n-1} + \cdot + \alpha_1 x \alpha_0$. Demuestra que $$\lim_{x \to \infty} p(x) = \infty \text{, si } a_n > 0 \quad \text{ y } \quad \lim_{x \to \infty} p(x) = -\infty \text{, si } a_n < 0$$ Hint: Usa el ejercicio anterior.

Más adelante…

En la siguiente entrada haremos uso del límite de una función en toda su extensión y emplearemos las propiedades revisadas en las entradas anteriores mediante la resolución de límites para la funciones trigonométricas que, particularmente, se habían destinado para los temas finales de esta unidad.

Entradas relacionadas