Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Moderna I: Teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El temario de este curso consiste principalmente en el estudio de la Teoría de grupos, comenzamos su construcción desde las operaciones binarias, estudiamos distintos tipos de grupos y funciones entre ellos (homomorfismos) y seguimos intentando describir a los grupos. El primer gran escalón de nuestro curso fueron los Teoremas de isomorfía, luego los Teoremas de Sylow y ahora llegamos al tercero: el Teorema fundamental de los grupos abelianos finitos.

Otros dos teoremas fundamentales que seguramente conoces son el Teorema fundamental del álgebra y el Teorema fundamental de la aritmética, conviene recordar el segundo. Básicamente nos dice que a todo número entero lo podemos ver como un producto de primos, además nos dice que estos primos son únicos excepto por el orden en que aparecen. Este teorema es importante porque intuitivamente nos dice que los números primos son los ladrillos básicos para construir a cualquier número.

¿Cuáles son estos mismos ladrillos para los grupos abelianos finitos? En la entrada de Producto directo interno vimos un teorema en el que para ciertos casos podemos descomponer a un grupo finito $G$ en sus $p$-subgrupos de Sylow, donde cada $p$ corresponde a un factor primo del orden del grupo. ¿Qué podría ser más fundamental que eso?

Usaremos el teorema que vimos en Producto directo interno y veremos que un grupo abeliano finito $G$ es isomorfo a un producto directo de grupos ajenos a $G$ en lugar de los $p$-subgrupos de Sylow que dependen del grupo que los contiene. ¿Qué grupos finitos relacionados con primos conocemos aparte de los $p$-subgrupos? Los candidatos ideales son $\z_n$, con $n$ una potencia de un primo, que de acuerdo a lo que hemos estudiado son abelianos y finitos.

Así, el Teorema fundamental de los grupos abelianos finitos nos presenta a los $\z_n$, con $n$ una potencia de un primo, como nuestros ladrillos elementales para describir cualquier grupo abeliano finito $G$.

Último lema numerado

Como prometimos en la entrada anterior, siguiendo con el desarrollo hecho por Judson, T.W. en el libro Abstract Algebra: Theory and Applications, Department of Mathematics and Statistics Stephen F. Austin State University que aparece en la bibliografía y que puede revisarse en http://abstract.ups.edu/aata/struct-section-finite-abelian-groups.html, aquí está el tercer lema numerado que usaremos para demostrar el Teorema fundamental de los grupos abelianos finitos.

Lema 3. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Tenemos que $G$ es un producto directo interno de grupos cíclicos.

Demostración.
Por el segundo principio de inducción.

Sea $p\in\z^+$ un primo, $G$ un $p$-grupo abeliano.

Sea $g\in G$ un elemento de orden máximo (podemos suponer que $g\neq e$ ya que si $g = e$, entonces $G = \{e\}$).

H.I. Supongamos que todo $p$-grupo abeliano de orden menor que el orden de $G$ es un producto directo interno de grupos cíclicos.

Por el lema 2, $G$ es el producto directo de $\left< g \right>$ y un subgrupo $H$ de $G$. Entonces $|G| = |\left< g \right>|\,|H|$ lo que implica que $\displaystyle |H| = \frac{|G|}{|\left< g \right>|}$ y, esto implica que $ \displaystyle |H| < |G|$.

Además, $H$ también es un $p$-grupo abeliano. Así que por la hipótesis de inducción $H$ es el producto directo de grupos cíclicos.

Por lo tanto $G$ es producto directo de grupos cíclicos, a saber $\left< g \right>$ y los grupos cíclicos cuyo producto directo es $H$.

$\blacksquare$

Teorema fundamental de los grupos abelianos finitos

Recordemos que los isomorfismos preservan la estructura algebraica de los grupos. Recordemos que los grupos $\z_n$, con $n$ una potencia de un primo, son abelianos y finitos, por lo que sólo pueden ser isomorfos a otros grupos abelianos y finitos. Más aún, todo grupo abeliano finito es isomorfo a un producto directo de este tipo de grupos.

Teorema. (Fundamental de los Grupos Abelianos Finitos) Todo grupo abeliano finito $G$ es isomorfo a un producto directo de grupos cíclicos de la forma $$\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}$$ con $p_1,\dots, p_r,\alpha_1,\dots, \alpha_r \in \z^+$ y $p_1,\dots,p_r$ primos no necesariamente distintos.

Demostración.

Sea $G$ un grupo abeliano finito. Por ser $G$ abeliano todos sus subgrupos son normales, en particular sus subgrupos de Sylow.

Por el teorema de la entrada Producto directo interno, $G$ es isomorfismo al producto directo de sus subgrupos de Sylow, y por el lema 3 cada uno de ellos es un producto directo de subgrupos cíclicos. Además, como los subgrupos de Sylow son de orden una potencia de un primo, sus subgrupos también, por lo que son isomorfos a $\z_{p^\alpha}$ con $p,\alpha \in \z^+$ y $p$ un primo.

Así, $G$ es isomorfo a un producto directo de la forma
\begin{align*}
\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}
\end{align*}
con $p_1,\dots,p_r,\alpha_1,\dots, \alpha_r \in\z^+$, $p_1,\dots,p_r$ primos no necesariamente distintos.

$\blacksquare$

Apreciemos cómo la demostración de los lemas anteriores, nos facilitó la demostración de este teorema fundamental.

Ejemplo.

Sea $G$ un grupo abeliano de orden $180 = 4\cdot 45 = 2^2\cdot 3^2 \cdot 5$.

Entonces, de acuerdo con el Teorema fundamental de los grupos abelianos finitos, $G$ es isomorfo a alguno de

  • $\z_2\times\z_2\times\z_3\times\z_3\times\z_5$,
  • $\z_4\times\z_3\times\z_3\times\z_5$,
  • $\z_2\times\z_2\times\z_9\times\z_5$ ó
  • $\z_4\times\z_9\times\z_5$.

Podría ser isomorfo a cualquiera de ellos, pero para saber a cuál requeriríamos más información. De cualquier modo este primer análisis nos ayuda mucho a entender cómo debe ser el grupo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Si $G$ es un grupo abeliano finito, definimos $v_k(G)$ como el número de elementos de $G$ de orden $k$.
    Prueba que si dos grupos finitos abelianos, $G$ y $G^*$ son isomorfos si y sólo si $v_k(G) = v_k(G^*)$ para todo entero $k$. (Este resultado no es cierto para grupos no abelianos).
  2. Prueba el Teorema Fundamental de la Aritmética aplicando el Teorema Fundamental de Grupos Abelianos Finitos a $G = \z_n$, con $n\in\n$.
  3. Usa el Teorema Fundamental de Grupos abelianos finitos para describir a…
    • Un grupo de orden $144.$
    • Un grupo de orden $360.$
    • Un grupo de orden $2783.$
  4. Encuentra para cuáles $n \in \z^+$ los grupos de orden $n$ son cíclicos.
  5. Prueba que $A$ es un grupo abeliano finito de orden $n$ si y sólo si para cada $d$ divisor de $n$, hay a lo más $d$ elementos $a\in A$ tales que $a^d = 1_A.$

Más adelante…

Esta entrada fue un tema muy anticipado. Ahora comenzaremos otro tema que, aunque sea corto, es igual de importante que el Teorema fundamental de grupos finitos abelianos. De hecho, comparte que también es semejante con el Teorema fundamental de la aritmética. Comenzaremos a estudiar el Teorema de Jordan-Hölder

Entradas relacionadas

Álgebra Moderna I: Lemas previos al teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como dijimos en la primera entrada de esta unidad, uno de los temas a los que queremos llegar es el Teorema fundamental de los grupos abelianos finitos. Para ello seguiremos el desarrollo hecho por Judson, T.W. en el libro Abstract Algebra: Theory and Applications, Department of Mathematics and Statistics Stephen F. Austin State University que aparece en la bibliografía y que puede revisarse en http://abstract.ups.edu/aata/struct-section-finite-abelian-groups.html. Así, en esta entrada presentaremos tres lemas para que sea más sencillo identificarlos y que serán útiles en la demostración del Teorema fundamental de los grupos abelianos finitos en la siguiente entrada. En los tres lemas se considerará $G$ un $p$-grupo abeliano y se hablará de elementos de orden máximo (o mínimo) en algún grupo refiriéndose a elementos cuyo orden es mayor (o menor) o igual que el orden de los demás elementos del grupo en cuestión.

El primer lema nos dice que si tomamos un elemento de orden máximo $g$ en $G$ y un $p$-subgrupo, tal que $\left< g\right>$ no es todo $G$ y luego tomamos un elemento de orden mínimo $h$ en $G\setminus\left< g\right>$, entonces el orden de $h$ es $p$.

El segundo lema nos dice que si tenemos un elemento de orden máximo $g$ en $G$, podemos ver a $G$ como el producto directo interno del generado de $g$ y un $H$ subgrupo de $G$.

El tercer lema nos dice que cualquier $p$-subgrupo abeliano es producto directo interno de grupos cíclicos.

En esta entrada enunciamos y probamos los primeros dos lemas, el tercero está en la siguiente entrada.

El orden de un elemento mínimo

Lema 1. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Sea $g\in G$ un elemento de orden máximo. Si $\left<g\right> \lneq G$ ($\left<g\right>$ es subgrupo propio de $G$) y $h$ es un elemento de orden mínimo en $G\setminus \left<g\right>$, entonces $o(h)=p$ y $\left< g\right> \cap \left< h\right> = \{e\}$.

Demostración.
Sean $p\in \z^+$ un primo y $G$ un $p$-grupo abeliano.

Por la definición de $p$-grupo $|G| = p^n$ para algún $n\in \n$.

Sea $g\in G$ de orden máximo. Como $|G|=p^n$, sabemos que $o(g)$ divide a $ |G| = p^n$ y así $o(g) = p^m$ con $m\leq n$.

Observemos que
\begin{align}\label{eq:uno}
a^{p^m} = e \text{ para toda } a\in G,
\end{align}
ya que para toda $a\in G$, $o(a)=p^l$ con $l\leq m$ (debido a que $o(g)=p^m$ es máximo).

Supongamos que $\left< g \right> \lneq G$. Consideremos un elemento $h$ de orden mínimo en $G\setminus \left< g \right>$.

Veamos primero que $o(h)=p$.

Sabemos que $o(h) = p^t$ para alguna $t\leq n$.

Sabemos que $o(h^p) = p^{t-1} < p^t = o(h)$. Así, por la elección de $h$, $h^p\in\left< g \right>$ y en consecuencia tenemos que
\begin{align}\label{eq:dos}
h^{p} = g^s \text{ para algún } s\in \mathbb{N}.
\end{align}

Entonces $(g^s)^{p^{m-1}} = (h^p)^{p^{m-1}} = h^{p^m} = e$ por (\ref{eq:uno}). Así,
\begin{align}\label{eq:tres}
o(g^s) < p^m \text{ y } g^s \text{ no genera a } \left< g \right>.
\end{align}

Sabemos que $\displaystyle o(g^s) = \frac{o(g)}{(s,o(g))}$. Si $p$ no divide a $s$, como $o(g)$ es una potencia de $p$ tendríamos que $(s, o(g)) = 1$ y así $o(g^s) = o(g) = p^m$ contradiciendo (\ref{eq:tres}). Concluimos entonces que $p|s$ es decir $s = pq$ para algún $q\in\z$.

Consideremos $a = g^{-q}h$. Tenemos que
\begin{align*}\label{eq:cuatro}
a^p = g^{-pq} h^p = g^{-s} h^p &= g^{-s}g^s &\text{ por (\ref{eq:dos})} \\
& = e.
\end{align*}

Además, si $a\in \left< g \right>$ tendríamos que $h = ag^q \in\left< g\right>$ lo cual contradice la elección de $h$.

Hemos encontrado entonces un elemento $a\not\in \left< g \right>$ con $a^p = e$. Notamos que $a\neq e$ ya que $a\not\in \left< g \right>$, entonces $a$ debe ser un elemento de orden $p$. Pero $h$ es un elemento de orden mínimo en $G\setminus \left< g \right>$ y $a\in G\setminus \left< g \right>$ con $o(a) = p$. Así, $h$ debe ser también de orden $p$.

Veamos ahora que $\left< g \right> \cap \left< h\right> = \{e\}$.

Sabemos que $\left<g\right>\cap\left<h\right>$ es un subgrupo de $\left<h\right>$ y $\left<h\right>$ es de orden $p$, entonces $\left<g\right>\cap \left<h\right>$ es de orden $1$ o $p$. Si $|\left<g\right>\cap \left<h\right>|= p$ tendríamos que $\left<g\right>\cap \left<h\right>\leq \left<h\right>$ con $|\left<g\right>\cap \left<h\right>|= p=|\left<h\right>|$, entonces $\left<g\right>\cap \left<h\right>=\left<h\right>$ lo que implica que $\left<h\right>\subseteq \left<g\right>$. En consecuencia tendríamos que $h \in \left<g\right>$, lo que contradice la elección de $h$.

Concluimos que $\left<g\right>\cap \left<h\right> = \{e\}$.

$\blacksquare$

$G$ como producto de $\left< g\right>$ y un subgrupo cualquiera

Lema 2. Sean $p\in \z^+$ un primo y $G$ un $p$-grupo abeliano. Supongamos que $g\in G$ es un elemento de orden máximo. Entonces $G$ es el producto directo interno de $\left< g\right>$ y un subgrupo $H$ de $G$.

Demostración.
Sean $p\in\z^+$ primo.

Realizaremos la demostración por el segundo principio de inducción.

H.I. Supongamos que para todo grupo abeliano $\tilde{G}$ con $|\tilde{G}| = p^k$ y $0\leq k < n$ se tiene que si $\tilde{g}\in \tilde{G}$ es de orden máximo, entonces $\tilde{G}$ es el producto directo interno de $\left< \tilde{g}\right>$ y un subgrupo $\tilde{H}$ de $\tilde{G}$.

Sea $G$ un $p$-grupo abeliano con $|G| = p^n$ para algún $n\in\n$.

Sea $g\in G$ de orden máximo. Como $|G| = p^n$, sabemos que $o(g)$ divide a $|G| = p^n$ y así $o(g) = p^m$ con $m\leq n$.

Si $G = \left<g\right>$ el resultado se cumple considerando $H=\{e\}$.

Si $\left< g \right> \lneq G$ consideremos un elemento $h$ de orden mínimo en $G\setminus \left<g\right>.$

Por el lema 1, sabemos que $o(h) = p$ y que $\left<g\right> \cap \left<h\right> = \{e\}$. Sea $H = \left< h \right>.$

Observemos que $gH$ es un elemento de orden máximo en $G/H$ ya que por (\ref{eq:uno}), $(aH)^{p^m} = a^{p^m}H = H$ para todo $a\in G$. Además $(gH)^{o(g)} =g^{o(g)}H = H $ por lo que $o(gH) \leq o(g) = p^m$, y si $o(gH)< p^m$ tendríamos que
\begin{align*}
H = (gH)^{p^{m-1}} = g^{p^{m-1}} H
\end{align*}
y así $g^{p^{m-1}} \in \left< g \right> \cap H = \{e\}$, es decir $g^{p^{m-1}}=e$ contradiciendo que $o(g) = p^m$.

Concluimos así que $gH$ es un elemento de orden máximo en $G/H$, con $G/H$ un $p$-grupo abeliano de orden $|G/H|=|G|/|H|=\frac{p^n}{p}=p^{n-1}$ que es menor que el orden de $G$.

Por H.I. sabemos que $G/H$ es el producto directo interno de $\left<gH \right>$ y un subgrupo $\tilde{H}$ de $G/H$.

Por el teorema de la correspondencia $\tilde{H} = K/H$ para algún $H\leq K \leq G$.

Veamos que $G$ es el producto directo interno de $\left< g\right>$ y $K$.

Veamos primero que $\left<g\right> \cap K = \{e\}$.

Si $x\in \left<g\right> \cap K$, entonces $xH\in \left<gH\right>\cap K/H = \left<gH\right> \cap \tilde{H}$ y como $G/H$ es el producto directo de $\left<gH\right>$ y $\tilde{H}$, entonces $\left<gH\right>\cap \tilde{H} = \{H\}$. Así, $xH \in \{H\}$, entonces $xH=H$ lo que implica que $x\in H$.

Tenemos que $x\in \left<g\right>\cap H = \{e\}$ probando que $x = e$. Así, $\left<g\right> \cap K = \{e\}$.

Veamos ahora que $G=\left<g\right> K $.

Sea $y\in G$, sabemos que $yH\in G/H = \left<gH\right>\tilde{H} = \left<gH\right>K/H$. Esto implica que
\begin{align*}
yH &= (gH)^tkH \text{ para algunos } t\in\z, k\in K\\
&= g^tkH.
\end{align*}

Entonces $(g^tk)^{-1}y = \hat{h}$ con $\hat{h}\in H$. Así $y = g^t k \hat{h}$. Como $H\leq K$ tenemos que $k\hat{h} \in K$, entonces $y\in\left<g\right>K$.

Concluimos que $\left<g\right> \cap K = \{e\}$ y $\left<g\right> K = G$.

Así, $G$ es el producto directo interno de $\left<g\right>$ y $K$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Considera los siguientes grupos y realiza para cada uno los ejercicios descritos a continuación:

  • $S_4.$
  • $\z_{11}.$
  • $A_5.$
  • $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}.$
  1. Determina si los grupos anteriores son $p$-grupos abelianos. De no serlo, considera un $p$-subgrupo abeliano de ellos.
  2. Busca (en el grupo o en el $p$-subgrupo abeliano) un elemento $g$ de orden máximo tal que $\left< g\right>$ sea un subgrupo propio y encuentra $h$ elemento de orden mínimo en el complemento de $\left< g \right>$ tal que su orden sea $p$.
  3. Describe al grupo o al $p$-subgrupo abeliano como el producto directo interno $\left<g\right>$ y un subgrupo $H$.

Más adelante…

Aunque estos lemas pueden parecer muy técnicos, su función es clara y se verá en la siguiente entrada. Como estos lemas ya están demostrados, la prueba del Teorema fundamental de los grupos abelianos finitos es bastante directa. En la siguiente entrada enunciaremos y demostraremos el tercer lema que se requiere y por fin podremos enfrentarnos al Teorema fundamental de los grupos abelianos finitos.

Entradas relacionadas

Álgebra Moderna I: Producto directo interno

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Continuamos con el estudio del producto de grupos siguiendo el desarrollo de la sección 4.3 del libro de Grupos I de Avella, Mendoza, Sáenz y Souto que se encuentra en la bibliografía del curso. En la entrada anterior definimos el producto directo externo de grupos, luego vimos unas funciones naturales y definimos los subgrupos $G^*_i$. Demostramos que para un grupo $G = G_1 \times \dots \times G_n$ se cumple que:

  1. $G_i^* \unlhd G \quad \forall i\in\{1,\dots,n\}$.
  2. $\displaystyle G_i^* \cap \left( \prod_{j\neq i} G_j^*\right) = \{e_G\} \text{ para toda }i\in\{1,\dots,n\}$.
  3. $\displaystyle G = \prod_{i = 1}^n G_i^*$.

En resumen, esta proposición nos dice que si $G$ es el producto directo externo de varios grupos, también lo podemos ver como producto de subgrupos normales que cumplen el inciso 2.

En esta entrada queremos generalizar esta idea: ahora $G$ será un grupo cualquiera, tomaremos subgrupos normales $H_i$, con $i\in \{1,\dots,n\}$ de $G$ que cumplan estas propiedades y probaremos que $G$ se puede ver como el producto directo externo de estos subgrupos.

En el producto directo externo, construíamos $G$ a partir de otros grupos que pudieran incluso no estar relacionados entre sí. Ahora intentaremos describir a un grupo $G$ como producto de algunos de sus subgrupos normales, por eso llamaremos a este concepto el producto directo interno.

Producto directo interno de subgrupos

Comencemos definiendo nuestro nuevo producto entre subgrupos normales de $G$.

Definición. Sean $G$ un grupo, $H_1,\dots, H_n$ subgrupos de $G$. Decimos que $G$ es el producto directo interno de $H_1,\dots, H_n$ si

  1. $H_i \unlhd G$ para toda $i\in\{1,\dots, n\}$.
  2. $\displaystyle H_i\cap \left(\prod_{j\neq i} H_j\right) = \{e\}$ para toda $i\in\{1,\dots, n\}$.
  3. $\displaystyle G = \prod_{i=1}^n H_i$.

Observación 5. $G_1\times\cdots\times G_n$ es el producto directo interno de los $G_i^*$.

Observación 6. Si $G$ es el producto directo interno de $H_1,\cdots,H_n$, entonces $xy=yx$ para toda $x\in H_i, y\in H_j$ con $i\neq j$.

Demostración.
Sea $G$ producto directo de $H_1,\dots, H_n$, sean $x\in H_i, y\in H_j$, con $j\neq i$, entonces
\begin{align*}
xyx^{-1}y^{-1} = x(yx^{-1}y^{-1}) \in H_i,
\end{align*}
porque $x \in H_i$ y $yx^{-1}y^{-1}\in H_i$ pues $H_i \unlhd G$.

Por otro lado,
\begin{align*}
xyx^{-1}y^{-1} = (xyx^{-1})y^{-1} \in H_j,
\end{align*}
ya que, análogamente, $xyx^{-1} \in H_j$ debido a que $H_j\unlhd G$ y $y^{-1} \in H_j.$

Así, $\displaystyle xyx^{-1}y^{-1} \in H_i \cap H_j \subseteq H_i\cap \prod_{k\neq i} H_k = \{e\}$. Entonces $xyx^{-1}y^{-1} = e$.

Por lo tanto $xy = yx$.

$\blacksquare$

Ejemplo. Sea $G = \left< a \right>$ con $o(a) = 12$. Busquemos subgrupos $H_1, \dots, H_n$ para alguna $n\in \n$ tales que $G$ sea el producto directo interno de estos subgrupos.

Sean $H_1 = \left< a^3\right>, H_2 = \left< a^4\right>$. Como $G$ es abeliano, $H_1\unlhd G, H_2 \unlhd G$. Además
\begin{align*}
H_1\cap H_2 = \{e,a^3,a^6, a^9\} \cap \{e, a^4, a^8\} = \{e\}.
\end{align*}

Como
\begin{align*}
a = ae = a a^{12} = a^{13} = a^9a^4 \in H_1H_2
\end{align*}
tenemos que $G = \left< a \right> \subseteq H_1H_2$. Por la cerradura del producto en $G$ se tiene además que $H_1H_2 \subseteq G$, entonces $G=H_1H_2$.

Por lo tanto $G$ es el producto directo interno de $H_1$ y $H_2$.

Observación 7. Sean $G$ un grupo, $H_1,\dots, H_n$ subgrupos de $G$. Si $G$ es el producto directo interno de $H_1,\dots, H_n$, entonces
\begin{align*}
\varphi : H_1\times \cdots \times H_n \to G
\end{align*}
con $\varphi(h_1,\dots,h_n) = h_1\cdots h_n$ para toda $(h_1,\dots,h_n) \in H_1\times\cdots\times H_n$ es un isomorfismo.

Es consecuencia, si $G$ es finito tenemos que $|G| = |H_1|\cdots|H_n|$.

Descomposición de $G$ en $p$-subgrupos

Algunos subgrupos importantes que vimos son los $p$-subgrupos de Sylow, para $p$ primo. Ahora los usaremos junto con el producto directo interno para describir a $G$ como el producto de sus $p$-subgrupos de Sylow, esto nos recuerda mucho al Teorema Fundamental de la Aritmética. Siguiendo el desarrollo de la página 193 del libro de Dummit, D. S. y Foote R. M. que aparece en la bibliografía tenemos:

Teorema. Sea $G$ un grupo finito con $p_1,\dots, p_t$ los distintos factores primos del orden de $G$ y $P_1, \dots, P_t$ subgrupos de Sylow de $G$ asociados a $p_1,\dots,p_t$ respectivamente. Si $P_i\unlhd G$ para toda $i\in\{1,\dots, t\}$, entonces $G$ es el producto directo interno de $P_1,\dots, P_t$.

Demostración.
Sea $G$ un grupo finito de orden $n$. Sean $p_1,\dots, p_t$ los distintos factores primos de $n$ con $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_t^{\alpha_t}$. Sean $P_1,\dots, P_t$ subgrupos de $G$ con $P_i$ un $p_i$-subgrupo de Sylow de $G$ y $P_i \unlhd G$ para toda $i\in \{1,\dots, t\}$.

Veamos que para todo $S\subseteq \{1,\dots, t\}$, $\displaystyle \prod_{j\in S} P_j$ es un producto directo interno por inducción sobre $\# S$.

Caso Base. Supongamos que $\# S = 1$,
$S = \{i\} \subseteq \{1,\dots, t\}$ y $P_i$ es el producto directo interno de $P_i$.

H.I. Supongamos que si $T\subseteq \{1,\dots, t\}$ con $\# T < \# S$, entonces $\displaystyle \prod_{j\in T} P_j$ es un producto directo interno.

Sea $\displaystyle H = \prod_{j\in S}P_j$. Veamos que $H$ es el producto directo interno de los $P_j$ con $j\in S$.

Por hipótesis se cumplen las condiciones $1$ y $3$ de la definición de producto directo interno. Veamos que se cumple $2$.

Sean $i\in S$, $\displaystyle x\in P_i\cap \prod_{\substack{j\in S\\ j\neq i}} P_j$.

Como $x\in P_i$, entonces $o(x) $ divide a $ |P_i|$.

Como $\displaystyle x\in \prod_{\substack{j\in S\\ j\neq i}} P_j$, entonces el orden de $x$ divide al orden del producto: $\displaystyle o(x) \Big| \left|\prod_{\substack{j\in S\\ j\neq i}} P_j\right| = \prod_{\substack{j\in S\\ j\neq i}} |P_j|$ donde la última igualdad se debe a que $\displaystyle \prod_{\substack{j\in S\\ j\neq i}} P_j$ es un producto directo interno por H.I. y por la observación 7.

Pero $|P_i| = p_i^{\alpha_i}$ y $\displaystyle \prod_{\substack{j\in S\\ j\neq i}} |P_j| = \prod_{\substack{j\in S\\ j\neq i}} p_j^{\alpha_j}$ con $\alpha_j\in \n^+$ para toda $j\in S$, entonces $|P_i|$ y $\displaystyle \prod_{\substack{j\in S\\ j\neq i}} |P_j|$ son primos relativos. Así, $o(x) = 1$. Por lo que $\displaystyle P_i \cap \prod_{\substack{j\in S\\ j\neq i}} P_j = \{e\}$.

Hemos probado entonces que $\displaystyle \prod_{\substack{j\in S}} P_j$ es un producto directo interno para toda $S\subseteq \{1,\dots,t\}$. En particular para $S = \{1,\dots, t\}$ tenemos que $\displaystyle \prod_{j = 1}^t P_j$ es un producto directo interno. Por la observación 7,
\begin{align*}
\left| \prod_{j = 1}^t P_j \right| = \prod_{j=1}^t |P_j| = n = |G|
\end{align*}
ya que $P_1,\dots,P_t$ son subgrupos de Sylow asociados a los distintos factores primos de $G$.

Como $\displaystyle \prod_{j=1}^t P_j$ es un subgrupo de $G$ de orden $|G|$ tenemos que $\displaystyle G = \prod_{j=1}^t P_j$.

Por lo tanto $G$ es el producto directo interno de $P_1,\dots, P_t$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra las observaciones 5 y 7.
    • $G_1\times\cdots\times G_n$ es el producto directo interno de los $G_i^*$.
    • Sean $G$ un grupo, $H_1,\dots, H_n$ subgrupos de $G$. Si $G$ es el producto directo interno de $H_1,\dots, H_n$, entonces
      \begin{align*}
      \varphi : H_1\times \cdots \times H_n \to G
      \end{align*}
      con $\varphi(h_1,\dots,h_n) = h_1\cdots h_n$ para toda $(h_1,\dots,h_n) \in H_1\times\cdots\times H_n$ es un isomorfismo.
  2. Regresa a la entrada de Ejemplo de Sylow y considera $S_4$.
    • De existir, busca $H_1, \dots, H_n$ tal que $S_4$ sea producto directo de $H_1,\dots , H_n.$
    • Usando los $p$-subgrupos de Sylow que encontramos, describe a $S_4$ como producto directo interno de ellos. Aplica el último teorema visto.
  3. Aplica el último teorema visto a los grupos $\z_6$ y $T = S_3 \times \z_4$. Para cada uno encuentra los primos $p_1, \dots , p_n$ que conforman al orden del grupo y los $P_1, \dots , P_n$ subgrupos de Sylow que corresponden a estos primos. Al final, representa a cada grupo como producto directo interno de estos $p$-subgrupos de Sylow.

Más adelante…

La descomposición de un grupo en $p$-subgrupos que vimos es una probada de lo que veremos en el Teorema fundamental de grupos abelianos finitos, la relación de los primos que componen al orden del grupo con los $p$-subgrupos del mismo grupo. Pero antes de poder enunciarlo, necesitamos enunciar algunos teoremas que nos ayudarán y que se sirven de los productos directos interno y externo que hemos estado viendo.

Entradas relacionadas

Geometría Moderna II: Puntos autocorrespondientes y regla geométrica de la falsa posición

Por Armando Arzola Pérez

Introducción

Se seguirá viendo resultados y problemas relacionados con la razón cruzada, en esta entrada se abordará los Puntos autocorrespondientes y la regla geométrica de la falsa posición.

Puntos Autocorrespondientes

Sean $A,B,C$ y $A’,B’,C’$ dos conjuntos de puntos en una misma línea recta, por ende para un punto cualquiera $D$ en la recta le corresponde un punto $D’$ que nos dará como resultado $\{ ABCD \}=\{ A’B’C’D’ \}$.

Problema. El problema cae en la siguiente incógnita ¿Existirá un punto $D$ que se corresponda al mismo?, de tal forma que $\{ ABCD \}=\{ A’B’C’D \}$.

Demostraremos que puede haber uno, dos o ningún punto, a este punto existente se le llamará punto autocorrespondiente con respecto a las dos razones cruzadas.

Solución. Trácese cualquier circunferencia en el plano y tómese un punto $X$ en esta, y únanse los puntos $A,B,C,A’,B’,C’$ a $X$, y las intersecciones con la circunferencia y estas rectas se denotarán como $A_1, B_1, C_1, A_1′, B_1′, C_1’$.

Puntos autocorrespondientes 1

Notese que tenemos un hexagono inscrito con lados $A_1C_1’$, $A_1B_1’$, $C_1A_1’$, $B_1C_1’$, $B_1A_1’$, $B_1’C_1$, y la existencia del punto $D$ depende de que este hexágono cumpla el Teorema de Pascal.
El Teorema de Pascal dice que «Los puntos de intersección de los lados opuestos de un hexágono inscrito en una circunferencia son colineales». Es de esta forma que la intersección de $A_1B_1’$ y $A_1’B_1$ se cortan en $P$, $B_1’C_1$ y $B_1C_1’$ en $Q$, $A_1C_1’$ y $A_1’C_1$ en $R$, de esta forma se tiene la recta $PQ$ la cual corta a la circunferencia en $D_1$ y $E_1$.

Puntos autocorrespondientes 2

Ahora las rectas $XD_1$ y $XE_1$ cortarán la recta de los haces en los puntos $D$ y $E$ correspondientemente, estos son los dos puntos buscados. Sea $S$ la intersección de $PQ$ con $A_1A_1’$.

Puntos autocorrespondientes 3

Entonces se tienen las siguientes igualdades:

$\{ ABCD \}=X\{ A_1B_1C_1D_1\}$

por propiedad 1 de razón cruzada de la circunferencia se tiene:

$X\{ A_1B_1C_1D_1\}=A_1’\{ A_1B_1C_1D_1\}$

Por razón cruzada se tiene:

$A_1’\{ A_1B_1C_1D_1\}=\{SPRD_1\}= A_1\{ A_1’B_1’C_1’D_1 \}$

Por razón cruzada por la circunferencia:

$A_1\{ A_1’B_1’C_1’D_1 \} = X\{ A_1’B_1’C_1’D_1\} = \{ A’B’C’D \}$

Por lo tanto, $\{ ABCD \}=\{ A’B’C’D \}$ y es equivalente para $E$.

$\square$

Ahora, si $PQ$ es tangente a la circunferencia, solo existirá un punto autocorrespondiente, y si la recta $PQ$ no corta a la circunferencia, entonces no existe ningún punto autocorrespondiente.

Regla geométrica de la falsa posición

Esta regla viene del siguiente problema:

Problema. Construir un triángulo el cual sus lados pasan por los vértices de un triángulo dado y cuyos vértices se encuentran en los lados de otro triángulo dado.

Solución. El triángulo a encontrar debe tener sus lados, los cuales deben pasar por los vértices del triángulo $PQR$, y sus vértices en los lados del triángulo $ABC$.

Falsa posición 1

Sea un punto $D$ en $QR$, trácese $DA$ que corte a $PR$ en $E$, $EB$ que corte $PQ$ en $F$, y $FC$ que corte a $QR$ en $D’$, si $D$ y $D’$ son el mismo ya tendríamos el triángulo buscado. Por lo cual se vuelve a hacer lo mismo para $D_1$ obteniendo $D_1’$ y $D_2$ obteniendo $D_2’$, si estos son puntos iguales ya lo tendríamos resuelto, pero no es así, por ende se construirán los puntos autocorrespondientes a partir de $D,D_1,D_2,D’,D_1′,D_2’$.
Si estos puntos $M$ y $N$ existen, y pasamos por uno de ellos, en este caso $M$ para construir el triángulo buscado, nos daríamos cuenta de que regresamos a $M$ y estaría solucionado, pero como menciones estos triángulos existen si existen los puntos autocorrespondientes.

Falsa posición 2

$\square$

Más adelante…

Se verán tres teoremas importantes respecto al tema de Razón Cruzada, los cuales son Teoremas de Pascal, Brianchon y Pappus.

Entradas relacionadas

Geometría Moderna II: Razón Cruzada por la Circunferencia

Por Armando Arzola Pérez

Introducción

Como ya se vio, la razón cruzada tiene varias propiedades, desde seis tipos de razón cruzada hasta la construcción del cuarto elemento, pero falta analizar su relación con la circunferencia.

Propiedades de razón cruzada por la circunferencia

Se abordarán 3 propiedades en relación con una circunferencia dada.

Propiedad. Sean cuatro puntos en una circunferencia (con cíclicos) cualesquiera $A,B,C,D$, si unimos estos puntos a dos puntos $O$ y $O’$ que están en la misma circunferencia, entonces los haces $O\{ABCD\}$ y $O’\{ABCD\}$ tienen iguales razones cruzadas.

Razón cruzada por la circunferencia propiedad 1

Demostración. Las razones cruzadas son:

$O\{ABCD\}=\frac{sen(AOC)/sen(COB)}{sen(AOD)/sen(DOB)}=k$ y

$O’\{ABCD\}=\frac{sen(AO’C)/sen(CO’B)}{sen(AO’D)/sen(DO’B)}=k’$.

Notemos la igualdad de ángulos correspondientes de los dos haces $\angle{AOC}=\angle{AO’C}$, $\angle{COB}=\angle{CO’B}$, $\angle{DOB}=180-\angle{DO’B}$ y $\angle{AOD}=180-\angle{AO’D}$.

Por lo cual los ángulos formados serán iguales o suplementarios, por ello los senos de los ángulos serán iguales.

$\frac{sen(AOC)/sen(COB)}{sen(AOD)/sen(DOB)}=\frac{sen(AO’C)/sen(CO’B)}{sen(AO’D)/sen(DO’B)}$

$\Rightarrow O\{ABCD\}=k=k’=O’\{ABCD\}.$

$\square$

Propiedad. Sea $C(O,r)$ una circunferencia en la cual se tienen cuatro puntos fijos $A,B,C,D$ por los cuales pasan tangentes por cada uno de estos y cortan la tangente en un punto variable $X$, entonces la razón cruzada de los cuatro puntos de intersección es una constante.

Es decir, $\{A’B’C’D’\}$ es constante independientemente de $X$.

Razón cruzada por la circunferencia propiedad 2

Demostración. Se tiene por teorema visto de razón que $\{A’B’C’D’\}=O\{A’B’C’D’\}$, entonces:

$O\{A’B’C’D’\}=\frac{sen(A’OC’)}{sen(C’OB’)}/\frac{sen(A’OD’)}{sen(D’OB’)}$

Ahora, como los lados correspondientes de los ángulos $C’OB’$ y $CXB$ son perpendiculares, entonces los senos de estos ángulos son iguales, esto ocurre de igual manera para los otros ángulos de los haces $O\{A’B’C’D’\}$ y $X\{ABCD\}$.

$\Rightarrow \frac{sen(A’OC’)}{sen(C’OB’)}/\frac{sen(A’OD’)}{sen(D’OB’)} = \frac{sen(AXC)}{sen(CXB)}/\frac{sen(AXD)}{sen(DXB)} $
$\Rightarrow O\{A’B’C’D’\} =X\{ABCD\}$

Observemos que esto ocurre para cualquier $X’$ entonces $X\{ABCD\}=X’\{ABCD\}$, y por ende se tiene $\{A’B’C’D’\}=O\{A’B’C’D’\}=X’\{ABCD\}$.
Por lo tanto, $\{A’B’C’D’\}=cte$ independientemente de $X$.

$\square$

Propiedad. Sea un haz el cual tiene su vértice fuera de una circunferencia $C(O,r)$ y la cual sus cuatro líneas cortan a la circunferencia en los pares de puntos $A,A’$, $B,B’$, $C,C’$ y $D,D’$. Si se tienen dos puntos distintos $E$ y $E’$ sobre la circunferencia, entonces las razones cruzadas de los haces $E\{ABCD\}$ y $E’\{A’B’C’D’\}$ son iguales.

Razón cruzada por la circunferencia propiedad 3

Demostración. Unamos los puntos $A,B,C,D$ a $A’$ y $A’,B’,C’,D’$ a $A$, esto nos dará las intersecciones de $AB’$ y $A’B$ en un punto $X$, $AC’$ y $A’C$ en un punto $y$, $AD’$ y $A’D$ en un punto $Z$, los cuales están en la polar del vértice $O$ del haz dado, por lo cual se tiene por propiedad 1 de razón cruzada en la circunferencia:

$E’\{ABCD\}=E’\{A’B’C’D’\}=A\{A’B’C’D’\}$

Por propiedad de razón cruzada:

$A\{A’B’C’D’\}=\{wxyz\}=A’\{wxyz\}=A’\{ABCD\}$

Y por propiedad 1 de razón cruzada en la circunferencia:

$A’\{ABCD\}=E\{ABCD\}$

Por lo tanto, $E’\{A’B’C’D’\}=E\{ABCD\}$ .

$\square$

Más adelante…

Ahora se abordará el tema de la regla de la falsa proposición y los puntos autocorrespondientes, esto relacionado con la razón cruzada.

Entradas relacionadas