Archivo del Autor: Elizabeth Chalnique Ríos Alvarado

Álgebra Lineal II: Matrices y transformaciones nilpotentes

Por Elizabeth Chalnique Ríos Alvarado

Introducción

Hemos estudiado varias clases importantes de matrices y transformaciones lineales: diagonales, triangulares superiores, simétricas, ortogonales, normales, etc. Es momento de aprender sobre otro tipo fundamental de matrices y transformaciones lineales: las transformaciones nilpotentes. Nos hemos encontrado con estas matrices ocasionalmente a lo largo del primer curso de álgebra lineal y de éste. Ahora las trataremos de manera más sistemática.

Matrices y transformaciones nilpotentes

En la última unidad estuvimos trabajando únicamente en $\mathbb{R}$ o en $\mathbb{C}$. Los resultados que presentaremos a continuación son válidos para espacios vectoriales sobre cualquier campo $F$.

Definición. Sea $A$ una matriz en $M_n(F)$. Diremos que $A$ es nilpotente si $A^m = O_n$ para algún entero positivo $m$. Al menor entero positivo $m$ para el cual suceda esto le llamamos el índice de $A$.

Ejemplo 1. La matriz $A=\begin{pmatrix} 3 & -9\\ 1 & -3\end{pmatrix}$ es nilpotente. En efecto, tenemos que $A^2=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Como $A^1\neq 0$, entonces el índice de $A$ es igual a dos.

$\triangle$

Tenemos una definición correspondiente para transformaciones lineales.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$ y sea $T: V \to V$ una transformación lineal. Diremos que que $T$ es nilpotente si $T^m$ es la transformación lineal cero para algún entero positivo $m$. Al menor entero positivo $m$ para el cual suceda esto le llamamos el índice de $T$.

Recuerda que por definición $T^m$ es la transformación $T$ compuesta consigo misma $m$ veces.

Ejemplo 2. Si estamos trabajando en el espacio $V=\mathbb{R}_n[x]$ de polinomios reales de grado a lo más $n$, entonces la transformación derivada $D:V\to V$ para la cual $D(p)=p’$ es una transformación lineal nilpotente. En efecto, tras aplicarla $n+1$ veces a cualquier polinomio de grado a lo más $n$ obtenemos al polinomio $0$. Su índice es exactamente $n+1$ pues derivar $n$ veces no anula al polinomio $x^n$ de $V$.

Si estuviéramos trabajando en el espacio vectorial $\mathbb{R}[x]$ de todos los polinomios reales, entonces la transformación derivada ya no sería nilpotente. En efecto, para cualquier $m$ siempre existe un polinomio tal que al derivarlo $m$ veces no se anula.

$\triangle$

Bloques de Jordan de eigenvalor cero

Hay una familia importante de matrices nilpotentes.

Definición. Sea $F$ un campo. El bloque de Jordan de eigenvalor $0$ y tamaño $k$ es la matriz $J_{0,k}$ en $M_k(F)$ cuyas entradas son todas cero, a excepción de las que están inmediatamente arriba de la diagonal superior, las cuales son unos. En símbolos, $J_{0,k}=[a_{ij}]$ con $$a_{ij}=\begin{cases} 1 & \text{si $j=i+1$}\\ 0 & \text{en otro caso.} \end{cases}$$

También podemos expresarlo de la siguiente manera:

$$J_{0,k}=\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix},$$ en donde estamos pensando que la matriz es de $k\times k$.

Ejemplo 3. A continuación tenemos la matriz $J_{0,4}$:

\begin{align*}
J_{0,4}=\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{pmatrix}
\end{align*}

Esta es una matriz nilpotente. En efecto, haciendo las cuentas de matrices correspondientes tenemos que:

\begin{align*}
J_{0,4}^2&= \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix}
\end{align*}

Luego que

\begin{align*}
J_{0,4} ^3&= J_{0,4} J_{0,4}^2\\
&=\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix} \\
&=\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix}
\end{align*}

Y finalmente que

\begin{align*}
J_{0,4}^4&= J_{0,4} J_{0,4}^3\\
&=\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix} \\
&=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix}
\end{align*}

De esta manera, hay una potencia de $ J_{0,4}$ que se hace igual a cero. Como la mínima potencia es $4$, entonces $ J_{0,4} $ es nilpotente de índice $4$. Observa cómo la diagonal de unos «se va recorriendo hacia arriba a la derecha».

$\triangle$

Todos los bloques de Jordan son nilpotentes

El siguiente resultado generaliza el ejemplo anterior y nos da una mejor demostración, interpretando a la matriz como transformación lineal.

Teorema. La matriz $J_{0,k}$ es nilpotente de índice $k$.

Demostración. Veamos qué hace la matriz $J_{0,k}$ cuando la multiplicamos por un vector: $$J_{0,k}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{k-1} \\ x_k \end{pmatrix}= \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{k-1} \\ x_k \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_k \\ 0 \end{pmatrix}.$$

En otras palabras, la matriz $J_{0,k}$ «recorre» las entradas del vector hacia arriba «empujando» con ceros desde abajo. Al hacer esto $k$ veces, claramente llegamos al vector $0$, así, $J_{0,k}^k$ está asociada a la transformación lineal cero y por lo tanto es la matriz $O_k$. Y $J_{0,k}^{k-1}$ no es la matriz cero pues al aplicarla en $e_k$, el $k$-ésimo vector de la base canónica de $F^k$ tenemos por las mismas ideas de arriba que $J_{0,k}^{k-1}e_n=e_1$.

$\square$

Una caracterización de matrices y transformaciones nilpotentes

El siguiente resultado nos da algunas equivalencias para que una transformación sea nilpotente.

Proposición. Sea $A\in M_n(F)$ una matriz. Todo lo siguiente es equivalente:

  1. $A$ es nilpotente.
  2. El polinomio mínimo de $A$ es de la forma $\mu_A(X)=X^k$.
  3. El polinomio característico de $A$ es $\chi_A(X)=X^n$.

Demostración. $1)\Rightarrow 2).$ Si $A$ es nilpotente, entonces hay un entero $m$ tal que $A^m=O_n$. Entonces, el polinomio $p(X)=X^m$ anula a la matriz $A$. Pero el polinomio mínimo divide a cualquier polinomio que anule a $A$, entonces $\mu_A(X)|X^m$, de donde $\mu_A(X)$ debe ser también de la forma $X^k$. De hecho, no puede suceder que $k<m$ pues en dicho caso como el polinomio mínimo anula a la matriz, tendríamos que $A^k=O_n$, pero esto es imposible pues $m$ es el menor entero tal que $A^m=O_n$. Así, en este caso $k$ es justo el índice de $A$.

$2) \Rightarrow 3).$ Supongamos que el polinomio mínimo de $A$ es de la forma $\mu_A(X)=X^k$. Como el polinomio mínimo anula a la matriz tenemos que $A^k=O_n$. Tomemos un escalar $\lambda$ en $F$ fijo. Tenemos que:

\begin{align*}
\lambda^k I_n &= \lambda^k I_n – A^{k}\\&= (\lambda I_n – A)(\lambda^{k-1}I_n+\lambda^{k-2}A + \ldots + \lambda A^{k-2} + A^{k-1})
\end{align*}

Al tomar determinante de ambos lados y usando en la derecha la multiplicatividad del determinante, tenemos:

$$\det(\lambda^k I_n) = \det(\lambda I_n – A)\det(\lambda^{k-1}I_n+\lambda^{k-2}A + \ldots + \lambda A^{k-2} + A^{k-1}).$$

Del lado izquierdo tenemos $\det(\lambda^k I_n)=\lambda^{nk}$. Del lado derecho tenemos $\chi_A(\lambda)$ multiplicado por otra expresión polinomial en $\lambda$, digamos $P(\lambda)$. Como esto se vale para todo escalar $\lambda$, se vale polinomialmente que $X^{nk}=\chi_A(X)P(X)$. Así, $\chi_A(X)|X^{nk}$ y como el polinomio característico es de grado exactamente $n$, obtenemos que $\chi_A(X)=X^n$.

$3) \Rightarrow 1).$ Si el polinomio característico de $A$ es $\chi_A(X)=X^n$, entonces por el teorema de Cayley-Hamilton tenemos que $A^n=O_n$, de donde $A$ es nilpotente.

$\square$

Como consecuencia del teorema anterior, obtenemos los siguientes resultados.

Corolario. Si $A$ es una matriz nilpotente en $M_n(F)$, entonces $A^n=O_n$ y por lo tanto el índice de $A$ es menor o igual a $n$. Análogamente, si $T:V\to V$ es nilpotente y $\dim(V)=n$, entonces el índice de $T$ es menor o igual a $n$.

Corolario. Si $A$ es una matriz nilpotente en $M_n(F)$, entonces su traza, su determinante y cualquier eigenvalor son todos iguales a cero.

Más adelante…

En esta entrada definimos a las matrices y transformaciones nilpotentes. También enunciamos algunas de sus propiedades. En la siguiente entrada enunciaremos nuestra primer versión del teorema de Jordan, en donde nos enfocaremos únicamente en lo que nos dice para las matrices nilpotentes. Esto servirá más adelante como uno de los peldaños que usaremos para demostrar el teorema de Jordan en general.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra una matriz nilpotente de índice $2$ en $M_7(\mathbb{R})$. En general, para cualquier entero positivo $n$ y cualquier entero $k$ con $1\leq k \leq n$, da una forma de construir una matriz nilpotente de índice $n$ en $M_n(\mathbb{R})$.
  2. Encuentra una matriz con determinante cero y que no sea una matriz nilpotente. Encuentra una matriz con traza cero y que no sea una matriz nilpotente.
  3. Sea $V$ un espacio vectorial de dimensión finita $n$. Demuestra que las siguientes afirmaciones son equivalentes:
    1. Una transformación $T:V\to V$ es nilpotente de índice $k$.
    2. Alguna forma matricial de $T$ es nilpotente de índice $k$.
    3. Todas las formas matriciales de $T$ son nilpotentes de índice $k$.
    4. $T^n$ es la transformación lineal $0$.
  4. Demuestra los dos corolarios al final de la entrada. Como sugerencia para el segundo, recuerda que la traza, determinante y los eigenvalores de una matriz están muy relacionados con su polinomio característico.
  5. Prueba que la única matriz nilpotente diagonalizable en $M_n(F)$ es $O_n$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Otras aplicaciones de formas canónicas de Jordan

Por Elizabeth Chalnique Ríos Alvarado

Introducción

En las notas anteriores desarrollamos teoría interesante acerca de las formas canónicas de Jordan, ahora vamos a ver algunos ejemplos de todo eso.

Ejemplo 1

Considera la matriz $$A = \begin{pmatrix}1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & -2 \end{pmatrix}$$

Calculamos $\chi_{A}(X)$ expandiendo $det(XI_{5} – A)$ con respecto a la tercera fila y obtenemos (usando de nuevo la expansión respecto a la segunda fila en el nuevo determinante) \begin{align*} \chi_{A}(X) &= X \begin{vmatrix} X-1 & 0 & 0 & -2 \\ 0 & X & 0 & 0 \\ 0 & -1 & X & 0 \\ 1 & 0 & 0 & X+2 \end{vmatrix} \\ &= X^{2} \begin{vmatrix} X-1 & 0 & 2 \\ 0 & X & 0 \\ 1 & 0 & X+2 \end{vmatrix} \\ &= X^{3} \begin{vmatrix} X-1 & -2 \\ 1 & X+2 \end{vmatrix} \\ &= X^{4} (X+1) \end{align*}

El eigenvalor $-1$ tiene multiplicidad algebraica 1, por lo que hay un solo bloque de Jordan asociado con este eigenvalor, de tamaño 1. Ahora, veamos qué pasa con el eigenvalor 0 que tiene multiplicidad algebraica 4. Sea $N_{m}$ el número de bloques de Jordan de tamaño $m$ asociados con ese eigenvalor. Por el Teorema visto en la nota anterior tenemos que $$N_{1} = rango(A^{2}) – 2rango(A) + 5,$$ $$N_{2} = rango(A^{3}) – 2rango(A^{2}) + rango(A)$$ etcétera. Puedes checar fácilmente que $A$ tiene rango 3.

Luego, calculemos $A^{2} = \begin{pmatrix} -1 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 2 \end{pmatrix}$, $A^{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & -2 \end{pmatrix}$.

Nota que $A^{2}$ tiene rango 2 (pues una base del generado por sus filas está dada por la primera y cuarta fila) y $A^{3}$ tiene rango 1. De donde, $$N_{1} = 2-2 \cdot 3 + 5 = 1,$$ por lo que hay un bloque de Jordan de tamaño 1 y $$N_{2} = 1-2 \cdot 2 + 3 = 0,$$ entonces no hay un bloque de Jordan de tamaño 2. Dado que la suma de los tamaños de los bloques de Jordan asociados con el eigenvalor 0 es 4, y como ya sabemos que hay un bloque de tamaño 1 y no hay de tamaño 2, deducimos que hay un bloque de tamaño 3 y que la forma canónica de Jordan de $A$ es $$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$

Ejemplo 2

Más adelante…

Con esto finalizamos el curso de Álgebra Lineal II, lo que sigue es el maravilloso mundo del Álgebra Moderna.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Usa el Teorema de Jordan para probar que cualquier matriz $A \in M_{n}(\mathbb{C})$ es similar a su transpuesta.
  2. Prueba que si $A \in M_{n}(\mathbb{C})$ es similar a $2A$, entonces $A$ es nilpotente.
  3. Usa el teorema de Jordan para probar que si $A \in M_{n}(\mathbb{C})$ es nilpotente, entonces $A$ es similar a $2A$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Clasificación de matrices por similaridad

Por Elizabeth Chalnique Ríos Alvarado

Introducción

En las notas anteriores hemos desarrollado el Teorema de Jordan, y ahora veremos cómo podemos clasificar matrices por similaridad.

Sección

Supongamos que $A$ es una matriz similar a $$\begin{pmatrix} J_{k_{1}}(\lambda_{1}) & 0 & \cdots & 0 \\ 0 & J_{k_{2}}(\lambda_{2}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_{d}}(\lambda_{d}) \end{pmatrix}$$

Entonces el polinomio característico de $A$ es $$\chi_{A}(X) = \prod_{i=1}^{d}\chi_{J_{k_{i}}} (\lambda_{i})(X).$$

Ahora, dado que $J_{n}$ es nilpotente tenemos $\chi_{J_{k_{i}}}(X) = X^{n}$ y así $$\chi_{J_{n}(\lambda)}(X) = (X – \lambda)^{n}.$$

Se sigue que $$\chi_{A}(X) = \prod_{i=1}^{d} (X – \lambda_{i})^{k_{i}}$$ y así necesariamente $\lambda_{1}, \ldots, \lambda_{d}$ son todos eigenvalores de $A$. Nota que no asumimos que $\lambda_{1}, \ldots, \lambda_{d}$ sean distintos a pares, por lo que no podemos concluir de la igualdad anterior que $k_{1}, \ldots, k_{d}$ sean las multiplicidades algebráicas de los eigenvalores de $A$. Esto no es verdad en general: varios bloques de Jordan correspondientes a un dado eigenvalor pueden aparecer. El problema de la unicidad se resuelve completamente por el siguiente:

Teorema: Supongamos que una matriz $A \in M_{n}(F)$ es similar a $$\begin{pmatrix} J_{k_{1}}(\lambda_{1}) & 0 & \cdots & 0 \\ 0 & J_{k_{2}}(\lambda_{2}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_{d}}(\lambda_{d}) \end{pmatrix}$$ para algunos enteros positivos $k_{1}, \ldots, k_{d}$ que suman $n$ y algunas $\lambda_{1}, \ldots, \lambda_{d} \in F$. Entonces

  1. Cada $\lambda_{i}$ es un eigenvalor de $A$.
  2. Para cada eigenvalor $\lambda$ de $A$ y cada entero positivo $m$, el número de bloques de Jordan $J_{m}(\lambda)$ entre $J_{k_{1}}(\lambda_{1}), \ldots, J_{k_{d}}(\lambda_{d})$ is $$N_{m}(\lambda) = rango(A – \lambda I_{n})^{m+1} – 2 rango(A – \lambda I_{n})^{m} + rango(A – \lambda I_{n})^{m-1}$$ y depende sólo en la clase de similaridad de $A$.

Demostración. Ya vimos el inciso 1. La prueba del inciso 2 es muy similar a la solución del Problema __. Más precisamente, sea $B = A – \lambda I_{n}$ y observa que $B^{m}$ es similar a $\begin{pmatrix} (J_{k_{1}}(\lambda_{1}) – \lambda I_{k_{1}})^{m} & 0 & \cdots & 0 \\ 0 & (J_{k_{2}}(\lambda_{2}) – \lambda I_{k_{2}})^{m} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (J_{k_{d}}(\lambda_{d}) – \lambda I_{k_{d}})^{m}\end{pmatrix}$, por lo que $\displaystyle rango(B^{m}) = \sum_{i=1}^{d} rango(J_{k_{i}} (\lambda_{i}) – \lambda I_{k_{i}})^{m}$.

Ahora, el rango de $(J_{n}(\lambda) – \mu I_{n})^{m}$ es

  • $n$ si $\lambda \neq \mu$, como en este caso $$J_{n}(\lambda) – \mu I_{n} = J_{n} + (\lambda – \mu) I_{n}$$ es invertible,
  • $n-m$ para $\lambda = \mu$ y $m \leq n$, como se sigue del Problema __.
  • 0 para $\lambda = \mu$ y $m > n$, dado que $J^{n}_{n} = O_{n}$.

De ahí, si $N_{m}(\lambda)$ es el número de bloques de Jordan $J_{m}(\lambda)$ entre $J_{k_{1}}(\lambda_{1}), \ldots, J_{k_{d}}(\lambda_{d})$, entonces $$rango(B^{m}) = \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} \geq m}} (k_{i} – m) + \sum_{\lambda_{i} \neq \lambda} k_{i},$$ luego sustrayendo esas igualdades para $m-1$ y $m$ se tiene que $$rango(B^{m-1}) – rango(B^{m}) = \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} \geq m}} 1$$ y finalmente \begin{align*} rango(B^{m-1}) – 2rango(B^{m}) + rango(B^{m+1}) = \\ (rango(B^{m-1}) – rango(B^{m})) – (rango(B^{m}) – rango(B^{m+1})) = \\ \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} = m}} 1 = N_{m}(\lambda) \end{align*} como queríamos.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Cuáles son las posibles formas canónicas de Jordan de una matriz cuyo polinomio característico es $(X-1)(X-2)^{2}$?
  2. Considera una matriz $A \in M_{6}(\mathbb{C}) de rango 4 cuyo polinomio mínimo es $X(X-1)(X-2)^{2}$.
    1. ¿Cuáles son los eigenvalores de $A$?
    2. ¿$A$ es diagonalizable?
    3. ¿Cuáles son las posibles formas canónicas de Jordan de $A$?

Más adelante…

En la siguiente nota veremos algunos ejemplos de cómo funciona todo esto.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Existencia de la forma canónica de Jordan para nilpotentes

Por Elizabeth Chalnique Ríos Alvarado

Introducción

En la entrada anterior estudiamos de manera un poco más sistemática las matrices y transformaciones lineales nilpotentes. Lo que haremos ahora es enunciar el teorema de la forma canónica de Jordan para matrices nilpotentes. Este es un teorema de existencia y unicidad. En esta entrada demostraremos la parte de la existencia. En la siguiente entrada hablaremos de la unicidad y de cómo encontrar la forma canónica de Jordan de matrices nilpotentes de manera práctica.

El teorema de Jordan para nilpotentes

El teorema que queremos demostrar tiene dos versiones: la de transformaciones y la matricial. La versión en transformaciones dice lo siguiente.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $T:V\to V$ una transformación lineal nilpotente. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales existe una base de $V$ en la cual $T$ tiene como forma matricial a la siguiente matriz de bloques:

$$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

La versión en forma matricial dice lo siguiente.

Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

A esta matriz de bloques (ya sea para una transformación, o para una matriz) le llamamos la forma canónica de Jordan de $A$.

En vista de que dos matrices son similares si y sólo si representan a la misma transformación lineal en distintas bases, entonces ambos teoremas son totalmente equivalentes. Así, basta enfocarnos en demostrar una de las versiones. Haremos esto con la versión para transformaciones lineales.

Trasnformaciones nilpotentes y unos vectores linealmente independientes

En esta sección enunciaremos un primer resultado auxiliar para demostrar la existencia de la forma canónica de Jordan. Veremos que a partir de una transformación lineal nilpotente podemos obtener algunos vectores linealmente independientes.

Proposición. Sea $V$ un espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal de índice $k$. Sea $v$ un vector tal que $T^{k-1}(v)\neq 0$, el cual existe ya que $T^{k-1}$ no es la transformación lineal cero. Entonces:

  1. Los vectores $v$, $T(v)$, $\ldots$, $T^{k-1}(v)$ son linealmente independientes.
  2. El subespacio $W$ que generan es de dimensión $k$ y es estable bajo $T$.
  3. La transformación $T$ restringida a $W$ en la base $T^{k-1}(v)$, $T^{k-2}(v)$, $\ldots$, $T(v)$, $v$ tiene como matriz al bloque de Jordan $J_{0,k}$. Ojo. Aquí los vectores los escribimos en orden contrario, empezando con la mayor potencia de $T$ aplicada.

Demostración. Probemos las afirmaciones una por una. Para empezar, supongamos que para ciertos escalares $\alpha_0,\ldots,\alpha_{k-1}$ tenemos que $$\alpha_0v+\alpha_1T(v)+\ldots+\alpha_{k-1}T^{k-1}(v)=0.$$

Vamos a probar inductivamente de $0$ a $k-1$ que $\alpha_k=0$. Para mostrar que $\alpha_0=0$, aplicamos $T^{k-1}$ a la combinación lineal anterior para obtener:

\begin{align*}
0&=\alpha_0T^{k-1}(v)+\alpha_1T^k(v)+\ldots+\alpha_{k-1}T^{2k-2}(v)\\
&=\alpha_0T^{k-1}(v).
\end{align*}

Aquí estamos usando en todos los sumandos, excepto el primero, que $T^k=0$. Como $T^{k-1}(v)\neq 0$, concluimos que $\alpha_0=0$. Suponiendo que ya hemos mostrado $\alpha_0=\ldots=\alpha_l=0$, la combinación lineal con la que empezamos queda como $$\alpha_{l+1}T^{l+1}(v)+\alpha_{l+2}T^{l+2}(v)+\ldots+\alpha_{k-1}T^{k-1}(v)=0.$$ Aplicando $T^{k-l-2}$ y usando un argumento similar al anterior se llega a que $\alpha_{l+1}=0$. Esto muestra que la única combinación lineal de los vectores que da cero es la combinación lineal trivial, así que son linealmente independientes.

De manera inmediata obtenemos entonces que esos $k$ vectores generan un subespacio $W$ de dimensión $k$. Para ver que $W$ es $T$ estable, tomemos un elemento $w$ en $W$, es decir $$w=\alpha_0v+\alpha_1T(v)+\ldots+\alpha_{k-1}T^{k-1}(v)$$ para algunos escalares $\alpha_0,\ldots,\alpha_{k-1}$. Debemos ver que $T(w)$ está nuevamente en $W$. Haciendo las cuentas y usando nuevamente que $T^k=0$ obtenemos:

\begin{align*}
T(w)&=T(\alpha_0v+\alpha_1T(v)+\ldots+\alpha_{k-1}T^{k-1}(v))\\
&= \alpha_0T(v)+\alpha_1T^2(v)+\ldots+\alpha_{k-2}T^{k-1}(v)+\alpha_{k-1}T(v)\\
&= \alpha_0T(v)+\alpha_1T^2(v)+\ldots+\alpha_{k-2}T^{k-1}(v)\\
\end{align*}

Este vector de nuevo es combinación lineal de los vectores que nos interesan, así que $T(w)$ está en $W$, como queríamos.

La afirmación de la forma matricial es inmediata pues precisamente

$$T(T^{j}(v))=0\cdot T^{n-1}(V)+\ldots+1\cdot T^{j+1}(v)+\ldots+0\cdot T(v) + 0\cdot v,$$ de donde se lee que las columnas de dicha forma matricial justo son las del bloque de Jordan $J_{0,k}$.

$\square$

El teorema anterior da otra demostración de algo que ya habíamos mostrado en la entada anterior: el índice de una matriz en $M_n(F)$ (o de una transformación nilpotente en un espacio vectorial de dimensión $n$) no puede exceder $n$.

Encontrar un subespacio complementario y estable

Ahora veremos otro resultado auxiliar que necesitaremos para demostrar la existencia de la forma canónica de Jordan. A partir de él podemos conseguirnos un «subespacio complementario y estable» que en la prueba de la existencia nos ayudará a proceder inductivamente. Este truco ya lo hemos visto antes en la clasificación de matrices ortogonales y el la demostración del teorema espectral.

Proposición. Sea $V$ un espacio vectorial de dimensión finita $n$ y $T:V\to V$ una transformación lineal nilpotente de índice $k$. Tomemos $v$ un vector tal que $T^{k-1}(v)\neq 0$. Sea $W$ el subespacio generado por $v,T(v),\ldots,T^{k-1}(v)$. Entonces, existe un subespacio $W’$ estable bajo $T$ y tal que $T=W\oplus W’$.

La principal dificultad para probar esta proposición es una cuestión creativa: debemos saber de dónde sacar el espacio $W’$. Para ello, haremos uso de la transformación transpuesta y de un espacio ortogonal por dualidad. Como recordatorio, si $T:V\to V$ es una transformación lineal, entonces su transformación transpuesta es una transformación lineal $^tT:V^\ast \to V^\ast$ para la cual $^tT(\ell)(u)=\ell(T(u))$ para cualquier forma lineal $\ell$ y cualquier vector $u$ en $V$.

Demostración. Primero, nos enfocamos en construir $W’$. Para ello procedemos como sigue. Como $T^{k-1}(v)\neq 0$, entonces existe una forma lineal $\ell$ tal que $\ell(T^{k-1}(v))\neq 0$. Se puede mostrar que $S:=\text{ }^t T$ también es nilpotente de índice $k$. Por la proposición de la sección anterior, tenemos entonces que $\ell, S(\ell),\ldots,S^{k-1}(\ell)$ son $k$ vectores linealmente independientes en $V^\ast$ y por lo tanto que generan un subespacio $Z$ de dimensión $k$. El espacio $W’$ que propondremos será $Z^\bot$.

Debemos mostrar que:

  1. En efecto $V=W\oplus W’$.
  2. En efecto $W’$ es $T$ estable.

Para la primer parte, usando teoría de espacios ortogonales tenemos que $$\dim(W’)=\dim(Z^\bot)=n-\dim(Z)=n-k,$$ así que los subespacios tienen la dimensión correcta para ser complementarios. Además, si $u\in W\cap W’$, entonces $u$ es combinación lineal de $v, T(v),\ldots, T^{k-1}(v),$ digamos $$u=\alpha_0v+\ldots+\alpha_{k-1}T^{k-1}(v)$$ y se anula por $\ell, S(\ell),\ldots,S^{k-1}(\ell)$, lo que quiere decir que se anula por $\ell, \ell\circ T, \ldots, \ell \circ T^{k-1}$. Esto permite probar iterativamente que $\alpha_0=\ldots=\alpha_{k-1}=0$, de modo que $u=0$. Con esto, $W$ y $W’$ son de intersección trivial y dimensiones complementarias, lo cual basta para que $V=W\oplus W’$.

Para terminar, debemos ver que $W’$ es $T$ estable. Tomemos un $u$ en $W’$, es decir, tal que se anula por $\ell, \ell\circ T, \ldots, \ell \circ T^{k-1}$. Al aplicar $T$, tenemos que $T(u)$ también se anula por todas estas transformaciones. Esto se debe a que para $\ell \circ T^j$ con $j\leq k-2$ se anula ya que $\ell\circ T^j(T(u))=\ell\circ T^{j+1}(u)=0$ por cómo tomamos $u$ y para $\ell \circ T^{k-1}$ se anula pues $T$ es nilpotente de índice $k$.

$\square$

Existencia de forma canónica de Jordan para nilpotentes

La idea para encontrar la forma canónica de Jordan debe ser clara a estas alturas: se procederá por inducción, el caso base será sencillo, asumiremos la hipótesis inductiva y para hacer el paso inductivo descomponeremos al espacio $V$ mediante la proposición de la sección anterior. Veamos los detalles.

Demostración (existencia de forma canónica de Jordan para nilpotentes). Estamos listos para probar la existencia de la forma canónica de Jordan para una transformación lineal nilpotente $T:V\to V$ con $V$ un espacio vectorial de dimensión finita $n$. Procederemos por inducción en la dimensión. Si $n=1$, entonces $V$ es generado por un vector $v$ y la transformación lineal $T$ debe mandarlo al vector $0$ para ser nilpotente. En esta base, $T(v)=0$ y la matriz que representa a $T$ es entonces $(0)=J_{0,1}$.

Supongamos que existe la forma canónica de Jordan para cuando $V$ es de cualquier dimensión menor a un entero positivo dado $n$. Tomemos $V$ un espacio vectorial de dimensión $n$ y $T:V\to V$ una transformación lineal nilpontente. Si $T$ es de índice $n$, entonces $T^{n-1}(v),\ldots,T(v),v$ son linealmente independientes y por lo tanto son una base de $V$. La forma matricial de $T$ en esta base es el bloque de Jordan $J_{0,n}$, en cuyo caso terminamos.

De otra forma, el índice es un número $k<n$. Entonces, $T^{k-1}(v),\ldots,T(v),v$ generan un subespacio estable $W$ de dimensión $k$. Por la proposición de la sección anterior, podemos encontrar un subespacio complementario $W’$ de dimensión $n-k<n$ y estable bajo $T$. Como la restricción de $T$ a $W’$ tiene codominio $W’$, es nilpotente y $\dim(W)<\dim(V)$, entonces por hipótesis inductiva $W’$ tiene una base $\beta$ bajo la cual la restricción de $T$ a $W’$ tiene como forma matricial una matriz diagonal por bloques con puros bloques de Jordan del estilo $J_{0,k_j}$. Al completar $\beta$ con $T^{k-1}(v),\ldots,T(v),v$ , obtenemos una base de $V$ en la cual $T$ tiene como forma matricial una matriz diagonal por bloques con puros bloques de Jordan del estilo $J_{0,k_j}$ (que vienen de la hipótesis inductiva) y un bloque de Jordan $J_{0,k}$. Salvo quizás un reordenamiento de la base para ordenar los $k_j$ y $k$, obtenemos exactamente lo buscado.

$\square$

Más adelante…

Ya demostramos una parte fundamental del teorema que nos interesa: la existencia de la forma canónica de Jordan para transformaciones (y matrices) nilpotentes. Nos falta otra parte muy importante: la de la unicidad. Las demostraciones de unicidad típicamente son sencillas, pero en este caso no es así. Para decir de manera explícita cuál es la forma canónica de Jordan de una transformación (o matriz) nilpotente, deberemos hacer un análisis cuidadoso del rango de las potencias de la transformación (o matriz). Veremos esto en las siguientes entradas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Verifica que la siguiente matriz es nilpotente: $$\begin{pmatrix}13 & 6 & -14 & -5\\ 2 & 0 & -4 & -2 \\ 29 & 12 & -34 & -13 \\ -45 & -18 & 54 & 21\end{pmatrix}.$$
    Siguiendo las ideas de la demostración de existencia de esta entrada, ¿cómo podrías dar la forma canónica de Jordan de esta matriz? Intenta hacerlo.
  2. Sea $V$ un espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal nilpotente de índice $k$. Demuestra que $^tT$ también es una transformación lineal nilpotente de índice $k$. ¿Cuál sería el resultado análogo para matrices?
  3. Sea $V$ un espacio vectorial de dimensión finita y $T:V \to V$ una transformación lineal tal que para cualquier $v$ en $V$ existe algún entero $n$ tal que $T^n(v)=0$. Estos $n$ pueden ser distintos para distintos $v$. Muestra que $T$ es nilpotente.
  4. Considera el subespacio $V$ de polinomios reales con grado a lo más $4$ y $D:V\to V$ la transformación lineal derivar. Da, de manera explícita, espacios $W$ y $W’$ como en las proposición de encontrar el subespacio complementario estable.
  5. Hay varios detalles que quedaron pendientes en las demostraciones de esta entrada. Revisa la entrada para encontrarlos y da las demostraciones correspondientes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»