Archivo del Autor: Leonardo Ignacio Martínez Sandoval

Leonardo Ignacio Martínez Sandoval

Acerca de Leonardo Ignacio Martínez Sandoval

Hola. Soy Leonardo Martínez. Soy Profesor de Tiempo Completo en la Facultad de Ciencias de la UNAM. Hice un doctorado en Matemáticas en la UNAM, un postdoc en Israel y uno en Francia. Además, me gusta colaborar con proyectos de difusión de las matemáticas como la Olimpiada Mexicana de Matemáticas.

Álgebra Lineal II: Introducción al curso

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta serie de entradas continuaremos platicando acerca de álgebra lineal. Son una continuación a las entradas de Álgebra Lineal I que también se encuentran disponibles en el blog. En el transcurso de ellas, cubriremos los temas que establece el temario de la materia Álgebra Lineal II de la Licenciatura en Matemáticas de la UNAM.

Primero comenzaremos dando un pequeño repaso de lo que se ha visto en Álgebra Lineal I y después daremos un pequeño panorama de lo que se cubrirá en este curso.

Algunos recordatorios de Álgebra Lineal I

En el primer curso de álgebra lineal se establecieron muchos fundamentos del área, relacionados con espacios vectoriales, transformaciones lineales, matrices y más. A continuación damos un breve recordatorio de cada unidad temática. Usaremos letras cursivas para mencionar términos que ya deberías conocer. Si algunos de ellos no los recuerdas. Usaremos letras negritas para hacer énfasis en resultados fundamentales del primer curso, que es muy importante que recuerdes qué dicen y cómo se usan. Todo esto lo puedes encontrar en las notas anteriores.

En la primer parte de ese curso, recordamos las definiciones básicas de vector, matriz y transformación lineal, pero únicamente nos enfocamos en un espacio vectorial muy sencillo: $F^n$, que consiste de todos los vectores con $n$ entradas en un campo $F$. Se definieron operaciones de suma y producto escalar en este espacio. También hablamos de cómo multiplicar matrices. Esto fue suficiente para plantear la idea de resolver sistemas de ecuaciones lineales. Primero estudiamos los sistemas de ecuaciones lineales homogéneos, pues de acuerdo al principio de superposición, esto es suficiente. Luego, vimos el algoritmo de reducción gaussiana, que nos permite llevar cualquier matriz a su forma escalonada reducida. Esto resulta fundamental para calcular todo tipo de cosas en álgebra lineal: resolver sistemas de ecuaciones, invertir matrices, encontrar determinantes, encontrar espacios generados, etc.

En la segunda parte introdujimos el concepto de espacio vectorial en general. Hablamos de $F^n$, pero también del espacio de matrices $M_{m,n}(F)$, del espacio de polinomios $F[x]$, de los espacios de polinomios de grado a lo más $n$, $F_n[x]$, y de algunos otros como los de funciones con ciertas propiedades (continuas, diferenciables, limitadas a un intervalo, acotadas, etc.) A partir de las nociones de combinación lineal, independencia lineal y generadores, desarrollamos la teoría de dimensión. Un resultado crucial en dimensión finita es el lema de Steinitz. Tras hablar de un espacio vectorial, comenzamos a hablar de «funciones bonitas» entre ellos. Las primeras que tratamos fueron las transformaciones lineales. Un resultado crucial es que, en dimensión finita y tras elegir una base cada transformación lineal corresponde a una matriz y viceversa. Como bases distintas dan matrices distintas, fue necesario discutir qué sucede al cambiar de base, por lo que se introdujeron matrices de cambio de base. Otro resultado crucial es el teorema rango-nulidad.

La tercera parte fue mucho más geométrica. En ella hablamos de las formas lineales y de las formas bilineales. A partir de las formas lineales construimos a los espacios duales y desarrollamos la teoría de dualidad. Definimos el concepto de hiperplano. Una de las principales aplicaciones de la teoría de dualidad fue mostrar que en dimensión finita todo subespacio es intersección de hiperplanos. En el caso de formas bilineales, nos enfocamos mucho más en aquellas que van a $\mathbb{R}$. A partir de ellas definimos formas cuadráticas. Estudiamos el caso muy especial de espacios euclideanos, que son, a grandes rasgos espacios vectoriales reales con una forma bilineal «bonita». En este tipo de espacios se puede hablar de normas, distancias y ángulos. Los resultados cruciales fueron la desigualdad de Cauchy-Schwarz y la existencia de bases ortonormales. Para encontrarlas, hablamos del proceso de Gram-Schmidt.

Finalmente, vino la unidad 4 en la que se desarrolló de manera formal el concepto de determinante, tanto para vectores, como para matrices y transformaciones lineales. Para ello fue importante hablar de formas $n$-lineales (que en cierta forma generalizan a las bilineales) con propiedades especiales, como ser alternantes. Se vieron muchas propiedades de los determinantes para entenderlos a profundidad de manera teórica y práctica, en particular la expansión de Laplace. Se vio cómo los determinantes pueden ayudar a resolver sistemas de ecuaciones mediante las fórmulas de Cramer. También, con toda la teoría desarrollada hasta aquí pudimos finalmente entender con mucha profundidad los sistemas de ecuaciones lineales mediante el teorema de Rouché-Capelli. Para cerrar el curso, vimos muy por encima las ideas de eigenvalores, eigenvectores y polinomio característico. Esto nos llevó a la idea de diagonalización. Juntando toda la teoría del curso, llegamos a la cereza del pastel: el teorema espectral para matrices simétricas reales.

La idea general del segundo curso

El teorema espectral para matrices simétricas reales es un resultado precioso: bajo ciertas condiciones nos permite «llevar» una transformación (o matriz) a una «forma sencilla». Nos debe de dar la intuición de que toda la teoría que se desarrolló anteriormente la podemos utilizar para demostrar muchos otros resultados lindos de ese estilo. En Álgebra Lineal II haremos precisamente esto.

En la primer parte del curso profundizaremos en la teoría de eigenespacios, que nos permitirán entender mucho mejor cómo son los eigenvectores. Para hacer eso, será importante introducir un nuevo polinomio: el polinomio mínimo. Mostraremos muchas más propiedades de eigenvectores, eigenvalores, polinomios mínimos y característicos. Usaremos estas ideas para profundizar en las nociones de diagonalización y triangulización y enunciaremos teoremas que nos permitirán saber cuándo una matriz (o transformación) se puede llevar mediante un cambio de base a una forma más sencilla. En esta primer parte también demostraremos el bello teorema de Cayley-Hamilton, que afirma que cualquier matriz se anula en su polinomio característico.

Después de esto, en la segunda parte del curso trabajaremos para entender mejor a las formas bilineales que introdujimos en el primer curso. Ya no sólo nos limitaremos a aquellas que caen a los reales, sino que hablaremos también de aquellas que caen al campo $\mathbb{C}$ de los números complejos. Uno podría pensar que el tratamiento es análogo, pero esto dista mucho de la realidad: se requiere pensar en nuevas definiciones que involucren a los conjugados de las entradas de las matrices.

Tras establecer las propiedades principales que nos interesan en espacios vectoriales sobre $\mathbb{R}$ y $\mathbb{C}$, retomaremos la idea de demostrar teoremas de diagonalización. Ahora tendremos el teorema espectral para matrices reales y el teorema espectral para matrices complejas. Además de garantizarnos una diagonalización, estos teoremas nos garantizan que esa diagonalización es de una forma muy especial. Veremos las consecuencias teóricas que esto tiene.

Finalmente, en la última unidad temática, veremos que aunque las matrices no sean diagonalizables, en realidad no todo está perdido. Hablaremos de la forma canónica de Jordan, que es algo así como una versión débil de diagonalizar. Terminaremos el curso aprovechando todo lo visto hasta ahora para ver que cualquier matriz, sin importar sobre qué campo esté, siempre podrá ser llevada a esta forma tras un cambio de base.

Más adelante…

En la siguiente entrada ya comenzaremos con el contenido teórico del curso. Lo primero que haremos es formalizar qué quiere decir «aplicar un polinomio a una transformación lineal» y qué qué quiere decir aplicarlo a una matriz.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Recuerda el algoritmo de reducción gaussiana y úsalo para determinar si la matriz $\begin{pmatrix} 1 & 5 & 0 \\ 0 & 1 & 2 \\ 5 & 3 & -1\end{pmatrix}$ es invertible y, en caso de que sí, encontrar su inversa. Hazlo a mano y comprueba tu respuesta con alguna calculadora de forma escalonada reducida en línea.
  2. Encuentra una base ortogonal para el espacio de polinomios $\mathbb{R}_4[x]$ de grado a lo más $4$ con producto bilineal $\langle p, q \rangle = \sum_{j=0}^4 p(j)q(j)$. Encuentra la forma matricial de la transformación «derivar» en esta base y da su determinante.
  3. Escribe al subespacio de matrices antisimétricas en $M_3(\mathbb{R})$ como intersección de hiperplanos. ¿Qué dimensión tiene?
  4. Encuentra un sistema de $4$ ecuaciones lineales en $5$ variables cuyo espacio de soluciones tenga dimensión $2$. Después, resuélvelo usando los siguientes dos métodos: reducción gaussiana y fórmulas de Cramer.
  5. Explica qué nos garantiza el teorema espectral visto en el curso anterior para las matrices $A=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 4 \end{pmatrix}$ y $B=\begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & -4 \\ 0 & 0 & 2 \end{pmatrix}$. Encuentra el polinomio característico de cada una de estas matrices. Esboza (sin hacerlo) cómo encontrarías los valores y vectores propios de $A$ y $B$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Conectores: negaciones, conjunciones y disyunciones

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada de introducción a este curso ya acordamos que una proposición matemática (o simplemente proposición) es un enunciado que puede ser verdadero o falso (pero no ambos), y que habla de objetos matemáticos. También hablamos de variables proposicionales como $P,Q,R$, que nos permiten hablar de proposiciones indeterminadas. Y mencionamos brevemente lo que será una tabla de verdad.

Ahora hablaremos de algunas reglas que nos permiten comenzar con una o más proposiciones y combinarlas para obtener otras proposiciones. Hablaremos de la negación, de la conjunción y de la disyunción. De manera informal, la primera antepone un «no es cierto que» a cualquier proposición, y le cambia su veracidad. La segunda y tercera combinan dos proposiciones en una sola. De manera informal, ponen «y» y «o» entre las oraciones, respectivamente.

A estas reglas se les conoce como conectores o conectivos. Discutiremos cada uno de ellos de manera intuitiva y después definiremos qué quieren decir de manera formal.

Conectores lógicos

De tu experiencia previa, ya sabes que hay formas en las que podemos combinar, por ejemplo, a números enteros para obtener nuevos números. Si tomamos el número $2$ y el número $3$ y les aplicamos la operación «suma», entonces debemos entreponer un signo $+$ entre ellos para obtener la expresión $2+3$. Esta expresión es de nuevo un número entero: el $5$. Así como hacemos operaciones entre números, también podemos hacer operaciones entre proposiciones.

Un conector lógico (o simplemente conector) es una regla que permite tomar una o más proposiciones, «operarlas» y de ahí construir una nueva proposición «resultado». Como lo que más nos importa de las proposiciones es si son verdaderas o falsas, entonces lo más importante de cada conector que demos es decir cómo se determina la veracidad de la proposición que obtuvimos como resultado. En estas entradas hablaremos a detalle de los siguientes conectores:

  • Negaciones: Usan el símbolo $\neg$. Toman una proposición $P$ y la convierten en la proposición $\neg P$ cuyo valor de verdad es opuesto al de $P$.
  • Conjunciones: Usan el símbolo $\land$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\land Q$, que para ser verdadera necesita que tanto $P$ como $Q$ sean verdaderas.
  • Disyunciones: Usan el símbolo $\lor$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\lor Q$, que para ser verdadera necesita que alguna de $P$ o $Q$ lo sean (o ambas).
  • Implicaciones: Usan el símbolo $\Rightarrow$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\Rightarrow Q$, que para ser verdadera se necesita o bien que $P$ sea falsa (y $Q$ puede ser lo que sea), o bien que tanto $P$ como $Q$ sean verdaderas.
  • Dobles implicaciones: Usan el símbolo $\Leftrightarrow$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P \Leftrightarrow Q$, que para ser verdadera necesita que $P\Rightarrow Q$ sea verdadera y que $Q\Rightarrow P$ sea verdadera.

Ahora profundizaremos en las primeras tres y las últimas dos las dejaremos para más adelante.

Negaciones

Lo que hacen las negaciones a nivel de texto es anteponer un «no es cierto que» a una proposición. Por ejemplo si comenzamos con la proposición $$A=\text{«El cielo es azul.»}$$ entonces su negación es $$\neg A=\text{«No es cierto que el cielo es azul.»}$$ Observa que si pensamos a $A$ como una proposición verdadera, entonces la proposición $\neg A$ es falsa.

Hay que tener cuidado. El efecto que hacen las negaciones simplemente es anteponer «no es cierto que» a una proposición. Puede ser tentador intentar poner un «no» en alguna parte de la oración de manera arbitraria, pero esto puede llevar a problemas. Por ejemplo, la negación de la oración $$B=\text{«El número $2$ es par y múltiplo de $3$.»}$$ es simplemente $$\text{«No es cierto que el número $2$ es par y múltiplo de $3$.»}$$ Si hacemos la negación con poco cuidado, podríamos llegar a $$\text{«El número $2$ no es par ni múltiplo de $3$.»}$$ que no funciona, pues no tiene el valor opuesto de verdad: la oración original es falsa, y esta también.

Más adelante hablaremos con cuidado del conector «y» que usamos en el ejemplo anterior. Veremos cómo se pueden negar de manera correcta a las proposiciones que lo usan.

Tabla de verdad de negaciones

De manera formal, dada una proposición $P$ definimos a la negación de $P$, que denotamos por $\neg P$ como una proposición que tiene valor opuesto de verdad al de $P$. Pensando entonces a $P$ como una variable proposicional, se tiene que $\neg P$ es una fórmula proposicional con la siguiente tabla de verdad:

$P$$\neg P$
$0$ $1$
$1$$0$ 

Ya que al aplicar una negación obtenemos una nueva proposición, entonces ahora podemos volverle a aplicar negación a la nueva proposición obtenida. Así, si comenzamos con $$P=\text{«El cielo es azul.»}$$ y lo negamos, obtenemos $$\neg P = \text{«No es cierto que el cielo es azul.»}$$ y luego podemos negar de nuevo para obtener $$\neg(\neg P) = \text{«No es cierto que no es cierto que el cielo es azul.»}$$

Como la negación cambia el valor de verdadero a falso y viceversa, entonces $P$ y $\neg(\neg P)$ tienen el mismo valor de verdad. Esto lo podemos verificar en la siguiente tabla de verdad, llenando primero la segunda columna y luego la tercera a partir de la segunda.

$P$$\neg P$$\neg(\neg P)$
$0$$1$ $0$
$1$$0$$1$ 

Observa que las columnas de $P$ y de $\neg(\neg P)$ tienen exactamente los mismos valores. Esto ocurrirá con frecuencia. Cuando dos fórmulas proposicionales tengan exactamente el mismo valor de verdad para todas las asignaciones de verdad de sus variables proposicionales, diremos que son equivalentes y lo denotaremos escribiendo $\equiv$ entre ambas. Discutiremos esto con más detalle en la siguiente entrada. Así, por lo visto arriba podemos escribir $P\equiv \neg(\neg P)$.

Conjunciones

Lo que hacen las conjunciones a nivel de texto es anteponer un «y» entre dos proposiciones. Por ejemplo si comenzamos con las proposiciones $$P=\text{«El número $20$ es impar.»}$$ y $$Q=\text{«El número $9$ es un número cuadrado.»}$$ entonces la conjunción de ambas es $$P\land Q=\text{«El número $20$ es impar y el número $9$ es cuadrado.»}$$ Para que esta nueva proposición sea verdadera, debe suceder que cada una de las proposiciones que la conforman deben serlo. En este caso en específico, esto no ocurre. La proposición $Q$ es verdadera, pero la proposición $P$ es falsa. De este modo, la conjunción es falsa.

Veamos algunos ejemplos más. Tomemos las siguientes proposiciones:

$$A=\text{«Los gatos son felinos.»}$$

$$B=\text{«Todos los blorg son rojos.»}$$

$$C=\text{«El número $3$ es mayor que el número $1$.»}$$

$$D=\text{«Un cuadrado tiene ángulos de $60^\circ$.»}$$

$$E=\text{«La luna es azul.»}$$

Para determinar la veracidad de cada una de estas, tendríamos que ponernos de acuerdo en la definición de varios términos como «felinos», «blorg», «es mayor que», «cuadrado», «luna», etc. Pero por practicidad, daremos por hecho que $A$, $B$ y $C$ son proposiciones verdaderas y que $D$ y $E$ son falsas.

La conjunción de $A$ con $B$ es $$A\land B = \text{«Los gatos son felinos y todos los blorg son rojos.»}$$ Como cada una de las proposiciones que conforman la conjunción es verdadera, entonces la conjunción lo es.

La conjunción de $B$ con $E$ es $$B\land E = \text{«Todos los blorg son rojos y la luna es azul».}$$ Por muy cierto que sea que todos los blorg sean rojos, la conjunción no es verdadera pues $E$ es falsa.

Una vez que formamos una conjunción, esta es ahora una nueva proposición. Por lo tanto, se vuelve candidata a aplicarle negaciones y conjunciones. De esta forma, tiene sentido pensar en la proposición $\neg(A\land B)$, en donde los paréntesis implican que primero se hace esa operación. A nivel textual también usaremos los paréntesis para no confundirnos, de modo que escribiremos: \begin{align*}\neg(A\land B) &= \text{«No es cierto que (los gatos son felinos y todas}\\ &\text{los blorg son rojos).»}\end{align*}

También tiene sentido pensar en la proposición $(\neg C) \land E$. O bien en la proposición $A\land( (\neg C) \land E)$. Puedes practicar pasar estas proposiciones a oraciones con paréntesis.

Tabla de verdad de conjunciones

Para formalizar la discusión anterior, definimos a la conjunción de dos proposiciones $P$ y $Q$ como la proposición $P\land Q$ que es verdadera únicamente cuando tanto $P$ como $Q$ son verdaderas. Así, como fórmula lógica, $P\land Q$ queda definida mediante la siguiente tabla de verdad:

$P$$Q$$P\land Q$
$0$$0$$0$ 
$0$$1$$0$ 
$1$$0$$0$ 
$1$$1$$1$ 

¿Importará el orden en el que hacemos la conjunción? Esta es una pregunta muy natural. Para responderla, podemos hacer la tabla de verdad considerando tanto a las columnas $P\land Q$ como $Q\land P$ y llenándolas por separado.

$P$$Q$$P\land Q$$Q \land P$
$0$$0$ $0$$0$ 
$0$$1$$0$ $0$ 
$1$$0$$0$ $0$
$1$$1$$1$ $1$ 

Observa que las columnas correspondientes a $P\land Q$ y $Q\land P$ son iguales, de modo que podemos concluir que ambas fórmulas lógicas son equivalentes. Recuerda que escribirmos $P\land Q\equiv Q\land P$. Hay otras preguntas muy naturales: ¿qué pasa si hacemos la conjunción de más de dos proposiciones? ¿son equivalentes iguales $(P\land Q) \land R$ y $R\land(Q \land P)$? ¿qué pasa si combinamos a la negación con la conjunción? Esto lo veremos más adelante.

Disyunciones

Lo que hacen las disyunciones a nivel de texto es anteponer un «o» entre dos proposiciones. Por ejemplo si comenzamos con las proposiciones $$P=\text{«El número $10$ es impar.»}$$ y $$Q=\text{«El número $7$ es un número primo.»}$$ entonces la conjunción de ambas es $$P\lor Q=\text{«El número $10$ es impar o el número $7$ es primo.»}$$ Para que esta nueva proposición sea verdadera, es suficiente con que una de las proposiciones que la conforman lo sea. En este caso en específico, esto sí ocurre. La proposición $Q$ es verdadera, de modo que aunque la proposición $P$ sea falsa, la disyunción resulta ser verdadera.

Retomemos las proposiciones de la sección anterior para ver más ejemplos.

$$A=\text{«Los gatos son felinos.»}$$

$$B=\text{«Todos los blorg son rojos.»}$$

$$C=\text{«El número $3$ es mayor que el número $1$.»}$$

$$D=\text{«Un cuadrado tiene ángulos de $60^\circ$.»}$$

$$E=\text{«La luna es azul.»}$$

Recuerda que estamos dando por hecho que $A$, $B$ y $C$ son proposiciones verdaderas y que $D$ y $E$ son falsas.

La disyunción de $A$ con $B$ es $$A\lor B = \text{«Los gatos son felinos o todos los blorg son rojos.»}$$ Como $A$ es verdadera, esto basta para decir que $A\lor B$ es verdadera. Como $B$ también es verdadera, también esto bastaba para decir que $A\lor B$ es verdadera. No hay ningún problema con que tanto $A$ como $B$ sean verdaderas.

La conjunción de $D$ con $E$ es $$D\lor E = \text{«Un cuadrado tiene ángulos de $60^\circ$ o la luna es azul».}$$ Aquí tanto $D$ como $E$ son falsas, de modo que la disyunción también lo es.

Las disyunciones también crean proposiciones nuevas, a las que se les pueden aplicar negaciones, conjunciones y disyunciones. El uso del paréntesis se vuelve crucial. Observa que usando las proposiciones ejemplo de arriba, tenemos que

  • $(D\land C) \lor A $ es verdadera
  • $D\land (C \lor A)$ es falsa

Tabla de verdad de disyunciones

Para formalizar la discusión anterior, definimos a la disyunción de dos proposiciones $P$ y $Q$ como la proposición $P\lor Q$ que es verdadera cuando por lo menos una de las proosiciones $P$ y $Q$ lo es. Así, pensada como fórmula lógica, la tabla de verdad sería la siguiente:

$P$$Q$$P\lor Q$
$0$$0$$0$ 
$0$$1$$1$ 
$1$$0$$1$ 
$1$$1$$1$ 

¿Importará el orden en el que hacemos la conjunción? Esta es una pregunta muy natural, y ya puedes responderla por tu cuenta. Intenta hacer esto haciendo una tabla de vedad que incluya tanto a las columnas $P\lor Q$ como $Q\lor P$.

En la sección anterior vimos la importancia de poner paréntesis en las expresiones. Esta importancia también podemos verificarla mediante la siguiente tabla de verdad, en donde consideramos tres variables proposicionales $P$, $Q$ y $R$ y estudiamos qué sucede con las fórmulas proposicionales $(P\land Q) \lor R$ y con $P \land (Q \lor R)$. Como hay $2$ posibilidades para cada una de $P$, $Q$, $R$, debemos tener $2\cdot 2 \cdot 2 = 8$ filas.

Llenamos primero las primeras dos columnas usando lo que sabemos de $P\land Q$ y $Q\lor R$.

$P$$Q$$R$$P\land Q$$Q \lor R$$(P\land Q) \lor R$$P \land (Q \lor R)$
$0$$0$$0$ $0$$0$ 
$0$$0$$1$$0$ $1$ 
$0$$1$$0$$0$ $1$
$0$$1$$1$$0$ $1$ 
$1$$0$$0$$0$$0$
$1$$0$$1$$0$$1$
$1$$1$$0$$1$$1$
$1$$1$$1$$1$$1$

Y ahora sí podemos llenar las últimas dos porque ya sabemos cómo es el valor de verdad de cada una de las fórmulas que las conforman.

$P$$Q$$R$$P\land Q$$Q \lor R$$(P\land Q) \lor R$$P \land (Q \lor R)$
$0$$0$$0$ $0$$0$ $0$$0$
$0$$0$$1$$0$ $1$ $1$$0$
$0$$1$$0$$0$ $1$$0$$0$
$0$$1$$1$$0$ $1$ $1$$0$
$1$$0$$0$$0$$0$$0$$0$
$1$$0$$1$$0$$1$$1$$1$
$1$$1$$0$$1$$1$$1$$1$
$1$$1$$1$$1$$1$$1$$1$

Observa que las columnas correspondientes a $(P\land Q) \lor R$ y $P \land (Q \lor R)$ no son iguales, pues difieren en algunos renglones, por ejemplo, en el segundo renglón. De este modo, podemos concluir que hay ocasiones en las que lás fórmulas lógicas $(P\land Q) \lor R$ y $P \land (Q \lor R)$ difieren. Decimos entonces que no son equivalentes. En conclusión, el orden de las operaciones suele ser importante.

Más adelante…

En esta entrada hablamos de la negación, la conjunción y la disyunción. Vimos cómo justificar algunas de sus propiedades mediante tablas de verdad, como $A\land B\equiv B\land A$. En la siguiente entrada usaremos esta técnica y otras más para probar otras propiedades interesantes de estos conectores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Escribe en texto y usando paréntesis la proposición $(A\land B) \lor (\neg D)$, usando $A$, $B$ y $D$ como las proposiciones ejemplo que dimos.
  2. Mediante una tabla de verdad, justifica la equivalencia $P\lor Q \equiv Q \lor P$.
  3. Mediante una tabla de verdad, justifica la equivalencia $(P\lor Q) \lor R \equiv P \lor (Q \lor R)$.
  4. Haz una tabla de verdad para verificar que las fórmulas proposicionales $\neg(P \land Q)$ y $(\neg P) \land (\neg Q)$ no son equivalentes. Es decir, debes de hacer todos los casos y ver que las columnas difieren en uno o más renglones.
  5. Haz una tabla de verdad para verificar que las fórmulas proposicionales $(P\land Q) \land (R \land S)$ y $(((P\land Q) \land R) \land S)$ son equivalentes. Va a ser una tabla grande, de $16$ renglones.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Tipos de enunciados matemáticos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada platicamos de varios tipos de enunciados con los que te vas a encontrar frecuentemente en tu trayectoria matemática a nivel universitario. Para entender correctamente las definiciones siguientes, es muy importante que ya estés familiarizado con el concepto de proposición matemática que tratamos con anterioridad.

Axiomas

En las matemáticas, los axiomas son enunciados que tomamos como verdaderos. NEs decir, son verdaderos por convención. Son el punto de partida que establece las reglas del juego de cierta área de las matemáticas.

Cuando estés en cálculo, se verán los axiomas que deben satisfacer los números reales. Cuando estés en álgebra lineal, ser verán los axiomas de espacio vectorial. En geometría moderna se verán los postulados de Euclides (que puedes pensar como axiomas). En este curso hablaremos un poco de axiomas para la teoría de conjuntos y para los números naturales.

Algunos ejemplos son los siguientes (no es necesario que entiendas exactamente qué dicen):

  • Para cada dos puntos, hay una línea que pasa por ellos.
  • Cada número natural tiene un único sucesor.
  • Para el neutro $e$ de un grupo $G$ y cualquier elemento $a$ en $G$, existe un elemento $b$ en $G$ tal que $ab=ba=e$.
  • Para cualquier colección $A_1,\ldots,A_n$ de abiertos, se tiene que $$A_1 \cap A_2 \cap \ldots A_n$$ también es abierto.

Los axiomas no requieren ser justificados o demostrados. Simplemente acordamos su validez.

Definiciones

Las definiciones no son proposiciones matemáticas y no tiene sentido decir que son verdaderas o falsas. Simplemente son enunciados que le ponen un nombre a un objeto matemático con ciertas propiedades para poder referirnos a él de manera sencilla más adelante. En ocasiones, estas definiciones hacen referencia a cómo se expresa el concepto matemático en símbolos y frecuentemente para ello se usa la palabra «denotar».

Hay varias formas en las que se pueden escribir definiciones matemáticas. Las siguientes son algunas (no es necesario que las entiendas completamente).

  • Un número entero es perfecto si la suma de sus divisores propios es igual a sí mismo.
  • Un cuadrilátero es un cuadrado si las longitudes de sus cuatro lados son iguales y los cuatro ángulos en sus vértices son rectos.
  • Para dos conjuntos $A$ y $B$ definimos a su unión como el conjunto que consiste de los elementos que están en cualquiera de los dos conjuntos. Lo denotamos por $A\cup B$.
  • Una operación binaria es asociativa si $(a\cdot b)\cdot c=a\cdot (b\cdot c)$.
  • Un grupo es un conjunto con una operación binaria asociativa, con neutro y con inversos.

Las definiciones son muy útiles pues ayudan a acortar el lenguaje e ir construyendo ideas más complejas e interesantes. Toma en cuenta lo siguiente con respecto a las definiciones.

  • Cuando se tienen enunciados del estilo «tomemos $C$ un cuadrado», o «sea $G$ un grupo», o incluso «consideremos $A\cup B$», de manera instantánea ya se pueden tomar como verdaderas todas las propiedades dadas por la definición. Así, de manera inmediata es verdadero que los lados de $C$ miden lo mismo y que $A\cup B$ tiene tanto a los elementos de $A$ como a los de $B$. También es verdadero que $G$ tiene una operación asociativa. Y por la definición de «asociativa», de manera inmediata es verdadero que $(a\cdot b)\cdot c=a\cdot (b\cdot c)$. Observa cómo se van haciendo deducciones sucesivas de hechos verdaderos.
  • Cuando se requiera verificar si un objeto satisface una definición, entonces hay que verificar que sean ciertas todas las propiedades enunciadas en la definición. Así, no basta ver que $C$ tiene lados iguales para ver que es un cuadrado. También hay que ver que sus ángulos son todos ellos rectos.

Proposiciones

Las proposiciones son simplemente proposiciones matemáticas en el sentido de la entrada anterior. Son enunciados matemáticos que se puede determinar si son verdaderos o falsos. Usualmente, cuando se encuentran en un curso o en un texto, es porque ya se verificó su veracidad. En estos contextos, tras enunciar una proposición se suele dar una demostración, que es un concepto del que hablaremos a profundidad más adelante.

Una vez que tenemos axiomas y definiciones, es posible empezar a relacionar distintos conceptos mediante proposiciones. A continuación se tienen algunos ejemplos:

  • Si un cuadrilátero tiene todos sus ángulos rectos y tiene dos lados consecutivos iguales, entonces es un cuadrado.
  • La suma de dos números pares siempre da un número par.
  • Existe una función continua que no es diferenciable.
  • Siempre se cumple que $(A\cup B)^c = A^c \cap B^c$.
  • La suma de dos números que sean múltiplos de $3$ nunca es un múltiplo de $3$.
  • Todas las funciones diferenciables son continuas.

Todas las proposiciones arriba enunciadas son verdaderas, excepto una de ellas. Observa que usan palabras como «y», «si… entonces…», «todas», etc. Varias de estas palabras tienen un significado matemático muy preciso que discutiremos más adelante. Después veremos cómo determinar la veracidad de algunas de estas proposiciones y qué tipo de argumentos hay que dar para demostrarlas.

Lemas

Un lema es prácticamente una proposición. Los lemas tienen este nombre más bien con un fin práctico. Lo que se está avisando es que hay que poner atención a esa proposición, pues probablemente sea utilizada como resultado auxiliar una o varias veces más adelante.

Como los lemas son proposiciones matemáticas, entonces pueden ser verdaderos o falsos. Por esta razón, para poder afirmar que un lema es verdadero, es necesario dar una demostración en donde se justifique o se deduzca desde elementos más básicos (como definiciones, axiomas o proposiciones) la validez del mismo.

Teoremas

Los teoremas también son básicamente proposiciones. Su nombre también cumple un fin práctico. Cuando se le pone el nombre de «teorema» a una proposición, es para dar a entender que es una proposición muy importante dentro de la teoría. Usualmente para llegar a un teorema se necesita probar varios resultados auxiliares.

Hay algunos teoremas que se vuelven tan relevantes que adquieren nombre propio. Algunos ejemplos de teoremas son los siguientes (son ejemplos nada más, tampoco es fundamental que entiendas exactamente qué están diciendo):

  • Un espacio vectorial de dimensión finita es isomorfo a su espacio dual.
  • Teorema de Pitágoras: En un triángulo rectángulo de catetos con longitudes $a$ y $b$ e hipotenusa $c$ se cumple que $a^2+b^2=c^2$.
  • Teorema de Hall: Si una familia de al menos $n+1$ convexos en $\mathbb{R}^n$ se intersecta de $n+1$ en $n+1$ elementos, entonces toda la familia se intersecta.
  • Teorema fundamental del álgebra: Todo polinomio no constante con coeficientes en $\mathbb{C}$ tiene por lo menos una raíz en $\mathbb{C}$.

Los investigadores en matemáticas y áreas afines se dedican a encontrar este tipo de resultados relevantes. Una frase conocida de Alfréd Rényi es: «Un matemático es una máquina que transforma café en teoremas».

Corolarios

Un corolario, de nuevo, es prácticamente una proposición. Sin embargo, en el desarrollo de la teoría matemática los corolarios usualmente son resultados que se siguen fácilmente de resultados previos, sobre todo de teoremas. A continuación, algunos ejemplos.

  • Un corolario del teorema de Pitágoras es «La hipotenusa es más larga que cualquiera de los catetos».
  • Un corolario de teorema fundamental del álgebra es «Un polinomio no constante de grado $n$ tiene exactamente $n$ raíces complejas contando multiplicidades».
  • Un corolario del teorema de Hall es que si en una mesa hay manchas circulares del mismo radio, y cualesquiera tres de ellas se pueden cubrir con un plato, entonces todas las manchas se pueden cubrir usando un sólo un plato.

Puedes pensar en los corolarios como la «cereza del pastel».

Conjeturas

Las conjeturas también son proposiciones matemáticas: son enunciados que se puede determinar si son verdaderos o falsos. Sin embargo, a diferencia de los lemas, proposiciones, teoremas y corolarios (que se sabe que son verdaderos), lo que ocurre con las conjeturas es que todavía no hay nadie que haya determinado si son verdaderas o falsas.

Las conjeturas juegan un papel importante en la teoría de muchas áreas de las matemáticas, pues son resultados que se espera que sean verdaderos, pero para los cuales aún es necesario el desarrollo de nuevas técnicas en la investigación matemática.

Recapitulación

En resumen, los lemas, proposiciones, teoremas y corolarios son todos ellos proposiciones matemáticas. Pueden ser verdaderas o falsas. Los que encuentres en textos y cursos prácticamente serán verdaderos. Para asegurar que son verdaderos, requieren de una demostración, es decir, de una serie de argumentos y deducciones.

Usualmente encontrarás lo que hemos platicadoen el siguiente «esquema»:

Definición -> Lema -> Proposición -> Teorema -> Corolario

Los axiomas son enunciados matemáticos que damos por hecho. Las definiciones nos ayudan a referirnos a objetos matemáticos con ciertas propiedades de manera más sencilla.

Las conjeturas son proposiciones matemáticas que todavía nadie sabe si son verdaderas o no. Los investigadores en matemáticas desarrollan nuevas técnicas para resolver estos problemas.

Más adelante…

Ya platicamos del tipo de enunciados que existen en las matemáticas y dimos algunos ejemplos. En el transcurso del curso veremos muchos ejemplos más. Después de este paréntesis, es importante que retomemos la teoría de lógica para poder hablar de algo fundamental al momento de determinar la veracidad de proposiciones matemáticas: las demostraciones. Antes de llegar ahí, es importante hablar de conectores lógicos, de cuantificadores y de condicionales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Busca en internet por lo menos otros tres teoremas.
  2. Investiga por lo menos otras tres conjeturas que todavía no hayan sido resueltas.
  3. Encuentra en internet una noticia de alguna conjetura matemática que haya sido resuelta recientemente.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Introducción al curso y proposiciones matemáticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En este curso se desarrollarán varias de las habilidades matemáticas fundamentales a nivel superior. Trabajaremos en lo siguiente:

  • Conocer a detalle las reglas lógicas que usamos en matemáticas y cómo nos permiten demostrar resultados a partir de pequeños bloques.
  • Definir de manera formal qué son los conjuntos, las relaciones y las funciones y aprender a justificar mediante argumentos formales las propiedades que tienen.
  • Construir el conjunto de los números naturales y aprovecharlo para poner en práctica todo lo aprendido anteriormente.
  • Desarrollar habilidades fuertes para responder preguntas del estilo «¿De cuántas formas puede ocurrir cierta cosa?» «¿Cuántos objetos matemáticos hay tales que tengan ciertas propiedades?»
  • Introducir los conceptos de espacio vectorial, vectores y matrices y ver cómo nos ayudan para entender a los sistemas de ecuaciones lineales.

La primera parte del curso es fundamental, pues en todas las demás asignaturas de matemáticas a nivel superior se usan argumentos formales una y otra vez. En esta primera parte comenzarás a entender qué es el «pensamiento matemático» y conocerás la estructura lema-proposición-teorema-corolario que es muy usada a través de diferentes áreas.

Falso y verdadero

Nuestra experiencia con la vida cotidiana nos da una intuición de qué significa que algo sea verdadero o falso. Entendemos por verdadero algo que es verificable o que coincide con la realidad, por ejemplo: «Marte es un planeta».

Algo falso es lo contrario: una cosa que es posible verificar que no es cierta, o que no coincide con lo que experimentamos. Un ejemplo sería «El sol es de color azul».

En el mundo real, a veces estos conceptos de veracidad pueden tener muchos matices. En el caso del pensamiento matemático esto no es así. Lo que se hace en matemáticas es acordar (o dar por hecho) que ciertos enunciados son verdaderos y, a partir de ellos ver cuáles muchos otros enunciados verdaderos y enunciados falsos se pueden obtener como conclusión.

De esta forma, entenderemos a verdadero y falso como propiedades que puede tener un enunciado. Daremos reglas que nos permiten combinar enunciados de diferentes formas para obtener un «enunciado compuesto» y deducir su veracidad. A la larga, lo que nos interesa es poder deducir que una afirmación es verdadera a partir de la veracidad de afirmaciones más chicas y simples. Es como armar un castillo con pequeños bloques.

Proposiciones

Entenderemos por una proposición a un enunciado que se puede decir si es verdadero o falso, pero no ambas a la vez. Algunos ejemplos de proposiciones de la vida real serían las siguientes:

  • «La tierra gira alrededor del sol».
  • «Los tacos más ricos son los del señor de los tacos de canasta de la esquina».
  • «Un kilómetro es igual a 100 metros».
  • «La receta sale mejor si se le pone el doble de leche».

Observa que para que algo sea una proposición no es necesario que sea verdadero. Sólo basta con que se pueda decir si es verdadero o no. Así, «Un kilómetro es igual a 100 metros» es una proposición porque se puede decidir si es falsa o verdadera. Y es falsa. También observa que algunas proposiciones necesitan más contexto para poder decir si son verdaderas o falsas. Considera la oración «La receta sale mejor si se le pone el doble de leche». Por supuesto, tendríamos que saber de qué receta hablamos o qué quiere decir que «salga mejor», para poder decidir si es verdadera o falsa. Posteriormente formalizaremos a estas «proposiciones que pueden ser más específicas».

Sin embargo, los siguientes enunciados no son proposiciones.

  • «¡Feliz cumpleaños!»
  • «Este enunciado es falso».
  • «¿Es cierto que $7$ es un número primo?»

El primero no está afirmando la veracidad de nada, sólo expresa un sentimiento. El problema con el segundo enunciado es que si es verdadero, entonces es falso y viceversa. El tercero parecería sí ser algo que podemos decir si es verdadero o falso. Pero ten mucho cuidado. Compara los siguientes dos:

  • «¿Es cierto que $7$ es un número primo?»
  • «El número $7$ es primo.»

El primer enunciado es una pregunta y no está afirmando nada, sólo está preguntando. El segundo sí está afirmando algo y podemos decir si es verdadero o falso. ¿Cómo le hacemos para saber si es verdadero o falso? En la vida cotidiana puede ser muy fácil de responder a partir de la experiencia. Pero en el contexto matemático será fundamental primero definir qué quiere decir «primo» e incluso definir qué quiere decir «7» para que podamos responder la pregunta.

El enunciado «El número $7$ es primo» es un ejemplo de una proposición matemática, es decir, una proposición en la que se habla de objetos matemáticos y sus relaciones entre sí. Es posible que simplemente les llamemos «proposiciones», pues será claro que estaremos en el contexto matemáticos. Otros ejemplos de proposiciones matemáticas son las siguientes:

  • El valor de la integral $\int_0 ^1 x^2\, dx$ es $\frac{1}{5}$.
  • Existen $10$ formas de elegir dos vocales distintas sin que se repitan y sin que nos importe el orden de elección.
  • Si $x>0$, entonces $x+1\geq 2\sqrt{x}$.

¿Puedes decir cuáles de estas proposiciones matemáticas son falsas y cuáles son verdaderas?

Proposiciones matemáticas en símbolos

En cursos de álgebra en la educación media superior nos enseñan la utilidad de introducir variables para referirnos a las cosas. Cuando ponemos $x^2+x+1$ estamos pensando en que $x$ es un número que podría tomar cualquier valor del sistema que estemos usando (por ejemplo, los números reales). Los símbolos matemáticos son muy útiles pues nos ayudan a cubrir muchos casos de manera simultánea y a escribir de manera abreviada nuestros resultados.

Aplicaremos todas estas ideas para estudiar a las proposiciones matemáticas. Así, cuando estemos hablando de una proposición indeterminada, la llamaremos mediante una letra a la que llamaremos variable proposicional, por ejemplo $P$, $Q$, $R$, $p$, $q$, $r$, etc. Así, podemos hacer cosas como decir lo siguiente:

  • $P=$ «Todos los múltiplos de cuatro son números pares».
  • Para cualquier proposición $P$, tenemos que con $P$ se puede deducir $P$.

Observa que en el primer caso se está tomando un valor de $P$ específico, pero en el segundo estamos aprovechando la letra para hablar de algo así como «todas» las proposiciones de una manera práctica.

Proposiciones matemáticas en tablas de verdad

Una proposición tiene únicamente dos opciones: ser verdadera o ser falsa. Conforme combinemos variables proposicionales con otros símbolos lógicos, obtendremos fórmulas proposicionales, que serán como la siguiente expresión:

$$(\neg P \land Q \Rightarrow \neg Q)\lor (\neg R \land \neg P).$$

En general, nos conviene tener una tabla en donde reflejemos todas las posibilidades de veracidad que puede tener una fórmula proposicional dada la veracidad de todas las variables proposicionales que la conforman. Esto lo haremos mediante una tabla de verdad.

En una tabla de verdad tenemos dos tipos de columnas. Las que están a la izquierda, en donde consideramos todas las posibilidades de veracidad para nuestras variables proposicionales y las que están a la derecha, en donde escribimos fórmulas proposicionales que queremos saber si son falsas o verdaderas de acuerdo a cómo fueron las proposiciones iniciales. Para simplificar la presentación, en las tablas de verdad usaremos $0$ como falso y $1$ como verdadero.

El siguiente es un ejemplo muy sencillo. Para una proposición $P$ arbitraria tenemos dos opciones: que sea falsa ($0$) o que sea verdadera ($1$). Esto lo ponemos en la primera columna, que está en gris. A la derecha ponemos $P$ hasta arriba.

$P$$P$
$0$
$1$

Para llenar la tabla nos preguntamos, ¿qué podemos decir de $P$ conociendo la información que tenemos de $P$? Por supuesto, la pregunta es muy simple: cuando $P$ es falso, $P$ es falso. Cuando $P$ es verdadero, $P$ es verdadero. Así, la forma de llenar la tabla de verdad sería la siguiente:

$P$$P$
$0$$0$
$1$$1$

Este fue un ejemplo muy sencillo. Lo que nos gustaría hacer en esta primera parte del curso es aprender a combinar más de una proposición para fórmulas proposicionales más interesantes. Dentro de algunas entradas habrás conocido símbolos suficientes y adquirido habilidades para llenar tablas de verdad como la siguiente:

$P$$Q$$\neg P$$\neg Q$$\neg P \land Q$$(\neg P \land Q \Rightarrow \neg Q)$
$0$$0$
$0$$1$
$1$$0$
$1$$1$

Más adelante…

En la siguiente entrada platicaremos de los tipos de enunciados matemáticos que existen, y con los cuales te encontrarás muy frecuentemente en el transcurso de tu formación matemática. Hablaremos de axiomas, definiciones, lemas, proposiciones, teoremas, corolarios y otros. Platicaremos acerca de ellos de manera un poco informal y veremos en dónde entran en los conceptos que estamos platicando.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Piensa en $5$ enunciados que sean proposiciones. Intenta ser variado con tus ejemplos.
  2. Piensa en $5$ enunciados que no sean proposiciones.
  3. Escribe $5$ proposiciones matemáticas.
  4. Piensa en $5$ enunciados que son proposiciones, pero que es muy muy difícil decir si son ciertos o no. Por ejemplo «En el mundo hay una persona con 12548 cabellos».
  5. Escribe $5$ proposiciones matemáticas que te parezcan «obvias» o muy directas. Por ejemplo, «La suma $2+2$ es igual a $4$». Identifica en ellas los términos que aparecen y pregúntate si realmente sabes cómo está definido ese término. Por ejemplo, ¿qué es $2$? ¿qué es $4$? ¿qué es el símbolo $+$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Diez años en la Olimpiada Internacional de Matemáicas

Por Leonardo Ignacio Martínez Sandoval

Hoy comenzó mi participación en la décima Olimpiada Internacional de Matemáticas en la que participo. Diez ediciones. Diez años. Diez países. Miles de chicos que he visto dar lo mejor de sí con el fin de aprender más y más de la resolución de problemas matemáticos. La verdad es algo que nunca me hubiera imaginado, sobre todo porque nunca participé en la competencia como concursante.Todas estas participaciones han estado llenas de experiencias increíbles:

  • 2011 Países Bajos: Mi primer año en la IMO. Participé como colíder. Fue la primera vez que fui a Europa.
  • 2012 Argentina: Mi primer año como líder del equipo mexicano. Se obtuvo la segunda medalla de oro para México en la competencia.
  • 2013 Colombia: Mi segundo año como líder del equipo. Se obtuvo la puntuación más alta y el mejor lugar que hemos obtenido históricamente en la competencia. Por primera vez quedamos en Top 20.
  • 2014 Sudáfrica: Tercer año como líder del equipo. Por primera vez hubo cuatro estudiantes que obtuvieron de plata para arriba. Fue la primera vez que fui a África.
  • 2015 Tailandia: Cuarto y último año como líder del equipo. Cerré con oro esa participación como líder de equipo, pues se consiguió entrar al top 20 (por segunda vez en la historia) y se consiguió la tercera medalla de oro para México (la última desde entonces).
  • 2016 Hong Kong: Primera vez que asisto al evento como Observador A, para pasar la batuta de líder. Fui designado como Chair de la Olimpiada Matemática de la Cuenca del Pacífico (APMO), ya que a México se designó como país organizador de la misma.
  • 2017 Brazil: Una nueva y excelente experiencia, ahora como evaluador (coordinador) en el evento. Me acuerdo mucho que ese año varios me pidieron una foto porque me ubicaban de El Blog de Leo. Segundo año de Chair de la APMO.
  • 2018 Rumanía: Segundo año como evaluador. Tercer año como Chair de la APMO.
  • 2019 Gran Bretaña: Esta IMO fue muy emotiva, pues fue el evento 60 de la competencia. Hubo juegos mecánicos el día de la premiación. Tercera vez como evaluador. Último año como Chair de la APMO y orgulloso de dejar para el futuro el portal http://www.apmo-official.org/ para recopilar la información histórica de la competencia.
  • 2020 Online, organizada por Rusia: La de ahora. Por supuesto, con la particularidad de que ahora todo es a distancia. Pero igual ha estado siendo muy divertido como evaluador: hay un cierto sistema que hay que aprender a usar, los archivos siguen llegando en muchos idiomas y las discusiones matemáticas son bastante interesantes.

Le agradezco muchísimo a la Olimpiada Mexicana de Matemáticas, que me impulsó a participar en estos primeros años. Y por supuesto, a los organizadores de muchas de las ediciones por la confianza que depositan en mi para ser evaluador.