Archivo de la etiqueta: polarización

Cálculo Diferencial e Integral III: Formas cuadráticas

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior hablamos de formas bilineales. A partir de esta noción podemos introducir otra más: la de formas cuadráticas. Las formas cuadráticas son cruciales, pues es a partir de ellas que podemos hacer geometría en espacios vectoriales.

Formas bilineales simétricas

Hay unas formas bilineales que son especiales pues al intercambiar los vectores argumento no cambian de valor.

Definición. Una forma bilineal $b\in B(\mathbb{R}^n)$ es simétrica si $b(\bar{u},\bar{v})=b(\bar{v},\bar{u})$ para todos los $\bar{u},\bar{v}\in \mathbb{R}^n$.

Cuando una forma bilineal es simétrica, la matriz que la representa también. En efecto, si $A$ es una representación matricial de la forma bilineal $b$ en la base $\beta$, podemos escribir: \[b(\bar{u},\bar{v})=[\bar{u}]^{t}A[\bar{v}]=\left( [\bar{u}]^{t}A[\bar{v}] \right) ^{t}=[\bar{v}]^{t}A^{t}[\bar{u}].\]

En la igualdad de en medio usamos que $[\bar{u}]^{t}A[\bar{v}] \in \mathbb{R}$ para obtener que este producto matricial es igual a su transpuesta (¿por qué?). Así pues, si $b$ es simétrica: \[ [\bar{v}]^{t}A^{t}[\bar{u}]=b\left( \bar{u},\bar{v} \right)=b\left( \bar{v},\bar{u}\right)=[\bar{v}]^{t}A[\bar{u}],\]

para todo $\bar{u},\bar{v}\in \mathbb{R}^n$. En particular, al evaluar $b(\bar{e}_i,\bar{e}_j)$ para $\bar{e}_i,\bar{e}_j$ una pareja de elementos de la base $\beta$ obtenemos que $A$ y $A^{t}$ coinciden en cualquier entrada $(i,j)$. Por lo tanto $A=A^{t}$, entonces $A$ es simétrica.

Formas cuadráticas y su forma polar

Una forma cuadrática se obtiene de evaluar una forma bilineal usando el mismo vector para ambas entradas. Formalmente, tenemos lo siguiente.

Definición. Una función $q:\mathbb{R}^n \to \mathbb{R}$ es una forma cuadrática si existe una forma bilineal $b:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}$ tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}$ en $\mathbb{R}^n$. A $q$ le llamamos la forma cuadrática asociada a $b$.

Es posible que una misma forma cuadrática pueda ser creada por dos formas bilineales distintas.

Ejemplo. Tomemos la forma bilineal $b_1((x_1,x_2),(y_1,y_2))=0$ para todos $\bar{u},\bar{v}\in \mathbb{R}^2$ y la forma bilineal $b_2((x_1,x_2),(y_1,y_2))=x_1y_2-x_2y_1$. Si $q_1$ es la forma cuadrática asociada a $b_1$ y $q_2$ es la forma cuadrática asociada a $b_2$, se tiene que $q_1((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$, y también se tiene que $q_2((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$ (verifícalo). Así, aunque $b_1\neq b_2$, se tiene que $q_1=q_2$.

$\triangle$

Si agregamos la hipótesis adicional de que la forma bilineal que se usa sea simétrica, entonces sí tenemos unicidad. De hecho, podemos saber exactamente de qué forma bilineal simétrica $b$ viene una forma cuadrática dada $q$. Este es el contenido del siguiente teorema, que se llama el teorema de la identidad de polarización.

Teorema. Si $q$ es una forma cuadrática en $\mathbb{R}^n$, entonces existe una única forma bilineal $b$ simétrica tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}\in \mathbb{R}^n$. Más aún, \[ \begin{equation} b(\bar{u},\bar{v})=\frac{1}{2}\left(q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right). \end{equation}.\]

Demostración. Haremos sólo parte de la demostración: la de la unicidad. El resto puede consultarse, por ejemplo, en la entrada Formas cuadráticas, propiedades, polarización y teorema de Gauss. Supongamos que $q$ es forma cuadrática y que viene de la forma bilineal simétrica $B$. Desarrollando el lado derecho de la ecuación tenemos

\begin{align*}
\frac{1}{2}\left( q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right) &= \frac{1}{2}\left( B(\bar{u}+\bar{v},\bar{u}+\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\&=\frac{1}{2}\left(B(\bar{u}+\bar{v},\bar{u})+B(\bar{u}+\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(B(\bar{u},\bar{u})+B(\bar{v},\bar{u})+B(\bar{u},\bar{v})+B(\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(2B(\bar{u},\bar{v})\right)=B(\bar{u},\bar{v}).
\end{align*}

Esto muestra que la expresión del teorema es la única que podría servir para obtener la forma bilineal simétrica de la que viene $q$. El resto de la demostración consiste en ver que, en efecto, la expresión propuesta es bilineal y es simétrica.

$\square$

Por el teorema de la identidad de polarización, podemos siempre suponer que una forma cuadrática viene de una forma bilineal simétrica $b$, a la que le llamaremos su forma polar.

Forma matricial de una forma cuadrática

Definición. Sea $q$ una forma cuadrática de $\mathbb{R}^n$ y $\beta$ una base de $\mathbb{R}^n$. La forma matricial de $q$ en la base $\beta$ será la forma matricial de su forma polar en la base $\beta$.

Por lo visto anteriormente, si $b$ es simétrica, se representa por una matriz simétrica $A=a_{ij}$. Así, las formas matriciales de formas cuadráticas siempre son simétricas. Para evaluar $q$, podemos hacer lo siguiente:

\begin{align*}
q(\bar{v})&=b(\bar{v},\bar{v})\\
&=[\bar{v}]^{t}A[\bar{v}]\\
&=\begin{pmatrix}x_{1} & \dots & x_{n}\end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}
\end{align*}

Desarrollando el producto obtenemos $$q(\bar{v})=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}+2\sum_{i<j}a_{ij}x_{i}x_{j}.$$

Esta última ecuación en las variables $x_{i}$ se denomina el polinomio cuadrático correspondiente a la matriz simétrica $A$.

Nota que si la matriz $A$ es diagonal, entonces $q$ tendrá el siguiente polinomio cuadrático: \[ \begin{equation} q(\bar{v})=[\bar{v}]^{t}A[\bar{v}]=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}. \end{equation} \]

Este es un polinomio muy sencillo: no tendrá términos con «productos cruzados».

Teorema de Gauss para formas cuadráticas

Enseguida presentamos un teorema muy importante de formas cuadráticas. Su importancia radica en que siempre deseamos simplificar los objetos que tenemos.

Teorema. Sea $b$ una forma bilineal simétrica en $V$, un espacio vectorial de dimensión finita $n$ sobre $\mathbb{R}$. Entonces $V$ tiene una base $\{\bar{v}_{1},\dots ,\bar{v}_{n}\}$ en la que $b$ se representa por una matriz diagonal, es decir, $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

Demostración. Procederemos por inducción sobre $n=\dim V$. Si $\dim V=1$, se cumple claramente (¿Por qué?). Por tanto, podemos suponer $\dim V>1$. Si $b=0$, también la afirmación es cierta inmediatamente, pues $b$ se representa por una matriz de puros ceros. Si $q(\bar{v})=b(\bar{v},\bar{v})=0$ para todo $\bar{v}\in V$, al escribir $b$ en su forma polar se obtiene que $b=0$ . Por esta razón se puede suponer que existe un vector $\bar{v}_{1}\in V$ tal que $b(\bar{v}_{1},\bar{v}_{1})\neq0$. Sean $U$ el subespacio generado por $\bar{v}_{1}$ y $W$ el conjunto de aquellos vectores $\bar{v}\in V$ para los que $b(\bar{v}_{1},\bar{v})=0$. Afirmamos que $V=U\oplus W$.

  1. $U\cap W=\{\bar{0} \}$. Supongamos $\bar{u}\in U\cap W$. Como $\bar{u}\in U$, $\bar{u}=k\bar{v}_{1}$ para algún escalar $k\in \mathbb{R}$. Como $\bar{u}\in W$, $0=b(\bar{v}_{1},\bar{u})=b(\bar{v}_{1},k\bar{v}_{1})=kb(\bar{v}_{1},\bar{v}_{1})$. Pero $b(\bar{v}_{1},\bar{v}_{1})\neq 0$; luego $k=0$ y por consiguiente $\bar{u}=\bar{0}$. Así $U\cap W=\{ \bar{0}\}$.
  2. Veamos que $V=U+W$. Sea $\bar{v}\in V$. Consideremos $\bar{w}$ definido como: \[ \bar{w}=\bar{v}-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}\bar{v}_{1}.\] Entonces \[ b(\bar{v}_{1},\bar{w})=b(\bar{v}_{1},\bar{v})-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}b(\bar{v}_{1},\bar{v}_{1})=0. \] Así $\bar{w}\in W$. Por tanto $\bar{v}$ es la suma de un elemento de $U$ y uno de $W$. Entonces se cumple $V=U+W$.
    Ahora $b$ restringida a $W$ es una forma bilineal simétrica en $W$. Pero $\dim W=n-1$, luego existe una base $\{ \bar{v}_{2},\dots ,\bar{v}_{n} \}$ de $W$ tal que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$ y $2\leq i,j\leq n$. Por la propia definición de $W$, $b(\bar{v}_{1},\bar{v}_{j})=0$ para $j=2,\dots n$. Por tanto, la base $\{\bar{v}_{1},\dots ,\bar{v}_{n} \}$ de $V$ tiene la propiedad requerida de que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

$\square$

Tenemos pues que para toda forma bilineal simétrica tenemos una representación matricial diagonal. Dicho en otras palabras, para cualquier matriz simétrica $A$ en $M_n(\mathbb{R})$, se tiene que es congruente a alguna matriz diagonal. También de aquí se tiene que para toda forma cuadrática tenemos una representación matricial diagonal.

Formas cuadráticas positivas y positivas definidas

Otra noción importante para formas cuadráticas es la siguiente.

Definición. Diremos que una forma cuadrática $q:\mathbb{R}^n\to \mathbb{R}$ es positiva si se cumple que $q(\bar{x})\geq 0$ para todo $\bar{x}\in \mathbb{R}^n$. Diremos que es positiva definida si se cumple que $q(\bar{x})>0$ para todo $\bar{x}\in \mathbb{R}^n \setminus \{\bar{0}\}$.

Si $b$ es la forma bilineal simétrica que define a $q$ y $A$ es una matriz que represente a $b$ en alguna base $\beta$, se puede ver que $q$ es positiva si y sólo si $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Así mismo, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$. Esto motiva la siguiente definición para matrices.

Definición. Sea $A\in \mathbb{R}^n$ una matriz simétrica. Diremos que es positiva si se cumple que $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Diremos que es, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$.

Una propiedad importante que queda como tarea moral es que la propiedad de ser positiva (o positiva definida) es invariante bajo congruencia de matrices.

Hay otras maneras de saber si una matriz es positiva, o positiva definida. De hecho, en la entrada de Matrices positivas y congruencia de matrices de nuestro curso de Álgebra Lineal II puedes encontrar la siguiente caracterización:

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. $A$ es congruente a una matriz diagonal con puras entradas mayores o iguales a cero.
  3. $A$ puede ser escrita de la forma $B^{t}B$ para alguna matriz $B\in M_n(\mathbb{R})$.

Hay otro resultado más que relaciona a las matrices positivas definidas con sus eigenvalores.

Teorema. Si $A$ es una matriz simétrica en $M_n(\mathbb{R})$ y es positiva definida, entonces todos sus eigenvalores son positivos.

Matriz Hessiana

Veamos cómo se aplican algunas de las ideas vistas en cálculo. Retomemos la discusión de la entrada Polinomio de Taylor para campos escalares. Hacia el final de la entrada enunciamos el teorema de Taylor en el caso especial de grado $2$. Al tomar un campo escalar $f$ y un punto $\bar{a}$, el polinomio de Taylor de grado $2$ estaba dado como sigue:

$$T_{2,\bar{a}}(\bar{a}+\bar{v})=f(\bar{a})+\frac{(\bar{v}\cdot \triangledown )f(\bar{a})}{1!}+\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}.$$

Donde

$$\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}=\sum_{i=1}^{n}\sum_{j=1}^n v_{i}v_{j}\frac{\partial ^{2}f}{\partial x_{j}\partial x_{i}}(\bar{a}).$$

Observa que este sumando se puede pensar como una forma cuadrática:

\[ q(\bar{v})=\begin{pmatrix}v_{1} & \dots & v_n\end{pmatrix}\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a})\\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a}) \end{pmatrix}\begin{pmatrix} v_{1} \\ \vdots \\ v_n\end{pmatrix}\]

La matriz de esta forma cuadrática tiene una importancia especial en el cálculo de varias variables, y por ello tiene su propia definición.

Definición. Sea $f$ un campo escalar definido sobre algún subconjunto abierto de $\mathbb{R}^{n}$. Si $f$ tiene derivadas parciales de segundo orden en el punto $\bar{a}$, a la siguiente matriz la llamamos la matriz hessiana de $f$ en $\bar{a}$:

\[ H_f(\bar{a})=\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a})\end{pmatrix}.\]

Cuando hablemos de optimización, esta matriz tomará un significado especial. Por ahora, enfoquémonos en entender cómo obtenerla.

Ejemplo. Encontraremos la matriz Hessiana del campo escalar $f(x,y)=\sin(xy)$ en el punto $\left( 1,\frac{\pi}{4} \right)$. Para ello, calculamos las siguientes derivadas parciales de orden $1$ y $2$:

\[ \frac{\partial f}{\partial x}=y\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x^{2}}=-y^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y\partial x}=\cos(xy)-xy\sin(xy) \]

\[ \frac{\partial f}{\partial y}=x\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y^{2}}=-x^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x\partial y}=\cos(xy)-xy\sin(xy).\]

Por lo tanto

\[ H(x,y)=\begin{pmatrix} -y^{2}\sin(xy) &\cos(xy)-xy\sin(xy) \\ \cos(xy)-xy\sin(xy) & -x^{2}\sin(xy) \end{pmatrix}.\]

Evaluando en el punto $\left(1,\frac{\pi}{4} \right),$

\[ H\left(1,\frac{\pi}{4} \right)=\begin{pmatrix} -\frac{\pi ^{2}}{16}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) \\ \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) & -\frac{\sqrt{2}}{2} \end{pmatrix}.\]

$\triangle$

Mas adelante…

Con esto terminamos nuestro repaso de álgebra lineal, y con ello tenemos las herramientas necesarias para poder retomar nuestro estudio de las funciones en varias variables. En la siguiente entrada comenzaremos con el concepto de diferenciabilidad. A lo largo de las siguientes entradas, iremos viendo por qué las herramientas de álgebra lineal que desarrollamos son importantes.

Así mismo, cuando lleves un curso de Cálculo Diferencial e Integral IV también retomaras una parte importante de la teoría que hemos repasado.

Tarea moral

  1. Responder en la primer definición porque $[\bar{u}]^{t}A[\bar{v}]\in \mathbb{R}$.
  2. Demostrar que el espacio $W$ del último teorema es un subespacio vectorial de $V$.
  3. Explicar en la demostración del último teorema por qué éste se cumple cuando $b=0$ o $\dim V=1$.
  4. Explicar porque $\dim W=n-1$.
  5. Verifica que si una matriz $A$ es positiva definida, entonces cualquier matriz $B$ congruente a $A$ también es positiva definida.
  6. Demuestra el último teorema de esta entrada, es decir, que las matrices simétricas positivas definidas tienen eigenvalores positivos.

Entradas relacionadas

Álgebra Lineal I: Formas cuadráticas, propiedades, polarización y Gauss

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos acerca de formas bilineales y comenzamos a hablar de formas cuadráticas. Discutimos cómo a partir de estas nociones a la larga podremos hablar de geometría y cálculo en espacios vectoriales. El objetivo de esta entrada es entender mejor a las formas cuadráticas y su relación con formas bilineales.

Lo primero que haremos es demostrar la identidad de polarización, que a grandes rasgos dice que hay una biyección entre las formas bilineales simétricas y las formas cuadráticas. Veremos algunos ejemplos concretos de esta biyección. A partir de ella demostraremos algunas propiedades de formas cuadráticas. Finalmente, hablaremos brevemente de un bello resultado de Gauss que caracteriza las formas cuadráticas en $\mathbb{R}^n$ en términos de formas lineales, de las cuales discutimos mucho cuando hablamos de espacio dual.

Como pequeño recordatorio de la entrada anterior, una forma bilineal de un espacio vectorial $V$ es una transformación $b:V\times V \to \mathbb{R}$ tal que cada que fijamos una coordenada, es lineal en la otra. Esta forma es simétrica si $b(x,y)=b(y,x)$ para cada par de vectores $x,y$ en $V$. Una forma cuadrática de $V$ es una transformación $q:V\to \mathbb{R}$ tal que $q(x)=b(x,x)$ para alguna forma bilineal $b$.

Formas cuadráticas y polarización

En la entrada anterior enunciamos el siguiente teorema, que mostraremos ahora.

Teorema (identidad de polarización). Sea $q:V\to \mathbb{R}$ una forma cuadrática. Existe una única forma bilineal simétrica $b:V\times V \to \mathbb{R}$ tal que $q(x)=b(x,x)$ para todo vector $x$. Esta forma bilineal está determinada mediante la identidad de polarización $$b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.$$

Demostración. Tomemos una forma cuadrática $q$ de $V$. Por definición, está inducida por una forma bilineal $B$ de $V$, es decir, $q(x)=B(x,x)$. Definamos la transformación $b$ mediante $$b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.$$ Comencemos probando que $b$ es una transformación bilineal simétrica. Notemos que:
\begin{align*}
b(x,y)&=\frac{q(x+y)-q(x)-q(y)}{2}\\
&=\frac{B(x+y,x+y)-B(x,x)-B(y,y)}{2}\\
&=\frac{B(x,x)+B(x,y)+B(y,x)+B(y,y)-B(x,x)-B(y,y)}{2}\\
&=\frac{B(x,y)+B(y,x)}{2}.
\end{align*}

De aquí es muy claro que $b$ es forma bilineal, pues fijando $x$, set tiene que $b(x,y)$ es combinación lineal de dos formas lineales en $y$; y fijando $y$, se tiene que $b(x,y)$ es combinación lineal de dos formas lineales en $x$. Además, de esta igualdad (o directo de la definición de $b$) es claro que $b(x,y)=b(y,x)$.

También de esta igualdad obtenemos que $$b(x,x)=B(x,x)=q(x).$$

Para mostrar la unicidad, notemos que cualquier forma bilineal simétrica $b’$ tal que $b'(x,x)=q(x)$ debe satisfacer, como en las cuentas que hicimos arriba, que
\begin{align*}
q(x+y)&=b'(x+y,x+y)\\
&=q(x)+q(y)+b'(x,y)+b'(y,x)\\
&=q(x)+q(y)+2b'(x,y).
\end{align*}

De aquí, despejando $b’$, se obtiene que debe tener la forma de $b$.

$\square$

El teorema anterior justifica la siguiente definición.

Definición. Dada una forma cuadrática $q$ de $V$, a la única forma bilineal simétrica $b$ de $V$ tal que $q(x)=b(x,x)$ le llamamos la forma polar de $q$.

Ejemplo 1. En el espacio vectorial $\mathbb{R}^n$, la transformación $q:\mathbb{R}^n\to \mathbb{R}$ dada por $$q(x_1,\ldots,x_n)=x_1^2+\ldots+x_n^2.$$ es una forma cuadrática. Su forma polar es la forma bilineal producto punto que manda a $x=(x_1,\ldots,x_n)$ y $y=(y_1,\ldots,y_n)$ a $$b(x,y)=x_1y_1+\ldots+x_ny_n.$$

Esto coincide con la construcción dada por la identidad de polarización, ya que \begin{align*}q(x+y)-q(x)-q(y)&=\sum_{i=1}^n (x_i+y_i)^2-x_i^2-y_i^2 \\&= \sum_{i=1}^n x_iy_i\end{align*}

$\triangle$

Ejemplo 2. En el espacio vectorial $\mathbb{R}[x]$ de polinomios con coeficientes reales, la transformación $Q$ dada por $$Q(p)=p(0)p(1)+p(2)^2$$ es una forma cuadrática. Para encontrar a su forma bilineal polar, usamos la identidad de polarización
\begin{align*}
B(p,q)&=\frac{Q(p+q)-Q(p)-Q(q)}{2}\\
&=\frac{(p+q)(0)(p+q)(1)+(p+q)(2)^2-p(0)p(1)-p(2)^2-q(0)q(1)-q(2)^2}{2}\\
&=\frac{p(0)q(1)+q(0)p(1)+2p(2)q(2)}{2}\\
&=\frac{p(0)q(1)}{2}+\frac{p(1)q(0)}{2}+p(2)q(2).
\end{align*}

$\triangle$

Propiedades de formas cuadráticas

Si $q$ es una forma cuadrática, $x$ es un vector y $c$ es un real, tenemos que $q(cx)=c^2q(x)$, pues sale una $c$ por cada una de las coordenadas de la forma bilineal asociada. En particular, $q(-x)=q(x)$.

La identidad de polarización nos permite probar otras propiedades de formas bilineales y formas cuadráticas.

Proposición. Sea $q$ una forma cuadrática en $V$ con forma polar $b$. Entonces:

  • Para todo par de vectores $x$ y $y$ en $V$, se tiene que $$b(x,y)=\frac{q(x+y)-q(x-y)}{4}.$$
  • (Ley del paralelogramo) Para todo par de vectores $x$ y $y$ en $V$, se tiene que $$q(x+y)+q(x-y)=2(q(x)+q(y)).$$
  • (Teorema de Pitágoras) Para vectores $x$ y $y$ tales que $b(x,y)=0$, se tiene que $$q(x+y)=q(x)+q(y).$$
  • (Diferencia de cuadrados) Para todo par de vectores $x$ y $y$ en $V$, se tiene que $b(x+y,x-y)=q(x)-q(y).$

Demostración. Por la identidad de polarización tenemos que $$b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2},$$ y como $q(y)=q(-y)$, tenemos también por la identidad de polarización que \begin{align*}-b(x,y)&=b(x,-y)\\&=\frac{q(x-y)-q(x)-q(y)}{2}.\end{align*}

Restando la segunda ecuación de la primera, obtenemos la primer propiedad. Sumando ambas obtenemos la ley del paralelogramo.

El teorema de Pitágoras es una consecuencia directa de la identidad de polarización.

La identidad de diferencia de cuadrados es una consecuencia de la primer propiedad aplicada a los vectores $x+y$ y $x-y$, y de usar que $q(2x)=4q(x)$ y que $q(2y)=4q(y)$.

$\square$

Forma de las formas cuadráticas

Otra consecuencia de la identidad de polarización es que establece una biyección entre las formas cuadráticas y las formas simétricas bilineales. Esta asociación nos permite decir cómo se ven exactamente las formas cuadráticas en espacios vectoriales de dimensión finita.

Toda forma cuadrática viene de una forma bilineal simétrica. En la entrada anterior, mencionamos que para definir una forma bilineal simétrica en un espacio vectorial $V$ de dimensión $n$, basta tomar una base $\{e_1,\ldots,e_n\}$ de $V$ y decidir los valores $b_{ij}$ de $b(e_i,e_j)$ para $1\leq i \leq j \leq n$. Como $b$ es simétrica, para $j<i$ se tendría que $b(e_i,e_j)=b(e_j,e_i)$, es decir, que $b_{ji}=b_{ij}$.

De esta forma, para todo vector $v$ en $V$ podemos encontrar el valor de $q(v)$ expresando $v$ en la base $\{e_1,\ldots,e_n\}$, digamos, $$v=a_1e_1+\ldots+a_ne_n,$$ de donde $$q(v)=\sum_{i=1}^n b_{ii} a_i^2 + 2 \sum_{1\leq i < j \leq n} b_{ij} a_i a_j.$$

Ejemplo. Toda forma cuadrática en $\mathbb{R}^3$ se obtiene de elegir reales $a,b,c,d,e,f$ y definir $$q(x,y,z)=ax^2+by^2+cz^2+2dxy+2eyz+2fzx.$$ La forma polar de $q$ es la forma bilineal $B$ tal que para la base canónica $e_1,e_2,e_3$ de $\mathbb{R}^3$ hace lo siguiente

\begin{align*}
B(e_1,e_1)&=a\\
B(e_2,e_2)&=b\\
B(e_3,e_3)&=c\\
B(e_1,e_2)&=B(e_2,e_1)=d\\
B(e_2,e_3)&=B(e_3,e_2)=e\\
B(e_3,e_1)&=B(e_1,e_3)=f.
\end{align*}

$\triangle$

Teorema de Gauss de formas cuadráticas (opcional)

Para esta sección, fijemos al espacio vectorial como $\mathbb{R}^n$. Hay una forma muy natural de construir formas cuadráticas a partir de formas lineales. Tomemos números reales $\alpha_1,\ldots, \alpha_r$ y formas lineales $l_1,\ldots,l_r$. Consideremos $$q(x)=\alpha_1l_1(x)^2+\ldots+\alpha_r l_r(x)^2.$$ Se tiene que $q$ es una forma cuadrática. La demostración de ello es sencillo y se queda como tarea moral.

Lo que descubrió Gauss es que todas las formas cuadráticas se pueden expresar de esta forma, y de hecho, es posible hacerlo usando únicamente formas lineales que sean linealmente independientes y coeficientes $1$ y $-1$.

Teorema (clasificación de Gauss de formas cuadráticas). Sea $q$ una forma cuadrática en $\mathbb{R}^n$. Entonces, existen enteros no negativos $r$ y $s$, y formas lineares $l_1,\ldots,l_r,m_1,\ldots,m_s$ en $(\mathbb{R}^n)^\ast$, todas ellas linealmente independientes, tales que $$q=l_1^2+\ldots+l_r^2-m_1^2-\ldots-m_s^2.$$

Hay un pequeño refinamiento de este teorema, demostrado por Sylvester.

Teorema (teorema de la inercia de Sylverster). Los números $r$ y $s$ en el teorema de clasificación de Gauss de formas cuadráticas son únicos.

Ejemplo. Tomemos la forma cuadrática en $\mathbb{R}^3$ dada por $q(x,y,z)=xy+yz+zx$. Por el teorema de Gauss, esta forma se debe de poder poner como combinación lineal de cuadrados de formas lineales independientes. En efecto, tenemos que: $$xy+yz+zx=\left(\frac{2x+y+z}{2}\right)^2-\left(\frac{y-z}{2}\right)^2-x^2,$$ en donde
\begin{align*}
(x,y,z)&\mapsto \frac{2x+y+z}{2},\\
(x,y,z) &\mapsto \frac{y-z}{2}\quad \text{ y }\\
(x,y,z)&\mapsto x
\end{align*}
son formas lineales linealmente independientes.

$\triangle$

Más adelante…

En esta entrada estudiamos a fondo la identidad de polarización; esto nos permitió concluir que existe una biyección entre las funciones bilineales simétricas y las formas cuadráticas. También, pusimos mucho énfasis en ejemplos concretos de esta biyección.

Con esto estamos listos para empezar a pensar en cómo haríamos geometría o cálculo en espacios vectoriales. Abordaremos estos temas al final de esta unidad. En la siguiente entrada hablaremos del producto interior.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Verifica que las formas cuadráticas de los ejemplos del teorema de polarización en efecto son formas cuadráticas.
  • Muestra que $q(x,y)=3x^2-y^2+7y$ no es una forma cuadrática.
  • Muestra que si $\alpha_1,\ldots, \alpha_r$ son reales y tomamos formas lineales $l_1,\ldots,l_r$ en $\mathbb{R}^n$, entonces $$q(x)=a_1l_1(x)^2+\ldots+\alpha_r l_r(x)^2$$ es una forma cuadrática.
  • ¿Quién es la forma polar de la forma cuadrática $Q(f)=\int_{0}^1 f^2(x)\, dx$ en el espacio vectorial de funciones continuas en el intervalo $[0,1]$?

Una demostración algorítmica del teorema de Gauss se puede encontrar en la Sección 10.1 del libro de Álgebra Lineal de Titu Andreescu.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»