Archivo de la etiqueta: inversos

Álgebra Superior I: Operaciones de suma y producto escalar con vectores y matrices

Por Eduardo García Caballero

Introducción

Anteriormente definimos qué son los vectores y las matrices con entradas reales. Así mismo, mencionamos que existen distintas operaciones que los involucran. En esta entrada conocerás dos de estas operaciones: la suma de vectores/matrices y el producto escalar.

Suma de vectores

Una de las operaciones más sencillas que involucra a los vectores es su suma. Para sumar dos vectores con entradas reales, debemos asegurarnos de que ambos tengan la misma cantidad de entradas. De este modo, podemos ver que los vectores $(1,0,3)$ y $(-2,\sqrt{5})$ no pueden ser sumados, pero los vectores $(7,\frac{1}{2},-5)$ y $(\pi,4,3)$ sí.

Para denotar la suma de dos vectores utilizaremos el símbolo $+$ en medio de ellos. Por ejemplo, la suma de $(7,\frac{1}{2},-5)$ y $(\pi,4,3)$ la escribimos como
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3).
\]

El resultado de esta operación lo obtendremos sumando entrada a entrada los dos vectores originales. Es decir, la primera entrada del nuevo vector será igual a la suma de las primeras entradas de los vectores originales; su segunda entrada será igual a la suma de las segundas entradas de los vectores originales; y así sucesivamente (observemos que, de este modo, el vector resultante tiene el mismo tamaño que los vectores originales). Así, el resultado de sumar $(7,\tfrac{1}{2},-5)$ y $(\pi,4,3)$ es
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3) = (7+\pi, \tfrac{1}{2}+4,-5+3).
\]

Además, ya te habrás dado cuenta de que podemos reducir algunas operaciones de cada entrada del vector (esto por la definición de igualdad de vectores que vimos en la entrada anterior). Así, obtenemos que
\[
(7+\pi,\tfrac{1}{2}+4,-5+3) = (7+\pi, \tfrac{9}{2},-2),
\]
y, al ser la igualdad transitiva, llegamos a que
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3) = (7+\pi, \tfrac{9}{2},-2).
\]

El ejemplo que discutimos aquí es para vectores con tres entradas, pero pudimos hacer exactamente lo mismo con vectores de dos entradas, de cuatro o de más.

Producto escalar de vectores

Otra operación que realizaremos de manera frecuente es el producto escalar. Para efectuar esta operación, requeriremos un número real y un vector, y los denotamos escribiendo primero el número y de manera seguida al vector. De este modo, el producto escalar del número real $4$ y el vector $(3,\sqrt{2},5)$ lo denotaremos por
\[
4(3,\sqrt{2},5).
\]

El resultado es esta operación consiste consiste en multiplicar cada una de las entradas de nuestro vector por el número real escogido. Así, podemos ver que
\[
4(3,\sqrt{2},5) = (4(3), 4(\sqrt{2}), 4(5)),
\]
y, al igual que pasa con la suma, en cada entrada tenemos ahora operaciones en los números reales que podemos simplificar, de modo que
\[
(4(3), 4(\sqrt{2}), 4(5)) = (12,4\sqrt{2},20),
\]
y, por lo tanto,
\[
4(3,\sqrt{2},5) = (12,4\sqrt{2},20).
\]

Al número real por el cual multiplicamos el vector lo denominaremos escalar.

Repaso de propiedades de la suma y producto de números reales

Antes de pasar a ver algunas de las propiedades que cumplen las operaciones vistas anteriormente, será conveniente que repasemos algunas de las propiedades que cumplen los números reales (seguramente estas propiedades las recuerdas de tu curso de Cálculo Diferencial e Integral I). Recordemos que si $a$, $b$ y $c$ son números reales, entonces se cumplen las siguientes propiedades:

Suma:

  • Es asociativa: $(a+b)+c = a+(b+c)$.
  • Es conmutativa: $a+b = b+a$.
  • Tiene neutro: el $0$ es un número real y cumple que $a+0 = 0+a = a$.
  • Tiene inversos: para cada $a$ existe un número real, denotado $-a$, es cual cumple que $a+(-a) = (-a)+a = 0$.

Producto:

  • Es asociativo: $(ab)c = a(bc)$.
  • Es conmutativo: $ab = ba$.
  • Tiene neutro: el $1$ es un número real y cumple que $a(1) = (1)a = a$.
  • Tiene inversos: si $a$ es distinto a $0$, entonces existe un número real, denotado $a^{-1}$, el cual cumple que $a(a^{-1}) = (a^{-1})a = 1$.

Suma y producto:

  • El producto se distribuye sobre la suma: $a(b+c) = ab + ac$ y también $(a+b)c = ac + bc$.

Propiedades de suma y el producto escalar de vectores

En esta sección trabajaremos con vectores en $\mathbb{R}^3$, pero las deducciones son muy parecidas para vectores de cualquier otro tamaño (¿podrías intentarlas para vectores de $\mathbb{R}^4?$).

Primeramente, veamos un ejemplo. Observemos que si $u = (4,6,-2)$ y $v = (1,\tfrac{1}{3},2)$, entonces
\begin{align*}
(4,6,-2) + (1,\tfrac{1}{3}, 2)
&= (4+1,6+\tfrac{1}{3}, -2+2) \\
&= (1+4, \tfrac{1}{3}+6, 2+(-2)) \\
&= (1,\tfrac{1}{3}, 2) + (4,6,-2),
\end{align*}
es decir, $u + v = v+u$. La razón por la cual podemos intercambiar los sumandos en la segunda igualdad es porque las sumas en cada una de las entradas ya son sumas de números reales. Así, la conmutatividad de la suma de reales nos ayudó a ver la conmutatividad de una suma de vectores.

Como puedes ver, para llegar al resultado anterior no nos basamos en ningún valor de $u$ o $v$ en particular. ¡De hecho ni siquiera fue necesario hacer las operaciones! Nos basamos únicamente en las definiciones de igualdad y suma, y en las propiedades de los números reales. Por esta razón, este argumento lo podemos hacer general.

Observemos que cualesquiera vectores $u = (u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ cumplen que
\begin{align*}
u+v
&= (u_1,u_2,u_3)+(v_1,v_2,v_3) \\
&= (u_1+v_1,u_2+v_2,u_3+v_3) \\
&= (v_1+u_1,v_2+u_2,v_3+u_3) \\
&= (v_1,v_2,v_3)+(u_1,u_2,u_3) \\
&= v+u.
\end{align*}

Otra propiedad bastante interesante tiene que ver con un vector especial que conocimos anteriormente. Recordarás que en la entrada anterior definimos al vector cero. Como su nombre lo sugiere, este vector juega el papel de elemento neutro de la suma. Recordemos que el vector cero en $\mathbb{R}^3$ es $0=(0,0,0)$. Observemos que si $u = (8,\pi,-10)$, entonces
\[
u+0 = (8,\pi,-10) + (0,0,0) = (8+0,\pi+0,-10+0) = (8,\pi,-10) = u.
\]
Aunque pudiera parecer que en este caso sí simplificamos el resultado de la operación, en realidad otra vez hicimos únicamente uso de las definiciones de igualdad y suma de vectores, y esta vez la propiedad de que el $0$ (número real) es neutro para la suma de números reales.

Entonces, podemos ver que para cualquier vector $u = (u_1,u_2,u_3)$ se cumple que
\[
u+0 = (u_1,u_2,u_3) + (0,0,0) = (u_1+0,u_2+0,u_3+0) = (u_1,u_2,u_3) = u.
\]

Otras dos propiedades que cumple la suma de vectores, y que cuya deducción se deja como ejercicio al lector, son las siguientes:

  • Para cualesquiera vectores $u = (u_1,u_2,u_3)$, $v=(v_1,v_2,v_3)$ y $w=(w_1,w_2,w_3)$ se cumple que $(u+v)+w = u+(v+w)$.
  • Para cualquier vector $u = (u_1,u_2,u_3)$ existe un vector $v$ que cumple $u+v = 0$ (Recuerda que aquí $0$ denota al vector $(0,0,0)$. Basta con decir cuál es el vector $v$ que cumple esa propiedad). Más aún, podemos demostrar que $v$ es único para cada $u$. Por esta razón, al único vector $v$ que cumple esta propiedad lo denotaremos $-u$.

Por otra parte, revisemos algunas de las propiedades que cumplen en conjunto la suma de vectores y el producto escalar de vectores.

Veamos que para el escalar (número real) $r$ y para los vectores $u = (u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ se cumple que
\begin{align*}
r(u+v)
&= r((u_1,u_2,u_3) + (v_1,v_2,v_3)) \\
&= r(u_1+v_1, u_2+v_2, u_3+v_3) \\
&= (r(u_1+v_1), r(u_2+v_2), r(u_3+v_3)) \\
&= (ru_1+rv_1, ru_2+rv_2, ru_3+rv_3) \\
&= (ru_1,ru_2+ru_3) + (rv_1,rv_2,rv_3) \\
&= r(u_1,u_2,u_3) + r(v_1,v_2,v_3) \\
&= ru + rv.
\end{align*}

(¿Qué se está usando en cada igualdad? ¿Una definición? ¿Una propiedad de los números reales?)

Asimismo, para cuales quiera $r$ y $s$ escalares, y para cualquier vector $u = (u_1,u_2,u_3)$ se cumple que $(r+s)u = ru + su$. ¿Puedes ver cómo se deduce esta propiedad?

Aunque estas dos propiedades son muy parecidas, realmente dicen cosas distintas: $r(u+v)$ indica que el producto escalar se distribuye sobre la suma de vectores, mientras que $(r+s)u$ indica que el producto escalar se distribuye sobre la suma de escalares (números reales).

Una última propiedad de la suma de vectores y producto de vectores es la siguiente: si $r$ y $s$ son escalares, y $u=(u_1,u_2,u_3)$ es un vector, entonces
\begin{align*}
r(s(u))
&= r(s(u_1,u_2,u_3)) \\
&= r(su_1, su_2, su_3) \\
&= (r(su_1), r(su_2), r(su_3)) \\
&= ((rs)u_1, (rs)u_2, (rs)u_3) \\
&= (rs)(u_1,u_2,u_3) \\
&= (rs)u.
\end{align*}
Aún cuando pudiera parecer trivial, esta última propiedad es muy interesante, pues observemos que $r(su)$ involucra únicamente productos escalares, mientras que en $(rs)u$ aparecen tanto el producto de números reales como el producto escalar.

Conocer estas propiedades nos permitirá manipular con facilidad las operaciones entre vectores. Así, por ejemplo, para saber cuál es el resultado de $((1,4,-1) + 5(0,3,4)) + 5(1,1,-5)$, no tendremos que recurrir a efectuar cada operación por definición: podemos optar por manipular la expresión para obtener
\begin{align*}
((1,4,-1) + 5(0,3,4)) + 5(1,1,-5)
&= (1,4,-1) + (5(0,3,4) + 5(1,1,-5)) \\
&= (1,4,-1) + 5((0,3,4) + (1,1,-5)) \\
&= (1,4,-1) + 5(1,4,-1) \\
&= 1(1,4,-1) + 5(1,4,-1) \\
&= (1+5)(1,4,-1) \\
&= 6(1,4,-1) \\
&= (6,24,-6).
\end{align*}

¿Puedes ver qué propiedad(es) usamos en cada paso?

Suma de matrices

La suma de matrices con entradas reales es muy parecida a la suma de vectores. Al igual que con los vectores, tenemos que asegurarnos que las dos matrices que deseamos sumar tengan el mismo tamaño, es decir, que tengan el mismo número de filas y el mismo de columnas. La suma de matrices también la denotaremos utilizando el símbolo $+$ y de igual manera la realizaremos entrada a entrada, según la fila y columna que estemos calculando.

Así, por ejemplo, la suma de
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
\]
es
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
+
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
=
\begin{pmatrix}
8+(-3) & 0+1 & \sqrt{5}+\sqrt{5} \\
-2+4 & 10+\pi & 0+(-2)
\end{pmatrix},
\]
lo cual queda simplificado como,
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
+
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
=
\begin{pmatrix}
5 & 1 & 2\sqrt{5} \\
2 & 10+\pi & -2
\end{pmatrix}.
\]

Producto escalar de matrices

A igual que pasa con la suma, también podemos definir el producto escalar de matrices. Como seguramente ya lo habrás imaginado, esta operación se parece mucho al producto escalar de vectores.

Esta operación involucra a un número real y a una matriz. La denotamos colocando al número real seguido de la matriz, y consiste en multiplicar cada entrada de la matriz por dicho número real.

Por ejemplo, el producto escalar de $-3$ y la matriz
\[
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
\]
es
\[
(-3)
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
=
\begin{pmatrix}
(-3)(8) & (-3)3 \\
(-3)(\frac{1}{2}) & (-3)(\pi) \\
(-3)(\frac{1}{3}) & (-3)4
\end{pmatrix},
\]
es decir,
\[
(-3)
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
=
\begin{pmatrix}
-24 & -9 \\
-\tfrac{3}{2} & -3\pi \\
-1 & -12
\end{pmatrix}.
\]

Propiedades de suma y producto escalar de matrices

Veamos algunas propiedades que cumplen la suma y el producto escalar de matrices. Para esto, trabajaremos con matrices con tamaño $2 \times 3$, pero verás que las deducciones para matrices de cualquier otro tamaño son muy parecidas.

Recordemos que la matriz cero de tamaño $2 \times 3$ es
\[
\mathcal{O} = \mathcal{O}_{2 \times 3} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
\]

Observemos que para cualquier matriz
\[
A =
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\]
se cumple que
\begin{align*}
A + \mathcal{O}
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+0 & a_{12}+0 & a_{13}+0 \\
a_{21}+0 & a_{22}+0 & a_{23}+0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&= A.
\end{align*}

Por otra parte, dada una matriz $A$, como cada entrada $a_{ij}$ de la matriz es un número real, entonces tienen un respectivo inverso aditivo, es decir, un número $(-a_{ij})$ que cumple que $a_{ij}+(-a_{ij}) = 0$. Así, si definimos
\[
B=
\begin{pmatrix}
(-a_{11}) & (-a_{12}) & (-a_{13}) \\
(-a_{21}) & (-a_{22}) & (-a_{23})
\end{pmatrix}.
\]
Entonces, observemos que
\begin{align*}
A + B
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{2_3}
\end{pmatrix}
+
\begin{pmatrix}
(-a_{11}) & (-a_{12}) & (-a_{13}) \\
(-a_{21}) & (-a_{22}) & (-a_{23})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+(-a_{11}) & a_{12}+(-a_{12}) & a_{13}+(-a_{13}) \\
a_{21}+(-a_{21}) & a_{22}+(-a_{22}) & a_{23}+(-a_{23})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\\[5pt]
&=
\mathcal{O}.
\end{align*}

La matriz $B$ la definimos basándonos en la matriz $A$. Entonces, para cada matriz existe una matriz $B$ que cumple que $A + B = \mathcal{O}$. Como te podrás dar cuenta, la matriz $B$ que cumple esta propiedad es única (¿por qué se cumple esto?); por esta razón, a la $B$ que cumple esta propiedad la denotamos como $-A$.

Seguramente notarás que estas dos propiedades se parecen mucho a las que cumple la suma de vectores. ¿Podrías también probar las siguientes propiedades?

Para cuales quiera matrices $A$, $B$ y $C$ de tamaño $2\times 3$ se cumple que

  • $(A+B)+C = A+(B+C)$.
  • $A+B = B+A$.

Por otra parte, el producto escalar de matrices también se comporta de manera similar al producto escalar de vectores.

Si $r$ y $s$ son escalares y
\[
A =
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix},
\]
entonces
\begin{align*}
(r+s)A
&=
(r+s)
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(r+s)a_{11} & (r+s)a_{12} & (r+s)a_{13} \\
(r+s)a_{21} & (r+s)a_{22} & (r+s)a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
ra_{11}+sa_{11} & ra_{12}+sa_{12} & ra_{13}+sa_{13} \\
ra_{21}+sa_{21} & ra_{22}+sa_{12} & ra_{23}+sa_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
ra_{11} & ra_{12} & ra_{13} \\
ra_{21} & ra_{22} & ra_{23}
\end{pmatrix}
+
\begin{pmatrix}
sa_{11} & sa_{12} & sa_{13} \\
sa_{21} & sa_{22} & sa_{23}
\end{pmatrix}
\\[5pt]
&=
r
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
s
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&=
rA + sA.

\end{align*}

Dejamos como ejercicio para el lector probar también las siguientes propiedades:

Para cualquiesquiera escalares $r$ y $s$, y cualesquiera matrices $A$ y $B$ de tamaño $2\times 3$, se cumple que

  • $r(A+B) = rA + rB$.
  • $r(sA) = (rs)A$.

Más adelante…

En esta entrada conocimos las suma y el producto escalar de vectores/matrices, y revisamos algunas propiedades que estas operaciones cumple. Emplear sus propiedades nos permitirá calcular de manera más sencilla sus resultados, además de que se integrarán con operaciones que definiremos en entradas futuras.

En la siguiente entrada conoceremos una nueva operación, la cual involucra al mismo tiempo matrices y vectores.

Tarea moral

  1. Sea $A=\begin{pmatrix} 1 & 2 \\ 3 & 4\end{pmatrix}$. Encuentra explícitamente el resultado de la operación $A+2A+3A+4A+5A+6A+7A$. Como sugerencia, si usas apropiadamente las propiedades que hemos discutido, sólo tendrás que hacer un producto escalar.
  2. ¿Podrías desarrollar las pruebas de las propiedades de suma y producto escalar para vectores en $\mathbb{R}^4$? ¿Podrías hacerlo para suma y producto escalar de matrices de $3 \times 2$?
  3. Como vimos en esta entrada, para cada vector $u$ existe un vector $v$ que cumple que $u+v = 0$. ¿Puedes ver por qué $v$ es único?
  4. En los reales está el escalar $-1$. Demuestra que el producto escalar $(-1)v$ es precisamente el inverso aditivo $-v$ de $v$. Enuncia y demuestra un resultado similar para matrices.
  5. Podemos definir la resta de vectores (o de matrices) de la siguiente manera: $u-v=u+(-v)$. Determina si esta operación es asociativa, conmutativa, si tiene neutro y/o inversos.

Entradas relacionadas

Álgebra Superior II: El producto en los enteros

Por Ana Ofelia Negrete Fernández

Introducción

En la entrada anterior hablamos de cómo se construye el conjunto $\mathbb{Z}$ de los números enteros y cómo definir una operación de suma en él. Vimos que esta operación de suma tenía cuatro propiedades clave: asociatividad, conmutatividad, existencia de un neutro y de inversos. A partir de ello definimos también la operación de resta. En esta entrada continuaremos con la construcción de las operaciones en $\mathbb{Z}$. Ahora definiremos el producto de números enteros.

Intuición del producto de enteros y su definición formal

La definición de la suma de los enteros resultó ser muy sencilla. Si tenemos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ entonces para hacer la suma simplemente «sumamos entrada a entrada» para obtener $\overline{(a+c,b+d)}$. Uno podría pensar que para hacer el producto de enteros esto debe ser igual de fácil, definiendo al producto simplemente como $\overline{(ac,bd)}$. Sin embargo, esta definición no funciona, pues no tiene muchas de las propiedades valiosas que debería tener una operación de producto.

Antes de dar la definición, recordemos nuestra intuición de qué quería decir cada pareja $(a,b)$. En la entrada anterior, a cada pareja la asociábamos con la ecuación $a=x+b$. La relación de equivalencia que dimos consistía en asociar a las parejas cuyas ecuaciones daban la misma solución. De manera informal, podemos pensar entonces a la pareja $(a,b)$ como si fuera $a-b$. Pero ojo: esto sólo es intuición, pues $a$ y $b$ son elementos de $\mathbb{N}$ y ahí no hay operación de resta.

De cualquier forma, esta intuición es valiosa, pues nos sugiere cuál debería de ser la definición de producto. De manera intuitiva, queremos que suceda $(a-b)(c-d)=ac-ad-bc+bd=(ac+bd)-(ad+bc)$, y aquí cada término entre paréntesis sí es un natural válido: $ac+bd$ y $ad+bc$, así que el resultado correspondería a la pareja $(ac+bd,ad+bc)$. Es muy interesante que esta intuición informal en verdad da una buena definición de producto.

Definición. El producto en $\mathbb{Z}$ es la función $\star:\mathbb{Z}\times \mathbb{Z}\to \mathbb{Z}$ tal que para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$, se tiene que $$\overline{(a,b)} \star \overline{(c,d)}=\overline{(ac+bd),(ad+bc)}.$$

Como en el caso de la suma, estamos usando un símbolo especial para el producto en $\mathbb{Z}$, de modo que podamos distinguirlo del producto en $\mathbb{N}$. Así como en el caso de la suma, sólo haremos la distinción explícita en este momento. Usualmente nos referiremos al producto de enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ como $\overline{(a,b)}\cdot \overline{(c,d)}$, o simplemente como $\overline{(a,b)}\, \overline{(c,d)}$. Esto será claro por el contexto.

El producto en $\mathbb{Z}$ está bien definido

Nuestra definición de producto en $\mathbb{Z}$ es un poco extraña, así que debemos dedicar algo de trabajo a verificar que en realidad es el producto tal y como siempre lo habíamos conocido. La primer cosa que debemos hacer es ver que el producto en $\mathbb{Z}$ está bien definido, es decir, que el resultado es el mismo independientemente de los representantes que se elijan para realizar la multiplicación.

Proposición. El producto en $\mathbb{Z}$ está bien definido.

Demostración. Comencemos con parejas $(a,b)\sim (e,f)$ y $(c,d)\sim (g,h)$. Como $(a,b) \sim (e,f)$, entonces $$ a + f = b + e.$$ También, $(c,d) \sim (g,h)$, implica que $$c + h = d + g.$$

Usando la definición de producto de dos enteros, se tiene por un lado que
$$\overline{(a,b)}\,\overline{(c,d)} = \overline{(ac + bd, ad + bc)}.$$

Por otro lado, tenemos

$$\overline{(e,f)}\,\overline{(g,h)} = \overline{(eg + fh, eh + fg )}.$$

Así, debemos demostrar que $\overline{(ac + bd, ad + bc)} = \overline{(eg + fh, eh + fg )}$. Poniendo en términos de la relación de equivalencia, se deberá cumplir que $$ (ac + bd) + (eh + fg) = (ad + bc) + (eg + fh).$$

Multiplicando las primeras igualdades que encontramos, tenemos lo siguiente:
\begin{align*}
(a + f) (c+h) &= (b+e)(d +g) \\
ac + ah + fc + fh &= bd + bg + ed + eg.
\end{align*}

Sumemos $bd + fh$ en ambos lados de la ecuación y usemos nuevamente las hipótesis para obtener las siguientes igualdades:

\begin{align*}
(bd + fh) + ac + ah + fc + fh &= (bd + fh) + bd + bg + ed + eg \\
(ac + bd) + h(a + f) + f(c + h) &= b(d + g) + d(b +e) + (eg + fh) \\
(ac + bd) + h (b + e) + f (d + g) &= b(c + h) + d(a + f) + (eg + fh) \\
(ac + bd + eh + fg) + hb + df &= (bc + ad + eg + fh) + hb + df \\
ac + bd + eh + fg &= ad + bc + eg + fh.
\end{align*}

Esto es justo lo que queríamos mostrar.

$\square$

En la demostración anterior estamos usando las propiedades de las operaciones en $\mathbb{N}$ ya prácticamente sin enunciarlas. A estas alturas ya podemos hacer eso, pues hemos trabajado bastante con ellas. Sin embargo, es importante que de vez en cuando te preguntes por qué se vale cada una de las igualdades.

Propiedades del producto en $\mathbb{Z}$

Ya que hemos definido el producto en los enteros, es importante verificar que hay algunas propiedades que se cumplen. Esto nos permitirá más adelante trabajar sin problema con el producto de enteros, como se ha hecho desde la educación básica.

Proposición. Se satisfacen las siguientes propiedades para la operación de producto en $\mathbb{Z}$.

  • Asociatividad. Para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se satisface que $$(\overline{(a,b)}\,\overline{(c,d)})\overline{(e,f)}=\overline{(a,b)}(\overline{(c,d)}\,\overline{(e,f)}).$$
  • Conmutatividad. Para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se satisface que $$\overline{(a,b)}\,\overline{(c,d)}=\overline{(c,d)}\,\overline{(a,b)}.$$
  • Neutro. Existe un elemento neutro, es decir, existe un entero $\overline{(m,n)}$ tal que para cualquier entero $\overline{(a,b)}$ se cumple que $$\overline{(a,b)}\,\overline{(m,n)}=\overline{(a,b)}.$$
  • Los únicos elementos que tienen inverso multiplicativo son $\overline{(1,0)}$ y $\overline{(0,1)}$.

Demostración. Las demostraciones de la asociatividad y la conmutatividad quedan como tarea moral. La sugerencia es desarrollar ambos lados de las igualdades usando la definición de producto, y luego utilizar propiedades del producto y la suma en $\mathbb{N}$.

El elemento que sirve como neutro para el producto es el $\overline{(1,0)}$. En efecto, usando la definición tenemos que: $$\overline{(a,b)}\,\overline{(1,0)}=\overline{(a\cdot 1+b\cdot 0, a\cdot 0 + b\cdot 1)}=\overline{(a,b)}.$$

Es sencillo ver que los elementos indicados sí tienen inverso. El inverso de $\overline{(1,0)}$ es él mismo y el inverso de $\overline{(0,1)}$ también es él mismo. En efecto:

\begin{align*}
\overline{(1,0)}\,\overline{(1,0)}&=\overline{(1\cdot 1+0\cdot 0,1\cdot 0+0\cdot 1)}=\overline{(1,0)}\\
\overline{(0,1)}\,\overline{(0,1)}&=\overline{(0\cdot 0+1\cdot 1,0\cdot 1+1\cdot 0)}=\overline{(1,0)}.
\end{align*}

Para ver que estos son los únicos elementos que tienen inversos, supongamos que algún otro entero $\overline{(a,b)}$ tiene inverso multiplicativo $\overline{(c,d)}$. Esto querría decir que $\overline{(ac+bd,ad+bc)}=\overline{(1,0)}$, que en términos de la relación de equivalencia se traduce a $$ac+bd=ad+bc+1.$$

Si $a=b$, la igualdad no se puede dar pues tendríamos $ac+ad=ad+ac+1$, que es imposible. Por tricotomía en $\mathbb{N}$, tenemos entonces que $a>b$ o $a<b$. Resolveremos el caso $a>b$ y el caso $a<b$ quedará como tarea moral.

Si $a=b+1$, entonces la igualdad queda como $(b+1)c+bd=(b+1)d+bc+1$, que se simplifica a $c=d+1$. Esto nos da la solución $\overline{(a,b)}=\overline{(c,d)}=\overline{(1,0)}$.

En otro caso, tenemos $a\geq b+2$ y por lo tanto podemos escribir $a=b+1+k$ con $k\geq 1$. La igualdad queda entonces como $$(b+1+k)c+bd=(b+1+k)d+bc+1.$$ Desarrollando y simplificando tenemos que $$c+kc=d+kd+1.$$ Si $d\geq c$, el lado derecho claramente es más grande, así que no hay solución. De este modo, $d<c$ y por lo tanto podemos escribir $c=d+l$ con $l\geq 1$. Usando esta igualdad en $c+kc=d+kd+1$, llegamos a la igualdad $$d+l+kd+kl=d+kd+1,$$ que se simplifica a $$l(k+1)=1.$$ Pero como $k\geq 1$, entonces $k+1\geq 2$ y como además $l\geq 1$, tenemos $l(k+1)\geq 2$, así que en este caso no tenemos soluciones.

$\square$

Las propiedades anteriores se pueden enunciar únicamente en términos de la operación de producto. Además de estas propiedades, hay otra que nos dice cómo el producto interactúa con la operación suma en $\mathbb{Z}$.

Proposición. Se cumple la ley distributiva para la suma y el producto, es decir, para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se cumple que $$\overline{(a,b)}(\overline{(c,d)}+\overline{(e,f)})=\overline{(a,b)}\,\overline{(c,d)}+\overline{(a,b)}\,\overline{(e,f)}.$$

Demostración. Realizando la operación correspondiente al lado izquierdo tenemos:

\begin{align*}
\overline{(a,b)}(\overline{(c,d)}+\overline{(e,f)})&=\overline{(a,b)}\,\overline{(c+e,d+f)}\\
&=\overline{(a(c+e)+b(d+f),a(d+f)+b(c+e))}\\
&=\overline{(ac+ae+bd+bf,ad+af+bc+be)}.
\end{align*}

Observa cómo aquí se está usando la propiedad distributiva, pero en $\mathbb{N}$.

Realizando la operación correspondiente al lado derecho tenemos:

\begin{align*}
\overline{(a,b)}\,\overline{(c,d)}+\overline{(a,b)}\,\overline{(e,f)}&=\overline{(ac+bd,ad+bc)}+\overline{(ae+bf,af+be)}\\
&=\overline{(ac+bd+ae+bf,ad+bd+af+be)}.
\end{align*}

Usando la conmutatividad de la suma en $\mathbb{N}$, obtenemos que esta expresión es igual a la del lado izquierdo, como queríamos.

$\square$

Divisores de cero y cancelación

Hasta donde hemos platicado, los enteros tienen suma, resta y producto. Sin embargo, en los enteros todavía no tenemos una operación de división. Esto causa un par de dificultades. Una de estas es que cuando queremos resolver ecuaciones del estilo $a=bx$ con $a$ y $b$ enteros y $x$ un entero por determinar, no podemos simplemente «pasar la $b$ dividiendo» y obtener $x=a/b$. Otra dificultad es que cuando tenemos una igualdad del estilo $ab=ac$ tampoco podemos simplemente «dividir entre $a$».

La primer dificultad la estudiaremos más a detalle cuando entremos a teoría de números qué es lo que sí se puede hacer en $\mathbb{Z}$. Para la segunda, resulta que de cualquier forma podemos concluir casi siempre que $b=c$.

Antes de demostrar esto, veamos un resultado intermedio auxiliar. La siguiente proposición a veces se enuncia como que $\mathbb{Z}$ no tiene divisores de cero, o bien como que si el producto de dos enteros es cero, entonces alguno de ellos debe de ser cero.

Proposición. Si $\overline{(a,b)}$, $\overline{(c,d)}$ pertenecen a $\mathbb{Z}$ y $\overline{(a,b)}\,\overline{(c,d)}=\overline{(0,0)}$, entonces $\overline{(a,b)}=\overline{(0,0)}$ o $\overline{(c,d)}=\overline{(0,0)}$.

Demostración. Para que el producto $$\overline{(a,b)}\,\overline{(c,d)}=\overline{(ac+bd,ad+bc)}$$ sea igual al entero $\overline{(0,0)}$, debe suceder que $$ac+bd+0=ad+bc+0,$$ es decir, que $ac+bd=ad+bc$. A partir de esto, debemos de demostrar que o bien $a=b$, o bien que $c=d$. Supongamos que $a\neq b$ (en otro caso, ya tenemos lo buscado). Por tricotomía, debe pasar $a>b$ ó $a<b$.

Si $a>b$, entonces existe un entero $k>1$ tal que $a=b+k$, de modo que tenemos las siguientes igualdades:

\begin{align*}
ac+bd&=ad+bc\\
(b+k)c+bd&=(b+k)d+bc\\
bc+kc+bd&=bd+kd+bc\\
kc&=kd.
\end{align*}

Como $k>=1$, podemos usar la cancelación del producto en $\mathbb{N}$ para obtener $c=d$, como queríamos. Falta el caso $a<b$, pero es análogo al anterior. Los detalles quedan como tarea moral.

$\square$

Ahora sí podemos demostrar que en $\mathbb{Z}$ se vale cancelar factores distintos de cero.

Proposición. Sean $\overline{(a,b)}$, $\overline{(c,d)}$, $\overline{(e,f)}$ elementos en $\mathbb{Z}$. Supongamos que $\overline{(a,b)}\neq \overline{(0,0)}$ y que $$\overline{(a,b)}\,\overline{(c,d)}=\overline{(a,b)}\,\overline{(e,f)}.$$

Entonces $\overline{(c,d)}=\overline{(e,f)}$.

Demostración. Tenemos las siguientes igualdades:

\begin{align*}
\overline{(a,b)}\,\overline{(c,d)}&=\overline{(a,b)}\overline{(e,f)}\\
\overline{(a,b)}\,\overline{(c,d)}-\overline{(a,b)}\overline{(e,f)}&=0\\
\overline{(a,b)}(\overline{(c,d)}-\overline{(e,f)})&=0.\\
\end{align*}

Para pasar de la primera a la segunda, estamos restando de ambos lados, lo cual es válido en $\mathbb{Z}$. De la segunda igualdad a la tercera se está usando la ley distributiva para la resta (ver Tarea moral). A partir de aquí podemos usar la proposición anterior. Como $\overline{(a,b)}$ no es cero, entonces $\overline{(c,d)}-\overline{(e,f)}=0$. De aquí se obtiene $\overline{(c,d)}=\overline{(e,f)}$, que es lo que queríamos mostrar.

$\square$

Más adelante…

Ya tenemos las operaciones para los números enteros. Aún nos falta introducir un concepto muy importante: el de orden. Esto lo haremos en la siguiente entrada. Además, veremos que la noción de orden en $\mathbb{Z}$ es compatible con sus operaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Realiza por definición el producto de los enteros $\overline{(8,3)}$ y $\overline{(3,5)}$. ¿Lo que obtienes tiene sentido con el hecho de que $5\cdot (-2)=-10$?
  2. Demuestra que el producto en $\mathbb{Z}$ es asociativo y conmutativo.
  3. Para terminar la demostración de que $\mathbb{Z}$ no tiene divisores de cero, muestra que si se tienen naturales $a,b,c,d$ tales que $ac+bd=ad+bc$ y $a<b$, entonces $c=d$. Recuerda que debes trabajar todo en $\mathbb{N}$, en donde no se pueden restar elementos.
  4. Termina la demostración de que en $\mathbb{Z}$ los únicos elementos con inversos multiplicativos son $\overline{(1,0)}$ y $\overline{(0,1)}$. Tendrás que llegar a que en el caso faltante la única solución es $\overline{(a,b)}=\overline{(c,d)}=\overline{(0,1)}$.
  5. Enuncia y demuestra una ley distributiva para la resta.
  6. Si definiéramos al producto de dos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ como el entero $\overline{(ac,bd)}$, ¿cuáles de las propiedades que hemos discutido en esta entrada fallarían?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Construcción de los enteros y su suma

Por Ana Ofelia Negrete Fernández

Introducción

Ya que se construyeron los números naturales, podríamos intentar usarlos para plantear ecuaciones con ellos y ver si se pueden resolver. Un tipo de ecuaciones muy sencillas son las de la forma $a=b+x$, en donde $a$ y $b$ son valores dados y lo que se espera es encontrar el valor de $x$. En los números naturales no hemos definido la resta, así que no es tan sencillo resolver esta ecuación como simplemente decir que la solución es $a-b$.

Lo que sí hicimos en entradas anteriores es ver que la ecuación $a=b+x$ con $a$ y $b$ en $\mathbb{N}$ tiene una solución $x$ en $\mathbb{N}$ si y sólo si $a\geq b$. Cuando $a<b$, no existe solución. Por ejemplo, no existe ninguna $x \in \mathbb{N}$ tal que $3 = 7 + x$.

Pensando esto de manera más intuitiva, $\mathbb{N}$ está conformado por el cero y demás números estrictamente positivos, pero en ocasiones eso no basta para realizar algunas cuentas. Consideremos el siguiente problema:

Una rana está en una posición inicial $0$ y salta dos unidades hacia la derecha. A continuación salta $3$ unidades hacia la izquierda. Luego vuelve a saltar $2$ unidades hacia la derecha y seguido de esto vuelve a saltar $3$ unidades a la izquierda. Una última vez, la rana salta $2$ unidades a la derecha seguidas de $3$ unidades a la izquierda. ¿En qué posición se encuentra la rana ahora?

La cuenta intuitiva, usando los números que conocemos desde educación básica, nos dice que la rana queda en la posición $-3$. Sin embargo, este es un número negativo, y dentro de nuestra construcción de $\mathbb{N}$ nunca hemos hablado de estos números.

La necesidad de que existan soluciones para las ecuaciones sencillas que mencionamos arriba y de que existan números para hacer cuentas como las de la rana es motivación suficiente para querer construir el conjunto de números enteros, denotado $\mathbb{Z}$. Lo que buscamos es que toda ecuación de la forma $a=b+x$ tenga una solución. Es decir, querremos que el conjunto de entero satisfaga que «para cualesquiera $a,b\in \mathbb{Z}$ existe $x\in \mathbb{Z}$ tal que $a= b+x$».

En esta entrada y las siguientes, describiremos la construcción de $\mathbb{Z}$, de sus operaciones y de su orden. Para hacer esto de la manera más formal posible, aprovecharemos la construcción que ya hemos hecho de $\mathbb{N}$.

A grandes rasgos, debemos de pasar por los siguientes pasos.

  1. Definiremos una relación en $\mathbb{N}\times \mathbb{N}$, en donde dos parejas $(a,b)$ y $(c,d)$ de enteros estarán relacionadas si $a+d=b+c$.
  2. Veremos que esto es una relación de equivalencia. Un número entero será una clase de equivalencia de esta relación, es decir, en símbolos será un conjunto de la siguiente forma: \[ \overline{(a,b)}:= \left\{ (c,d) \in \mathbb{N}\times\mathbb{N} : \left(a + d = b +c \right) \right\}, \] en donde $a$ y $b$ son números naturales.
  3. El conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas, en símbolos: \[ \mathbb{Z} := \left\{ \overline{(a,b)} : (a,b) \in \mathbb{N}\times\mathbb{N} \right\}.\]
  4. A este conjunto le daremos operaciones de suma, producto y un orden. Enunciaremos y demostraremos varias de sus propiedades.

Ya que hagamos todo esto, podremos pasar a una siguiente etapa de esta unidad, en donde daremos una introducción a la teoría de números, que es un área de las matemáticas que se dedica a estudiar propiedades aritméticas de $\mathbb{Z}$.

¿Qué es un número entero?

Comencemos tomando una pareja ordenada $(a,b) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$. Para esta pareja, la ecuación

\begin{equation}
a = b + x
\end{equation}

tiene una solución en $\mathbb{N}$. Sin embargo, existen más parejas que tienen la misma solución, es decir, parejas $(c,d)$ tales que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x \in \mathbb{N}$. Por ejemplo, si tomamos $a = 7$, $b = 3$ la ecuación correspondiente es $$7=3+x,$$ cuya solución es $x=4$. Si tomamos $c = 15$ y $d = 11$, entonces la ecuación es $$15=11+x,$$ cuya solución también es $x=4$.

En realidad, muchas más parejas de naturales pueden encontrarse tales que la solución $x$ sea la misma en las ecuaciones representadas por su pareja ordenada asociada. En el ejemplo anterior, otras parejas con la misma solución serían $(5, 1)$, $(31, 27)$, $(100, 96)$, etc. Lo que buscamos al construir a los números enteros es «agrupar» a las parejas con la misma solución $x$. Sin embargo, para que más adelante podamos también «considerar a los negativos», tendremos que cambiar un poco el enfoque.

La siguiente proposición nos permite describir quiénes son todas las parejas $(c,d) \in \mathbb{N} \times \mathbb{N}$ que tienen la misma solución.

Proposición. Sean $(a,b) \in \mathbb{N} \times \mathbb{N}$ y $(c,d) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$ y $c\geq d$. Se tiene que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x$ si y sólo si $a+d = b+c$.

Demostración. $\Longrightarrow )$ Comencemos suponiendo que las ecuaciones $a=b+x$ y $c=d+x$ tienen una misma solución $x$. Esto en símbolos quiere decir que

\begin{align*} a &= b+x \\ d + x &= c \end{align*}

Sumando ambas ecuaciones, obtenemos lo siguiente (aquí ya estamos usando las propiedades conmutativa y asociativa de la suma):

$$a + d + x = b + c + x.$$

En entradas anteriores ya demostramos que se cumple la ley de la cancelación en $\mathbb{N}$. Cancelando $x$ de ambos lados de la igualdad anterior, obtenemos $$a+d=b+c,$$ que era lo que queríamos.

$\Longleftarrow )$ Ahora comencemos con parejas $(a,b)$ y $(c,d)$ tales que $a+d=b+c$. Sea $k \in \mathbb{N}$ una solución de la ecuación $a = b + x$. Es decir, $a = b + k$. Sumando $d$ de ambos lados y usando la hipótesis, tenemos lo siguiente

\begin{align*} b + d + k &= a + d\\
&= b+c.
\end{align*}

Usando la ley de la cancelación en el término $b$, obtenemos que $d+k=c$, es decir, que $k$ también es solución de la ecuación $c=d+x$.

$\square$

La proposición anterior motiva entonces la siguiente definición para todas las parejas $(a,b)$, no sólo para aquellas con $a\geq b$.

Definición. Sean $(a,b)$ y $(c,d)$ parejas de números naturales. Diremos que $(a,b)\sim(c,d)$ si y sólo si $a + d = b + c$.

Probemos una propiedad fundamental de $\sim$.

Proposición. La relación $\sim$ en $\mathbb{N}\times \mathbb{N}$ es una relación de equivalencia.

Demostración. Debemos demostrar que $\sim$ es reflexiva, simétrica y transitiva.

  1. Reflexividad. Veamos que para toda $(a,b)\in \mathbb{N}\times \mathbb{N}$ se cumple que $(a,b)\sim (a,b)$. Por la conmutatividad de la suma en $\mathbb{N}$, $a + b = b + a$. Así, $(a,b) \sim (a,b)$.
  2. Simetría. Veamos que para cualesquiera $(a,b),(c,d) \in \mathbb{N}\times\mathbb{N}$, si $(a,b)\sim (c,d)$, entonces $(a,b) \sim (c,d)$. Sean $(a,b)$ y $(c,d)$. Si $(a,b)=(c,d)$, entonces $a+d = b+c$. Nuevamente por la conmutatividad de la suma en $\mathbb{N}$, se desprende que $c + b = d + a$. Esto es precisamente la definición de $(c,d)\sim(a,b)$.
  3. Transitividad. Veamos que para cualesquiera $(a,b), (c,d),(e,f) \in \mathbb{N}\times \mathbb{N}$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$, se obtiene que $(a,b)\sim (e,f)$. Sean $(a,b)$, $(c,d)$ y $(e,f)$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$. Esto quiere decir que $a+d=b+c$ y que $c+f=d+e$. Sumando ambas ecuaciones, se obtiene $$a+f+c+d=b+e+c+d.$$ Usando la ley de cancelación en $c+d$ obtenemos la ecuación $$a+f=b+e,$$ la cual precisamente corresponde a la relación $(a,b)\sim (e,f)$.

$\square$

Con sólo estas dos proposiciones ya debería quedar más claro de dónde sale la noción formal de número entero, que es la siguiente.

Definición. Un número entero es una clase de equivalencia de $\sim$, es decir, es un conjunto de la siguiente forma:

\begin{equation}
\overline{(a,b)} := \left\{(c,d)\in \mathbb{N}\times \mathbb{N} : a+d = b+c \right\}.
\end{equation}

Ejemplo. ¿Quién es el número entero $\overline{(0,0)}$? Es el conjunto de parejas $(c,d)$ para las cuales $0+d=c+0$, es decir, aquellas en donde $c=d$. De esta forma, $$\overline{(a,b)}=\{(0,0),(1,1),(2,2),(3,3),\ldots\}.$$

¿Cuándo dos números enteros son iguales? Para esto, debe suceder como conjuntos que $\overline{(a,b)}=\overline{(c,d)}$. Como $\sim$ es reflexiva, se tiene que $(a,b)\in \overline{(a,b)}$. Así, $(a,b)$ debe estar en $\overline{(c,d)}$ para que pueda darse la igualdad de conjuntos. Es decir, se necesita que $(a,b)\sim (c,d)$. Es fácil convencerse de que esto es una condición necesaria y suficiente.

El conjunto de los números enteros

En la definición de número entero podemos ir cambiando la pareja $(a,b)$ para ir obteniendo distintos conjuntos. Como $\sim$ es una relación de equivalencia en $\mathbb{N}\times \mathbb{N}$, al variar sobre todas las posibles parejas, estos conjuntos del estilo $\overline{(a,b)}$ forman una partición de $\mathbb{N}\times \mathbb{N}$. Si quieres recordar por qué, puedes ver las entradas correspondientes en el curso de Álgebra Superior I. El conjunto de todas las clases de equivalencia será nuestro conjunto de números naturales.

Definición. Para $(a,b) \in \mathbb{N}\times \mathbb{N}$, el conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas. En símbolos, definimos lo siguiente:

\begin{equation}
\mathbb{Z} := \left\{ \overline{(a,b)} : (a,b)\in \mathbb{N}\times \mathbb{N} \right\}.
\end{equation}

De ahora en adelante, abreviaremos la notación de clase de equivalencia por $\overline{(a,b)}$ (sin la tilde), para facilitar escribir las demostraciones. Otra notación usada comúnmente en la literatura es $[(a,b)]$, sin la tilde.

La suma de los números enteros

Hasta ahora los elementos del conjunto $\mathbb{Z}$ son clases de equivalencia y esto está algo alejado de nuestra noción de números. Definamos operaciones en $\mathbb{Z}$ para que de nuevo los pensemos como un sistema numérico. Comenzamos definiendo la suma de enteros como sigue.

Definición. La suma en los enteros es la función $ \widehat+ : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} $ tal que $$\overline{(a,b)} \enspace \widehat+ \overline{(c,d)} = \overline{(a+c,b+d)}.$$

De manera intuitiva, lo que esta suma refleja es que si tenemos dos ecuaciones $a = b + x$ y $c = d + y$, y las sumamos, entonces se obtiene la ecuación:

$$ a + c = (b + d) + (x + y),$$ la cual correspondería a la clase de equivalencia $\overline{(a+c,b+d)}$.

En la definición utilizamos símbolos distintos para la suma. El símbolo $+$ se refiere al símbolo de suma en $\mathbb{N}$ al cual estamos muy bien acostumbrados. El símbolo $\widehat +$ se refiere al símbolo en $\mathbb{Z}$ que estamos definiendo y que será la suma en $\mathbb{Z}$, para la cual aún tenemos que probar que se cumplan las propiedades que queremos. De ahora en adelante simplemente estaremos usando el símbolo $+$ para ambas, así que es muy importante que en cada momento te preguntes si se refiere al símbolo en $\mathbb{N}$ o en $\mathbb{Z}$, lo cual será claro por el contexto.

Un problema que podríamos tener con la definición de suma es que no estuviera bien definida. Es decir, que si tomamos diferentes representantes de la clase de equivalencia, al hacer la suma obtengamos un resultado diferente. A continuación mostramos que esto en realidad no es un problema.

Proposición. La suma en los enteros está bien definida. Es decir, si $(a,b)\sim (a’,b’)$ y $(c,d)\sim (c’,d’)$, entonces $(a+d,b+c)\sim(a’+d’,b’+c’)$.

Demostración. Las hipótesis corresponden a que $a+b’=b+a’$ y a que $c+d’=d+c’$, que escribiremos como $d+c’=c+d’$. Sumando la primera igualdad con la tercera, reordenando y agrupando términos, obtenemos que $$(a+d)+(b’+c’)=(b+c)+(a’+d’),$$

lo que significa que, como se quería, $(a+d , b+c) \sim (a’+d’, b’+c’).$ Es decir, $\overline{(a+d , b+c)} = \overline{(a’+d’ , b’+c’)}$, de modo que el resultado final de la suma no depende de los representantes que elegimos para hacerla.

$\square$

Propiedades de la suma en $\mathbb{Z}$

Como estamos definiendo una nueva operación de suma, hay que revisar de nuevo que tenga las propiedades que se necesitan para poder trabajar con ella de la manera usual. En esta sección hacemos esto.

Proposición. Se satisfacen las siguientes propiedades para la operación de suma en $\mathbb{Z}$.

  • Asociatividad. Para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se satisface que $$(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).$$
  • Conmutatividad. Para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se satisface que $$\overline{(a,b)}+\overline{(c,d)}=\overline{(c,d)}+\overline{(a,b)}.$$
  • Neutro. Existe un elemento neutro, es decir, existe un entero $\overline{(m,n)}$ tal que para cualquier entero $\overline{(a,b)}$ se cumple que $$\overline{(a,b)}+\overline{(m,n)}=\overline{(a,b)}.$$
  • Inversos. Para cualquier entero $\overline{(a,b)}$ existe un entero $\overline{(c,d)}$ tal que la suma $\overline{(a,b)}+\overline{(c,d)}$ es el neutro de la propiedad anterior.

Demostración. La asociatividad se sigue de la siguiente cadena de igualdades.

\begin{align*}
(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}&=\overline{(a+c,b+d)}+\overline{(e,f)}\\
&=\overline{((a+c)+e,(b+d)+f)}\\
&=\overline{(a+(c+e),b+(d+f))}\\
&=\overline{(a,b)}+\overline{(c+d,d+f)}\\
&=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).
\end{align*}

En la primera, segunda, penúltima y última igualdades estamos usando la definición de suma en $\mathbb{Z}$. En la tercer igualdad estamos usando la asociatividad de la suma en $\mathbb{N}$.

Para demostrar la conmutatividad de la suma en $\mathbb{Z}$ usamos la conmutatividad de la suma en $\mathbb{N}$ en la segunda igualdad de la siguiente cadena:

\begin{align*}
\overline{(a,b)}+\overline{(c,d)}&=\overline{(a+c,b+d)}\\
&=\overline{(c+a,d+b)}\\
&=\overline{(c,d)}+\overline{(a,b)}.
\end{align*}

El elemento neutro de la suma en $\mathbb{Z}$ es el entero $\overline{(0,0)}$ pues, en efecto, si tomamos cualquier entero $\overline{(a,b)}$, tenemos que $$\overline{(a,b)}+\overline{(0,0)}=\overline{(a+0,b+0)}=\overline{(a,b)}.$$

Aquí estamos usando que en los naturales el $0$ es neutro para la suma.

Finalmente, dado cualquier entero $\overline{(a,b)}$, notamos que su inverso aditivo sería el entero $\overline{(b,a)}$. En efecto, su suma sería $$\overline{(a,b)}+\overline{(b,a)}=\overline{(a+b,a+b)}=\overline{(0,0)}.$$

La primer igualdad está usando la conmutatividad de la suma en $\mathbb{N}$ y la última el hecho de que $(a+b,a+b)\sim (0,0)$.

$\square$

Como los inversos aditivos se usan frecuentemente, usamos un símbolo especial para ellos: el símbolo de menos. Usamos también este símbolo en la definición de la función resta.

Definición. Para un entero $\overline{(a,b)}$ definimos $-\overline{(a,b)}:=\overline{(b,a)}$.

Para restar enteros, simplemente a un entero le sumamos el inverso del otro.

Definición. La resta de dos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ es el entero

\begin{align*}
\overline{(a,b)}-\overline{(c,d)}:&=\overline{(a,b)}+(-\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(d,c)}\\
&=\overline{(a+d,b+c)}.
\end{align*}

Cerrando el círculo

Finalizamos esta entrada observando que en $\mathbb{Z}$ ahora sí cualquier ecuación de la forma $r = w + s$ tiene una solución $w$ sin importar los valores de $r$ y $s$.

Proposición. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que existe un entero $\overline{(x,y)}$ tal que $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}.$$

Demostración. La solución es el entero $\overline{(x,y)}=\overline{(a,b)}-\overline{(c,d)}$. En efecto, usando las propiedades de la suma en $\mathbb{Z}$ y la definición de resta, tenemos que:

\begin{align*}
\overline{(x,y)}+\overline{(c,d)}&=(\overline{(a,b)}-\overline{(c,d)})+\overline{(c,d)}\\
&=\overline{(a,b)}+(-\overline{(c,d)}+\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(0,0)}\\
&=\overline{(a,b)}.
\end{align*}

Más adelante…

En esta entrada definimos a los enteros, al conjunto de números enteros y a la operación de suma. Vimos también que la suma tiene buenas propiedades. La estructura algebraica de $\mathbb{Z}$ es todavía más rica. Dentro de $\mathbb{Z}$ también se puede definir un producto y una relación de orden. Haremos esto en las siguientes entradas, enunciaremos las propiedades que tienen y las demostraremos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Repasa por qué las clases de equivalencia inducidas por una relación de equivalencia sobre un conjunto $X$ forman una partición del conjunto $X$.
  2. Encuentra la solución a la siguiente ecuación en los enteros $$\overline{(5,3)}=\overline{(x,y)}+\overline{(1,8)}.$$ Tu respuesta debe ser un número entero, es decir, un conjunto de parejas de naturales. ¿Cuáles son esas parejas?
  3. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$, muestra que la solución $\overline{(x,y)}$ a la ecuación $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}$$ es única. Concluye que tanto el neutro aditivo de $\mathbb{Z}$, como los inversos aditivos en $\mathbb{Z}$ son únicos.
  4. Demuestra que para cualquier entero $\overline{(a,b)}$ se tiene que $-(-\overline{(a,b)})=\overline{(a,b)}$.
  5. Demuestra que para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que $$-(\overline{(a,b)}+\overline{(c,d)})=(-\overline{(a,b)})+(-\overline{(c,d)}).$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Ecuaciones diofantinas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores platicamos de congruencias y teoremas que nos sirven para trabajar con aritmética modular. Así mismo, aprendimos a resolver ecuaciones lineales y sistemas de ecuaciones lineales en congruencias en una variable.

Regresemos a $\mathbb{Z}$. Se usa el término ecuación diofantina para referirse a una ecuación en la cual las variables deben tomar soluciones enteras. Existe una gran variedad de formas que puede tomar una ecuación diofantina. «Resolver una ecuación diofantina» se refiere a encontrar, con demostración, una descripción del conjunto de todas sus soluciones en «términos sencillos».

Ejemplo 1. Encuentra todas las soluciones enteras $x$ a la ecuación $13x=91$.

Ejemplo 2. Encuentra todas las soluciones enteras $x,y$ a la ecuación $7x+5y=3$.

Los ejemplos $1$ y $2$ son ecuaciones diofantinas lineales en una y dos variables respectivamente. El objetivo de esta entrada es explicar cómo resolver estas ecuaciones. Continuamos la discusión de más ejemplos para abrir el panorama del tipo de problemas que aparecen en el área, y de las técnicas que se pueden usar.

Ejemplo 3. Encuentra todas las soluciones con enteros $x,y,z$ a la ecuación $x^2+y^2=z^2$.

Al Ejemplo 3 se le conoce como la ecuación pitagórica. Esa es posible resolverla con todo lo que hemos visto hasta ahora, pero no es tan sencillo. Requiere de un análisis cuidadoso de casos.

Ejemplo 4. Encuentra todas las soluciones enteras positivas $x,y$ a la igualdad $x^y=y^x$.

El Ejemplo $4$ es curioso. Si consideramos a la función real $f(x)=x^{\frac{1}{x}}$, el problema pide encontrar a aquellas parejas de enteros $x$ y $y$ tales que $f(x)=f(y)$. Una forma de resolver la ecuación es utilizando herramientas de cálculo diferencial en $f(x)$ para mostrar que para $x>5$ la función ya es estrictamente creciente. Esto reduce el análisis de casos de enteros que tenemos que intentar, y muestra que $(2,4)$, $(4,2)$ y $(n,n)$ son las únicas parejas de enteros válidas. La moraleja de este ejemplo es que a veces se tienen que usar herramientas de otras áreas de las matemáticas para resolver una ecuación, aunque esta sólo requiera de soluciones enteras.

Ejemplo 5. Encuentra todas las soluciones con enteros $x,y,z$ a la ecuación $x^3+y^3=z^3$.

El Ejemplo $5$, o bien cualquier ecuación del estilo $x^n+y^n=z^n$ se le llama una ecuación de tipo Fermat, pues Pierre Fermat conjeturó que no existen soluciones para cuando $n\geq 3$ y $x,y,z$ son todos distintos de cero. Esta conjetura fue demostrada en $1995$ por Andrew Wiles. Una demostración de esta conjetura queda muy lejos de la teoría que hemos desarrollado hasta ahora, pero vale la pena decir que esta ecuación motivó fuertemente el desarrollo de varias herramientas de teoría de números, sobre unas llamadas curvas elípticas.

Ejemplo 6. Encuentra todas las soluciones enteras positivas $x,y$ a la igualdad $|2^x-3^y|=1$.

El Ejemplo $6$ se puede resolver también con herramientas que ya hemos visto en el curso, pero requiere de un análisis detallado. Este problema pide, en otras palabras, determinar cuándo «una potencia de $3$ está junto a una potencia de $2$». Un ejemplo de esto son $2^3=8$ y $3^2=9$. Otra pregunta clásica del área es la conjetura de Catalán, la cual afirma que estas son las únicas dos potencias no triviales que son consecutivas. Fue demostrada en $2002$ por Mihăilescu. Las técnicas también están muy lejos del alcance de este curso. Se usan técnicas en campos ciclotómicos y módulos de Galois.

En realidad, uno podría tomar cualquier ecuación en reales y hacerse la pregunta de si existirán soluciones en enteros y, de ser así, determinar cuántas o cuáles son. Ha existido (y existe) mucha investigación en el área. El interés de una ecuación diofantina en particular está relacionado con su aplicación a otros problemas y con la teoría que ayuda a desarrollar.

Ecuaciones diofantinas lineales

La ecuación diofantina del Ejemplo 1 se puede preguntar en general. Dados enteros $a$ y $b$, ¿cuáles son las soluciones enteras $x$ a la ecuación $ax=b$?

  • Si $a=0$, la ecuación tiene solución si y sólo si $b=0$, y en este caso, cualquier valor entero de $x$ es solución.
  • Si $a\neq 0$, esta ecuación tiene solución en enteros si y sólo si $a$ divide a $b$, y en este caso $x=b/a$ es la única solución entera.

Estudiemos ahora la generalización del Ejemplo 2.

Problema. Sean $a$ y $b$ enteros distintos de $0$ y $c$ un entero. Determina todas las soluciones enteras a la ecuación $$ax+by=c.$$

Primero, determinemos condiciones necesarias y suficientes en $a$, $b$ y $c$ para que la ecuación tenga soluciones enteras $x$ y $y$. Lo que nos está pidiendo la ecuación es que escribamos a $c$ como combinación lineal entera de $a$ y $b$. Recordemos que $$a\mathbb{Z}+b\mathbb{Z} = \text{MCD}(a,b) \mathbb{Z},$$ de modo que la ecuación tiene solución si y sólo si $\text{MCD}(a,b)$ divide a $c$. ¿Cuáles son todas las soluciones? Esto lo determinaremos mediante las siguientes proposiciones.

Proposición. Sean $a$ y $b$ enteros distintos de $0$ y $c$ un entero divisible entre $M:=\text{MCD}(a,b)$. Sean $a’=a/M$, $b’=b/M$, $c’=c/M$. Las soluciones enteras a la ecuación $ax+by=c$ son las mismas que para la ecuación $a’x+b’y=c’$.

Demostración. Se sigue de manera directa usando que $M\neq 0$, ya que de la original podemos pasar a la nueva dividiendo entre $M$, y de la nueva a la anterior multiplicando por $M$.

$\square$

Ejemplo 1. $x=2$ y $y=7$ son soluciones a la ecuación $6x-4y=-16$, y también son soluciones a la ecuación $3x-2y=-8$.

$\triangle$

Al dividir ambos lados de la ecuación entre el máximo común divisor de $a$ y $b$ obtenemos una ecuación en la que los coeficientes de las variables ahora son primos relativos. Este fenómeno ya lo habíamos visto cuando hablamos de ecuaciones en congruencias. Estudiemos este tipo de ecuaciones en enteros. Comenzaremos con unas un poco más sencillas: aquellas en las que $c=0$. A estas les llamamos ecuaciones homogéneas.

Proposición. Sean $a$ y $b$ enteros distintos de $0$ y primos relativos. Las soluciones de la ecuación diofantina $ax+by=0$ son exactamente de la forma $x=-kb$, $y=ka$ para $k$ en los enteros.

Demostración. De la ecuación obtenemos $-ax=by$, por lo que $a$ divide a $by$. Como $a$ y $b$ son primos relativos, tenemos que $a$ divide a $y$. Así, existe un $k$ entero tal que $y=ka$. Entonces, $-ax=bka$. Como $a\neq 0$, podemos cancelar y despejar $x=-kb$.

En efecto, todas estas parejas son soluciones pues $a(-kb)+b(ka)=0$.

$\square$

Ejemplo 2. Determina todas las soluciones a la ecuación diofantina $9x+5y=0$.

Solución. Tenemos que $9$ y $5$ son primos relativos y que la ecuación es homogénea. Por el resultado anterior, las soluciones son de la forma $x=-5k$ y $y=9k$.

$\triangle$

Ejemplo 3. Determina todas las soluciones a la ecuación diofrantina $9x-6y=0$.

Solución. Aquí hay que tener cuidado. Si bien la ecuación es homogénea, los coeficientes de las variables no son primos relativos. Si sólo consideramos las soluciones de la forma $x=6k$ y $y=9k$, en efecto todas estas son soluciones, pero nos faltará la solución $x=2$, $y=3$ que no es de esta forma.

Antes de poder usar la proposición, necesitamos dividir entre el máximo común divisor de $9$ y $6$, que es $3$, para obtener primero la ecuación diofantina equivalente $3x-2y=0$. Ahora sí, todas las soluciones enteras de esta ecuación (y por lo tanto de la original) son de la forma $x=2k$ y $y=3k$.

$\triangle$

Pasemos ahora al caso en el que los coeficientes de las variables son primos relativos, pero la ecuación ya no es homogénea.

Proposición. Sean $a$ y $b$ enteros distintos de $0$ y primos relativos. Sea $c$ un entero divisible entre $\text{MCD}(a,b)$. Se puede obtener una solución $x_0, y_0$ a la ecuación diofantina $ax+by=c$ usando el algoritmo de Euclides. El resto de las soluciones son exactamente de la forma $x=x_0-kb$, $y=y_0+ka$ en donde $k$ es cualquier entero positivo.

Demostración. Notemos que en efecto las soluciones propuestas satisfacen la ecuación diofantina pues
\begin{align*}
ax+by&=a(x_0-kb)+b(y_0+ka)\\
&=ax_0+by_0 + (-kab+kab)\\
&=ax_0+by_0\\
&=c.
\end{align*}

Aquí usamos que $x_0,y_0$ es una solución de $ax+by=c$. Veamos que estas soluciones son las únicas.

Si $x_1,y_1$ es una solución, entonces tenemos $$ax_1+by_1=c=ax_0+by_0,$$ y entonces $$a(x_1-x_0)+b(y_1-y_0)=c-c=0,$$ de modo que $(x_1-x_0)$, $(y_1-y_0)$ es una solución de la ecuación homogénea $ax+by=0$, y por la proposición anterior, debe suceder que $x_1-x_0=-ka$ y $y_1-y_0=kb$ con $k$ un entero. Así, $x_1=x_0-ka$ y $y_1=y_0+kb$, como queríamos.

$\square$

Ejemplo 4. Determina todas las soluciones a la ecuación diofantina $12x+13y=1$.

Solución. Por inspección, una solución es $x=-1$, $y=1$. Los coeficientes de las variables son primos relativos. Por la proposición anterior, todas las soluciones son de la forma $-13k-1$, $12k+1$ donde $k$ es un entero arbitrario.

$\triangle$

Resumimos todo lo obtenido en el siguiente resultado.

Teorema. Sean $a$ y $b$ enteros distintos de $0$ y $c$ un entero. Consideremos la ecuación diofantina $ax+by=c$. Si $M:=\text{MCD}(a,b)$ no divide a $c$, entonces la ecuación no tiene solución. Si sí, podemos usar el algoritmo de Euclides para encontrar una solución $x_0,y_0$. El resto de las soluciones son de la forma $x_0-ka’$, $y_0+kb’$, en donde $a’=a/M$, $b’=b/M$ y $k$ es cualquier entero.

Veamos un ejemplo en el que juntamos todo lo que ya sabemos.

Ejemplo 5. Determina todas las soluciones a la ecuación diofantina $21x-35y=14$.

Solución. Los coeficientes de las variables no son primos relativos, pues su máximo común divisor es $7$. Tenemos que $7$ divide a $14$, así que la ecuación sí tiene soluciones y son las mismas que las de la ecuación $3x-5y=2$. Por inspección, una solución es $x=-1, y=-1$. Así, todas las soluciones a esta ecuación (y por lo tanto a la original), son de la forma $x=5k-1, y=3k-1$.

$\triangle$

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Resuelve el Ejemplo 2.
  2. En todos los ejemplos, verifica que las soluciones obtenidas en efecto son soluciones del sistema original.
  3. ¿Para cuántos enteros $c$ entre $1$ y $100$ se tiene que la ecuación lineal $21x+18y=c$ tiene solución $x,y$ en enteros?
  4. Sólo hemos visto ecuaciones diofantinas lineales en dos variables. Sin embargo, con lo visto hasta ahora puedes argumentar por qué la ecuación diofantina $91x+14y-70z=100$ no tiene soluciones en enteros. ¿Por qué?
  5. Investiga acerca de la ecuación pitagórica $x^2+y^2=z^2$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»