Archivo de la etiqueta: Métodos de resolución

Ecuaciones Diferenciales l: Ecuación de Bernoulli y ecuación de Riccati

Introducción

Para concluir con el estudio de las ecuaciones diferenciales de primer orden no lineales, en esta entrada presentaremos dos tipos de ecuaciones más, conocidas como la ecuación diferencial de Bernoulli y la ecuación diferencial de Riccati.

Al tratarse de la última entrada sobre el desarrollo de métodos de resolución de ecuaciones diferenciales de primer orden, presentaremos un breve resumen sobre el tipo de ecuaciones que estudiamos y su respectivo método de resolución.

Ecuación diferencial de Bernoulli

La ecuación diferencial de Bernoulli es una ecuación diferencial ordinaria de primer orden, formulada por Jacob Bernoulli en el siglo XVll.

Definición: La ecuación diferencial

\begin{align}
a_{1}(x)\dfrac{dy}{dx} + a_{0}(x) y = g(x) y^{n} \label{1} \tag{1}
\end{align}

donde $n$ es cualquier número real, se llama ecuación de Bernoulli.

Si a la ecuación de Bernoulli la dividimos por la función $a_{1}(x) \neq 0$ obtenemos

$$\dfrac{dy}{dx} + \dfrac{a_{0}(x)}{a_{1}(x)} y = \dfrac{g(x)}{a_{1}(x)} y^{n}$$

Definimos las siguientes funciones

$$P(x)=\dfrac{a_{0}(x)}{a_{1}(x)} \hspace{1cm} y \hspace{1cm} Q(x)=\dfrac{g(x)}{a_{1}(x)}$$

Entonces una ecuación de Bernoulli se puede reescribir como

\begin{align}
\dfrac{dy}{dx} + P(x) y = Q(x) y^{n} \label{2} \tag{2}
\end{align}

La ecuación (\ref{2}) es también una definición común de ecuación de Bernoulli.

Puedes observar que si $n = 0$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal no homogénea:

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Y si $n = 1$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal homogénea:

\begin{align*}
\dfrac{dy}{dx} + P(x) y &= Q(x) y \\
\dfrac{dy}{dx} + [P(x) -Q(x)] y &= 0 \\
\dfrac{dy}{dx} + R(x) y &= 0
\end{align*}

Donde definimos $R(x) = P(x) -Q(x)$, ambas ecuaciones ya las sabemos resolver.

Nuestro objetivo será resolver la ecuación de Bernoulli para el caso en el que $n \neq 0$ y $n \neq 1$. Una propiedad de las ecuaciones de Bernoulli es que la sustitución $u(x) = y^{1 -n}$ la convierte en una ecuación lineal y de esta manera podremos resolverla usando el método de resolución de ecuaciones diferenciales de primer orden lineales. Para mostrar este hecho consideremos la ecuación de Bernoulli en la forma (\ref{2}).

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n}$$

Dividimos toda la ecuación por $y^{n}$.

\begin{align}
\dfrac{1}{y^{n}} \dfrac{dy}{dx} + P(x) y^{1-n} = Q(x) \label{3} \tag{3}
\end{align}

Si definimos $u = y^{1-n}$, al derivar esta función obtenemos

$$\dfrac{du}{dx} = (1 -n) y^{-n} \dfrac{dy}{dx} = (1 -n) \dfrac{1}{y^{n}} \dfrac{dy}{dx}$$

De donde

$$\dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n} \dfrac{du}{dx}$$

Sustituimos este resultado y $y^{1-n} = u$ en la ecuación (\ref{3}):

\begin{align}
\dfrac{1}{1-n} \dfrac{du}{dx} + P(x)u = Q(x) \label{4} \tag{4}
\end{align}

Multiplicamos por $1 -n$ en ambos lados de la ecuación

$$\dfrac{du}{dx} + (1 -n)P(x)u = (1 -n)Q(x)$$

Definimos $R(x) = (1 -n)P(x)$ y $S(x) = (1 -n)Q(x)$. En términos de estas funciones la ecuación (\ref{4}) se puede escribir de la siguiente forma:

\begin{align}
\dfrac{du}{dx} + R(x)u = S(x) \label{5} \tag{5}
\end{align}

Puedes notar que la ecuación (\ref{5}) corresponde a una ecuación diferencial lineal de primer orden no homogénea.

En conclusión, una ecuación de Bernoulli (\ref{2}) bajo la sustitución $u(x) = y^{1 -n}(x)$ se vuelve una ecuación diferencial lineal en la forma (\ref{5}) y por tanto podemos aplicar el método de resolución de ecuaciones diferenciales lineales.

Los pasos que se recomiendan seguir para resolver una ecuación diferencial de Bernoulli se presentan a continuación.

Método para resolver ecuaciones de Bernoulli

  1. El primer paso es escribir a la ecuación de Bernoulli en la forma (\ref{2}).
  1. Dividimos toda la ecuación por $y^{n}$ y consideramos el cambio de variable $u = y^{1 -n}$ y la respectiva derivada $\dfrac{du}{dx} = (1 -n)\dfrac{1}{y^{n}} \dfrac{dy}{dx}$.
  1. Sustituimos $y^{1 -n} = u$ y $\dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n}\dfrac{du}{dx}$ en la ecuación resultante del paso anterior y haciendo un poco de álgebra podremos reducir la ecuación de Bernoulli en una ecuación lineal de primer orden no homogénea.
  1. Resolvemos la ecuación resultante usando el método de resolución de ecuaciones diferenciales lineales lo que nos permitirá obtener la función $u(x)$.
  1. Regresamos a la variable original.

Realicemos un ejemplo en el que apliquemos estos pasos.

Ejemplo: Resolver la ecuación de Bernoulli $3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$

Solución: El primer paso es escribir la ecuación de Bernoulli en la forma (\ref{2}):

\begin{align*}
3(1 + x^{2}) \dfrac{dy}{dx} &= 2xy (y^{3} -1) \\
\dfrac{dy}{dx} & =\dfrac{2xy (y^{3} -1)}{3(1 + x^{2})} \\
\dfrac{dy}{dx} &= \dfrac{2xy^{4}}{3(1 + x^{2})} -\dfrac{2xy}{3(1 + x^{2})} \\
\dfrac{dy}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) y &= \left( \dfrac{2x}{3(1 + x^{2})} \right) y^{4}
\end{align*}

La última relación muestra a la ecuación en la forma (\ref{2}) con $n = 4$, ahora dividamos toda la ecuación por $y^{4}$.

\begin{align}
\dfrac{1}{y^{4}} \dfrac{dy}{dx} + \left( \dfrac{2x}{3(1+x^{2})} \right) y^{-3} = \dfrac{2x}{3(1 + x^{2})} \label{6} \tag{6}
\end{align}

Consideremos la sustitución $u=y^{1-n}=y^{1-4}=y^{-3}=\dfrac{1}{y^{3}}$ y $\dfrac{du}{dx} = -3 y^{-4} \dfrac{dy}{dx}$.

De donde

\begin{align*}
\dfrac{1}{y^{4}} \dfrac{dy}{dx} = -\dfrac{1}{3} \dfrac{du}{dx} \hspace{1.5cm} y \hspace{1.5cm} y^{-3} = u
\end{align*}

Sustituimos estos resultados en la ecuación (\ref{6})

\begin{align*}
-\dfrac{1}{3} \dfrac{du}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) u &= \dfrac{2x}{3(1 + x^{2})} \\
\dfrac{du}{dx} +\left( -\dfrac{2x}{1 + x^{2}} \right) u &= -\dfrac{2x}{1 + x^{2}} \label{7} \tag{7}
\end{align*}

La última ecuación es una expresión en la forma (\ref{5}), con esto hemos logrado reducir la ecuación de Bernoulli en una ecuación diferencial lineal de primer orden no homogénea. Establecemos las siguientes funciones

\begin{align*}
R(x) = -\dfrac{2x}{1 + x^{2}} \hspace{1cm} y \hspace{1cm} S(x) = -\dfrac{2x}{1 + x^{2}}
\end{align*}

A partir de aquí aplicamos el método de resolución de ecuaciones diferenciales lineales. Primero calculemos el factor integrante dado como $\mu (x) = e^{\int {R(x)dx}}$. Resolvamos la integral del exponente omitiendo la constante de integración

\begin{align*}
\int {R(x)dx} &= -\int \dfrac{2x}{1 + x^{2}} dx \\
&= -\ln|1 + x^{2}|
\end{align*}

Sustituyendo en el factor integrante

$$\mu (x) = e^{-\ln|1 + x^{2}|} = \dfrac{1}{1+x^{2}}$$

Por lo tanto el factor integrante es $\mu (x) = \dfrac{1}{1 + x^{2}}$. Multipliquemos a la ecuación (\ref{7}) por el factor integrante:

$$\dfrac{1}{1 + x^{2}} \dfrac{du}{dx} -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right) u = -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right)$$

Identificamos que el lado izquierdo de la ecuación es la derivada del producto del factor integrante por la función $u(x)$, de esta manera

$$\dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) = -\dfrac{2x}{(1 + x^{2})^{2}}$$

Integramos ambos lados de la ecuación con respecto a $x$. Por tratarse del último paso ahora sí consideramos a la constante de integración

$$\int \dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) dx = -\int \dfrac{2x}{(1 + x^{2})^{2}} dx$$

En el lado izquierdo aplicamos el teorema fundamental del cálculo y en el lado derecho consideramos la sustitución $a(x) = 1 + x^{2}$ para resolver la integral, el resultado obtenido es

\begin{align*}
\dfrac{u}{1 + x^{2}} &= \dfrac{1}{1 + x^{2}} + c \\
u &= 1 + (1 + x^{2}) c \\
u &= 1 + c + x^{2}c
\end{align*}

Regresamos a la variable original $u = \dfrac{1}{y^{3}}$

\begin{align*}
\dfrac{1}{y^{3}} &= 1 + c + x^{2}c \\
y^{3} &= \dfrac{1}{cx^{2} + c + 1}
\end{align*}

La ultima ecuación corresponde a la forma implícita de la solución, para obtener la solución explícita sacamos la raíz cúbica obteniendo finalmente

$$y=\sqrt[3]{cx^{2} + c + 1}$$

Por lo tanto, la solución general a la ecuación diferencial de Bernoulli

$$3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$$

es

$$y(x) = \sqrt[3]{cx^{2} + c + 1}$$

$\square$

Ahora revisemos la ecuación de Riccati.

Ecuación diferencial de Riccati

La ecuación de Riccati es una ecuación diferencial ordinara no lineal de primer orden, inventada y desarrollada en el siglo XVlll por el matemático italiano Jacopo Francesco Riccati.

Definición: La ecuación diferencial

\begin{align}
\dfrac{dy}{dx} = q_{1}(x) + q_{2}(x) y +q_{3}(x) y^{2} \label{8} \tag{8}
\end{align}

se llama ecuación de Riccati.

Resolver la ecuación de Ricatti requiere del conocimiento previo de una solución particular de la ecuación, llamemos a dicha solución $y_{1}(x)$. Si hacemos la sustitución

\begin{align}
y(x) = y_{1}(x) + u(x) \label{9} \tag{9}
\end{align}

La ecuación de Riccati adquiere la forma de una ecuación de Bernoulli, de tarea moral verifica este hecho. Ya vimos que para resolver una ecuación de Bernoulli debemos reducirla a una ecuación lineal no homogénea así que veamos directamente cómo reducir una ecuación de Riccati a una ecuación lineal no homogénea.

Sea $y_{1}(x)$ una solución particular de la ecuación de Riccati y consideremos la sustitución

\begin{align}
y(x) = y_{1}(x) + \dfrac{1}{u(x)} \label{10} \tag{10}
\end{align}

Derivando esta ecuación obtenemos

\begin{align}
\dfrac{dy}{dx} = \dfrac{dy_{1}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{11} \tag{11}
\end{align}

Como $y_{1}(x)$ es una solución a la ecuación de Riccati entonces se cumple que

\begin{align}
\dfrac{dy_{1}}{dx} = q_{1}(x) + q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} \label{12} \tag{12}
\end{align}

Sustituyendo (\ref{12}) en (\ref{11}) obtenemos la siguiente ecuación:

\begin{align}
\dfrac{dy}{dx} = q_{1}(x) + q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{13} \tag{13}
\end{align}

Ahora podemos igualar la ecuación (\ref{13}) con la ecuación de Riccati (\ref{8})

\begin{align*}
q_{1}(x) + q_{2}(x) y +q_{3}(x) y^{2} &= q_{1}(x) + q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
q_{2}(x) y +q_{3}(x) y^{2} &= q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{2}(x) y_{1} -q_{2}(x) y + q_{3}(x)y^{2}_{1} -q_{3}(x) y^{2} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{2}(x)(y_{1} -y) + q_{3}(x)(y^{2}_{1} -y^{2})
\end{align*}

En la última ecuación sustituimos la función (\ref{10}):

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{2}(x) \left[ y_{1} -\left( y_{1} + \dfrac{1}{u} \right) \right] + q_{3}(x) \left [ y^{2}_{1} -\left( y_{1} + \dfrac{1}{u} \right) ^{2} \right ] \\
&= q_{2}(x) \left( y_{1} -y_{1} -\dfrac{1}{u} \right) + q_{3}(x) \left( y^{2}_{1} -y^{2}_{1} -2 y_{1} \dfrac{1}{u} -\dfrac{1}{u^{2}} \right) \\
&= q_{2}(x) \left( -\dfrac{1}{u} \right ) + q_{3}(x) \left( -2\dfrac{y_{1}}{u} -\dfrac{1}{u^{2}} \right) \\
&= -\dfrac{q_{2}(x)}{u} -2 q_{3}(x) \dfrac{y_{1}}{u} -\dfrac{q_{3}(x)}{u^{2}}
\end{align*}

Esto es

$$\dfrac{1}{u^{2}} \dfrac{du}{dx} = -\dfrac{q_{2}(x)}{u} -2 q_{3}(x) \dfrac{y_{1}}{u} -\dfrac{q_{3}(x)}{u^{2}}$$

Multiplicamos ambos lados de la ecuación por $u^{2}$

\begin{align*}
\dfrac{du}{dx} &= -q_{2}(x)u -2q_{3}(x) y_{1}u -q_{3}(x) \\
\dfrac{du}{dx} &= -\left( q_{2}(x) + 2q_{3}(x) y_{1} \right) u -q_{3}(x) \\
\dfrac{du}{dx} + \left( q_{2}(x) + 2q_{3}(x) y_{1} \right) u &= -q_{3}(x)
\end{align*}

Definimos las funciones $R(x) = q_{2}(x) + 2q_{3}(x) y_{1}$ y $S(x) = -q_{3}(x)$ de manera que la última ecuación queda como

\begin{align}
\dfrac{du}{dx} + R(x) u = S(x) \label{14} \tag{14}
\end{align}

De esta manera queda demostrado que la sustitución

$$y(x) = y_{1}(x) + \dfrac{1}{u(x)}$$

Convierte a la ecuación de Riccati en una ecuación diferencial lineal y por tanto puede ser resuelta con el método de resolución de ecuaciones lineales.

Como es usual, desarrollemos una serie de pasos a seguir para resolver las ecuaciones de Riccati.

Método para resolver ecuaciones de Riccati

Con el fin de evitar memorizar los resultados anteriores se recomienda seguir la siguiente serie de pasos para resolver una ecuación diferencial de Riccati.

  1. El primer paso es escribir a la ecuación de Riccati en la forma (\ref{8}) y estar seguros de que conocemos previamente una solución particular $y_{1}(x)$ de la ecuación.
  1. Como queremos reducir la ecuación de Riccati en una ecuación lineal no homogénea consideramos la sustitución $y(x) = y_{1}(x) + \dfrac{1}{u(x)}$, con $y_{1}(x)$ la solución particular dada.
  1. Debido a que $y_{1}(x)$ es solución a la ecuación de Riccati, el siguiente paso es derivar la sustitución $y = y_{1} + \dfrac{1}{u}$ y en el resultado sustituir $\dfrac{dy_{1}}{dx}$ por la ecuación de Riccati para la solución particular, esto es

$$\dfrac{dy}{dx} = \dfrac{dy_{1}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} = q_{1}(x) + q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

  1. Igualamos la ecuación anterior con la ecuación de Riccati original en la forma (\ref{8}) y hacemos la sustitución $y(x) = y_{1}(x) + \dfrac{1}{u(x)}$.
  1. Hecho lo anterior y haciendo un poco de álgebra podremos reducir la ecuación de Riccati en una ecuación lineal de primer orden y así aplicar el método de resolución para este tipo de ecuaciones.
  1. Una vez obtenida la función $u(x)$ la sustituimos en $y(x) = y_{1}(x) + \dfrac{1}{u(x)}$ para así finalmente obtener la solución $y(x)$.

Realicemos un ejemplo para poner en practica este método.

Ejemplo: Resolver la ecuación de Riccati $\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$ considerando la solución particular $y_{1} = \dfrac{2}{x}$.

Solución: Vemos que la ecuación diferencial que queremos resolver ya prácticamente tiene la forma de la ecuación (\ref{8}), pero para que sea mas claro consideremos la siguiente forma:

$$\dfrac{dy}{dx} = \left( -\dfrac{4}{x^{2}} \right) + \left( -\dfrac{1}{x} \right) y + y^{2}$$

El problema ya nos da la solución particular $y_{1}(x) = \dfrac{2}{x}$ (verifica que, en efecto, es una solución a la ecuación de Riccati). El segundo paso es hacer la sustitución $y = \dfrac{2}{x} + \dfrac{1}{u}$. Por la ecuación (\ref{13}) tenemos

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{1}{x} \left( \dfrac{2}{x} \right) + \left( \dfrac{2}{x} \right)^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

Igualando el resultado anterior con la ecuación de Riccati tenemos

\begin{align*}
-\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2} &= -\dfrac{4}{x^{2}} -\dfrac{2}{x^{2}} + \dfrac{4}{x^{2}} -\dfrac{1}{y^{2}} \dfrac{du}{dx} \\
-\dfrac{y}{x} + y^{2} &= \dfrac{2}{x^{2}} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{y}{x} -y^{2}
\end{align*}

En la última ecuación sustituimos $y = \dfrac{2}{x} + \dfrac{1}{u}$

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{1}{x} \left( \dfrac{2}{x} + \dfrac{1}{u} \right) -\left( \dfrac{2}{x} + \dfrac{1}{u} \right)^{2} \\
&= \dfrac{2}{x^{2}} + \dfrac{2}{x^{2}} + \dfrac{1}{xu} -\left( \dfrac{4}{x^{2}} + \dfrac{4}{xu} + \dfrac{1}{u^{2}} \right) \\
&= \dfrac{4}{x^{2}} + \dfrac{1}{xu} -\dfrac{4}{x^{2}} -\dfrac{4}{xu} -\dfrac{1}{u^{2}} \\
&= -\dfrac{3}{xu} -\dfrac{1}{u^{2}} \\
\end{align*}

De donde

$$\dfrac{du}{dx} + \dfrac{3}{x}u = -1$$

Esta expresión tiene la forma de una ecuación diferencial lineal (\ref{14}), de donde podemos determinar que

$$R(x) = \dfrac{3}{x} \hspace{1cm} y \hspace{1cm} S(x) = -1$$

Ya que hemos reducido la ecuación de Riccati en una ecuación lineal no homogénea a partir de aquí usamos el método de resolución de ecuaciones lineales.

Calculemos el factor integrante $\mu(x) = e^{\int R(x)dx}$.

\begin{align*}
\int {R(x)dx} = \int {\dfrac{3}{x}dx} = 3\ln| x |
\end{align*}

Entonces, el factor integrante es

$\mu (x) = e^{3 \ln|x|} = x^{3}$

Multiplicamos la ecuación lineal por el factor integrante

\begin{align*}
x^{3} \dfrac{du}{dx} + x^{3} \left( \dfrac{3}{x} \right ) u &= -x^{3} \\
x^{3} \dfrac{du}{dx} + 3x^{2}u &= -x^{3}
\end{align*}

Identificamos el lado izquierdo de la ecuación como la derivada del producto del factor integrante $\mu (x)$ por la función $u(x)$, esto es

$$\dfrac{d}{dx} \left( x^{3}u \right) = -x^{3}$$

Integramos ambos lados de la ecuación con respecto a $x$

\begin{align*}
\int {\dfrac{d}{dx} \left( x^{3}u \right) dx} &= \int {-x^{3}dx} \\
x^{3}u &= -\dfrac{x^{4}}{4} + c \\
u &= -\dfrac{x}{4} + \dfrac{c}{x^{3}}
\end{align*}

Ya determinamos el valor de $u(x)$ ahora sólo lo sustituimos en la función $y = \dfrac{2}{x} + \dfrac{1}{u}$

Por lo tanto, la solución general a la ecuación de Bernoulli

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$$

es

$$y(x) = \dfrac{2}{x} + \dfrac{1}{\dfrac{c}{x^{3}} -\dfrac{x}{4}}$$

$\square$

Hemos concluido con el estudio de las ecuaciones diferenciales de primer orden. Para concluir con esta entrada presentaremos un breve resumen sobre los diferentes tipos de ecuaciones diferenciales que estudiamos y su método de resolución correspondiente.

Resumen de métodos de resolución de ecuaciones diferenciales de primer orden

  1. Ecuaciones diferenciales de primer orden lineales

$$\dfrac{dy}{dx} + P(x)y = Q(x)$$

Condiciones de linealidad:

  • La variable dependiente $y$ y todas sus derivadas son de primer grado.
  • Cada coeficiente depende solamente de la variable independiente $x$ y/o de constantes.

Si $Q(x) = 0$ la ecuación es homogénea y su solución es

$$y(x) = ke^{-\int{P(x)}dx}$$

Si $Q(x) \neq 0$ la ecuación es no homogénea y su solución es

$$y(x) = e^{-\int P(x)dx} \left( \int{e^{\int P(x) dx} Q(x) dx} + k \right)$$

Método del factor integrante: Multiplicamos la ecuación diferencial por el factor integrante $\mu (x) = e^{\int{P(x) dx}}$

Método de variación de parámetros: La solución tiene la forma $y(x) = k(x) e^{-\int{P(x)} dx}$ con $k(x) = \int{e^{\int{P(x)} dx} Q(x)}$

Por lo tanto, una lineal puede resolverse: a) Aplicando directamente la formula general; b) por medio de un factor integrante, y c) usando variación de parámetros.

  1. Ecuaciones diferenciales de variables separables

$$\dfrac{dy}{dx} = \dfrac{g(x)}{f(x)}$$

Método de solución: integración directa.

  1. Ecuaciones diferenciales homogéneas

$$M(x, y) + N(x, y) \dfrac{dy}{dx} = 0$$

Es homogénea si

\begin{align*}
M(tx, ty) = t^{n}M(x, y) \hspace{1cm} y \hspace{1cm} N(tx, ty) = t^{n}N(x, y)
\end{align*}

Método de solución: Cambio de variable $y = ux$ y $\dfrac{dy}{dx} = u + x \dfrac{du}{dx}$ para reducirla a una ecuación de variables separables.

  1. Ecuaciones diferenciales exactas

$$M(x, y) dx + N(x, y) dy = 0$$

Se verifica que es exacta usando del criterio de diferencial exacta.

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

Si lo es, definimos

\begin{align*}
\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)
\end{align*}

Método de solución:

  • Tomar $\dfrac{\partial f}{\partial x} = M(x, y)$ o $\dfrac{\partial f}{\partial y} = N(x, y)$.
  • Integrar en $x$ o integrar en $y$.
  • Derivar con respecto a $y$ o con respecto a $x$.
  • Igualar el resultado a $N(x, y)$ o igualar a $M(x, y)$.
  • Integrar.
  1. Factores integrantes

$\mu (x, y)$ es factor integrante si $\mu (x, y) M(x, y) dx + \mu (x, y) N(x, y) dy = 0$ es exacta.

Si el factor integrante es función de $x$:

$$\mu (x) = exp \left[ \int{ \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right]$$

Si el factor integrante es función de $y$:

$$\mu (y) = exp \left[ \int{ \dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dx} \right]$$

Método de solución: Se multiplica la ecuación diferencial por el factor integrante y se resuelve por exactas o por variables separables según el caso.

  1. Ecuación diferencial de Bernoulli

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n}$$

Método de solución: Para $n \neq 0$ y $n \neq 1$ hacemos el cambio de variable $u = y^{1 -n}$ y $\dfrac{du}{dx} = (1 -n)\dfrac{1}{y^{n}} \dfrac{dy}{dx}$ para reducirla a una ecuación lineal

  1. Ecuación diferencial de Riccati

$$\dfrac{dy}{dx} = q_{1}(x) + q_{2}(x) y +q_{3}(x) y^{2}$$

Método de solución: Conocida una solución particular $y_{1}$ se hace la sustitución $y = y_{1} + u$ para reducir la ecuación a una ecuación de Bernoulli o la sustitución $y = y_{1} + \dfrac{1}{u}$ para reducirla directamente a una ecuación lineal no homogénea.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resuelve las siguientes ecuaciones de Bernoulli.
  • $\dfrac{dy}{dx} + \dfrac{1}{x}y = \dfrac{2}{3}x^{4}y^{4}$
  • $3x \dfrac{dy}{dx} -2y = x^{3}y^{-2}$
  • $x^{2} \dfrac{dy}{dx} -2xy = 3y^{4} \hspace{0.8cm}$ con la condición inicial $\hspace{0.5cm} y(1) = \dfrac{1}{2}$
  1. Resuelve las siguientes ecuaciones de Riccati.
  • $x^{3} \dfrac{dy}{dx} = x^{4}y^{2} -2x^{2}y -1 \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} y_{1} = \dfrac{1}{x^{2}}$
  • $\dfrac{dy}{dx} = xy^{2} + y + \dfrac{1}{x^{2}} \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} y_{1} = -\dfrac{1}{x}$
  1. Demuestra que la sustitución

$$y(x) = y_{1}(x) + u(x)$$

convierte a una ecuación de Riccati en una ecuación de Bernoulli.

Más adelante…

Con esta entrada concluimos el estudio de las ecuaciones diferenciales de primer orden, a lo largo de la unidad vimos una descripción cualitativa y posteriormente una descripción analítica en la que desarrollamos varios métodos para resolver ecuaciones diferenciales tanto lineales como no lineales. Lo natural es continuar con el estudio de las ecuaciones diferenciales de segundo orden pero antes es importante hacer un estudio con mayor detalle sobre el teorema de existencia y unicidad con el cual justificaremos toda la teoría desarrollada a lo largo de la unidad.

Entradas relacionadas

Ecuaciones Diferenciales l: Ecuaciones diferenciales NO lineales de primer orden, métodos de resolución

Introducción

Continuando con la teoría analítica sobre la resolución de ecuaciones diferenciales de primer orden, es momento de estudiar las ecuaciones diferenciales NO lineales de primer orden.

En entradas anteriores estudiamos las ecuaciones diferenciales lineales de primer orden, recordando la definición de ecuación diferencial lineal podemos decir que una ED que no satisface las propiedades de linealidad es entonces una ecuación diferencial NO lineal.

En esta entrada vamos a estudiar dos tipos de ED no lineales de primer orden conocidas como ecuaciones diferenciales separables y ecuaciones diferenciales homogéneas. Cabe mencionar que las ED no lineales homogéneas que estudiaremos en esta entrada no tienen que ver con las ED homogéneas que estudiamos con anterioridad así que será importante reconocer el tipo de ecuaciones con las que estemos trabajando.

Ecuaciones separables

Definición: Una ecuación diferencial de primer orden de la forma:

$$\dfrac{dy}{dx} = H(x, y)$$

se dice que es separable o que tiene variables separables siempre que $H(x, y)$ puede escribirse como el producto de una función de $x$ y una función de $y$:

\begin{align}
\dfrac{dy}{dx} = H(x, y) = g(x)h(y) \label{1} \tag{1}
\end{align}

Inmediatamente podemos darnos cuenta que no es una ecuación diferencial lineal debido a que en esta ocasión aparece una función dependiente de la variable dependiente $y$.

Veamos cómo encontrar la solución general a este tipo de ecuaciones.

Solución a ecuaciones separables

Por conveniencia vamos a definir la función $h(y) = \dfrac{1}{f(y)}$ de manera que la ecuación (\ref{1}) se puede reescribir como:

\begin{align}
\dfrac{dy}{dx} = \dfrac{g(x)}{f(y)} \label{2} \tag{2}
\end{align}

Esta ecuación la podemos reescribir como

\begin{align}
f(y) \dfrac{dy}{dx} = g(x) \label{3} \tag{3}
\end{align}

Puedes observar que en el lado derecho de la igualdad tenemos la función que depende de la variable dependiente $y$ mientras que en el lado izquierdo tenemos la función que depende de la variable independiente $x$, en esta situación decimos que hemos separado a la ecuación diferencial.

Es bastante común encontrar en la literatura que la ecuación (\ref{3}) se escribe como

\begin{align}
g(x) dx = f(y) dy \label{4} \tag{4}
\end{align}

Esta es la forma diferencial de la ecuación (\ref{2}), es una notación informal pero nos permite visualizar que hemos sido capaz de separar a las variables, el lado izquierdo sólo depende de $x$ mientras que el lado derecho sólo depende de $y$

Ahora se puede integrar ambos lados de la ecuación. Si consideramos la ecuación en la forma (\ref{3}) entonces integramos ambos lados con respecto a la variable $x$ (y si consideramos la ecuación en la forma (\ref{4}) integramos con respecto a la variable correspondiente).

\begin{align*}
\int f(y) \dfrac{dy}{dx} dx &= \int g(x) dx \\
\int f(y) dy &= \int g(x) dx
\end{align*}

Sólo es necesario que las antiderivadas

\begin{align}
F(y) = \int f(y) dy \label{5} \tag{5}
\end{align}

y

\begin{align}
G(x) = \int g(x) dx \label{6} \tag{6}
\end{align}

existan y puedan resolverse. Una vez resolvamos las integrales obtendremos una familia uniparamétrica de soluciones, que usualmente se expresa de manera implícita.

Método de separación de variables

De acuerdo a lo anterior, los siguiente pasos nos permiten resolver una ecuación diferencial separable:

  1. Dada una ecuación diferencial no lineal de primer orden, el primer paso es identificar si es posible modificar la ecuación de manera que podamos determinar una función $g = g(x)$ que sólo depende de la variable independiente y una función $f = f(y)$ que sólo depende de la variable dependiente y si esto es posible escribimos a la ecuación diferencial en la siguiente forma:

$$f(y) \dfrac{dy}{dx} = g(x)$$

  1. El segundo paso es integrar ambos lados de la ecuación con respecto a la variable $x$. Considera en todo momento las constantes de integración.

Nota: La ecuación $f(y) \dfrac{dy}{dx} = g(x)$ se puede escribir de manera informal como $g(x) dx = f(y) dy$, la ventaja de esta notación es que ya podemos integrar directamente sobre la variable correspondiente, es decir, $\int f(y) dy = \int g(x) dx$.

  1. Resolver la integral $\int f(y) dy$ nos dará a la función $y(x)$ que estamos buscando, ya sea de manera implícita o de manera explicita, si es de manera implícita en muchas ocasiones sí será posible despejar a la función $y$ para obtener la solución explícita, sin embargo recuerda que es totalmente válida una función implícita.

Para aplicar este método vamos a realizar un ejemplo en el que resolvamos una ecuación diferencial separable.

Ejemplo: Resolver la ecuación diferencial $\dfrac{dy}{dx} e^{y -x} = x$ con la condición inicial $y(0) = \ln(2)$.

Solución: El primer paso es determinar si la ecuación es separable, es decir, si podemos hallar las funciones $g(x)$ y $f(y)$. Vemos que

\begin{align*}
\dfrac{dy}{dx} e^{y -x} &= x \\
\dfrac{dy}{dx} e^{y} e^{-x} &= x \\
e^{y} \dfrac{dy}{dx} &= x e^{x}
\end{align*}

Ya logramos escribir a la ecuación en la forma (\ref{3}) donde podemos establecer que $g(x) = x e^{x}$ y $f(y) = e^{y}$. Usando la notación diferencial podemos escribir a la ecuación como

$$e^{y} dy = x e^{x} dx$$

Ahora podemos integrar ambos lados de la ecuación ante la respectiva variable.

\begin{align*}
\int {e^{y} dy} = \int {x e^{x} dx}
\end{align*}

Por un lado

\begin{align*}
\int {e^{y} dy} = e^{y} + k_{1}
\end{align*}

y por otro lado, para la integral $\int {x e^{x} dx}$ consideramos que $u(x) = x$ y $dv(x) = e^{x}$ e integramos por partes:

\begin{align*}
\int {x e^{x} dx} &= x e^{x} -\int{e^{x} dx} \\
&= x e^{x} -(e^{x} + k_{2})\\
&= x e^{x} -e^{x} -k_{2}
\end{align*}

Igualando ambos resultados tenemos lo siguiente:

\begin{align*}
e^{y} + k_{1} &= x e^{x} -e^{x} -k_{2} \\
e^{y} &= x e^{x} -e^{x} -k_{2} -k_{1} \\
e^{y} &= x e^{x} -e^{x} + c
\end{align*}

En donde $c = -k_{2} -k_{1}$. Por lo tanto la solución implícita es $e^{y} = x e^{x} -e^{x} + c$. Si se requiere conocer la solución explícita sólo tomamos el logaritmo natural.

$$y = \ln|x e^{x} -e^{x} + c|$$

Ahora podemos obtener la solución particular aplicando la condición inicial $y(0) = \ln(2)$

$y(0) = \ln|0 e^{0} -e^{0} + c| = \ln(2)$
$y(0) = \ln|0 -1 + c| = \ln(2)$
$\ln|c -1| = \ln(2)$

Aplicando la exponencial en ambos lados de la última ecuación tenemos

$$c -1= 2$$

De donde $c = 3$. Por lo tanto la solución particular es

$$e^{y} = x e^{x} -e^{x} + 3$$

O bien.

$$y = \ln| x e^{x} -e^{x} + 3|$$

En conclusión, la solución general a la ecuación diferencial

$$\dfrac{dy}{dx} e^{y -x} = x$$

es

$$y(x) = \ln|x e^{x} -e^{x} + c|$$

Y la solución particular dada por la condición inicial $y(0) = \ln(2)$ es

$$y(x) = \ln| x e^{x} -e^{x} + 3|$$

$\square$

Este tipo de ecuaciones son muy sencillas de resolver, prácticamente se resuelven aplicando una integración directa. Veamos ahora las ecuaciones diferenciales no lineales homogéneas, lo interesante de este tipo de ecuaciones es que si hacemos el cambio de variable adecuado las podremos reducir a una ecuación separable las cuales ya sabemos resolver.

Ecuaciones homogéneas

Definición: Una ecuación diferencial homogénea es de la forma

\begin{align}
M(x, y) dx + N(x, y) dy = 0 \label{7} \tag{7}
\end{align}

donde $M$ y $N$ tienen la propiedad de que para todo $t > 0$, la sustitución de $x$ por $tx$ y la de $y$ por $ty$ hacen que $M$ y $N$ sean del mismo grado $n$, esto es:

\begin{align}
M(tx, ty) = t^{n} M(x, y) \label{8} \tag{8}
\end{align}

\begin{align}
N(tx, ty) = t^{n} N(x, y) \label{9} \tag{9}
\end{align}

De tus cursos de álgebra recordarás que un polinomio homogéneo es aquel en los que todos los términos son del mismo grado, por ejemplo, el polinomio

$$x^{2}y^{2} -5xy^{3} + x^{4} -y^{4}$$

es un polinomio homogéneo de grado $4$ ya que la suma de los exponentes del primer término es $2 +2 = 4$, del segundo término es $1 + 3 = 4$ y evidentemente el exponente de los últimos dos términos es $4$. Es en este sentido que la ecuación $(\ref{7})$ se dice que es homogénea si se cumplen las ecuaciones (\ref{8}) y (\ref{9}) conjuntamente.

Este tipo de ecuaciones se pueden reducir a la forma de una ecuación separable y aplicando el procedimiento anterior es como podremos encontrar la solución a las ecuaciones diferenciales homogéneas.

Reducción de una ecuación homogénea a una de variables separables

La ecuación diferencial que queremos resolver es de la forma

$M(x, y) dx + N(x, y) dy = 0$

Por definición se cumple que

$\dfrac{M(tx, ty)}{N(tx, ty)} = \dfrac{M(x, y)}{N(x, y)}$

Si se considera el valor $t = \dfrac{1}{x}$, la ecuación anterior queda como

$\dfrac{M(x, y)}{N(x, y)} = \dfrac{M(tx, ty)}{N(tx, ty)} = \dfrac{M \left( 1, \dfrac{y}{x} \right) }{N \left( 1, \dfrac{y}{x} \right) } = f \left( \dfrac{y}{x} \right)$

Consideremos el cambio de variable $y = xu$, con $u = u(x)$ una función de la variable independiente $x$ y derivable. Si derivamos la función $y(x)$, aplicando la regla de la cadena obtenemos lo siguiente:

\begin{align}
\dfrac{dy}{dx} = u \dfrac{dx}{dx} + x \dfrac{du}{dx} = u + x \dfrac{du}{dx} \label{10} \tag{10}
\end{align}

Pero si $M(x, y) dx + N(x, y) dy = 0$ entonces

$$\dfrac{dy}{dx} = -\dfrac{M(x, y)}{N(x, y)} = -f \left( \dfrac{y}{x} \right) = -f(u)$$

es decir

\begin{align}
f(u) = -\dfrac{dy}{dx} \label{11} \tag{11}
\end{align}

Si en la ecuación (\ref{11}) sustituimos el resultado (\ref{10}), tenemos

\begin{align*}
f(u) &= -\left( u + x \dfrac{du}{dx} \right) \\
f(u) &= -u -x \dfrac{du}{dx} \\
f(u) + u &= -x \dfrac{du}{dx} \\
-\dfrac{1}{x} (f(u) + u) &= \dfrac{du}{dx}
\end{align*}

De manera que

\begin{align}
\dfrac{du}{dx} = \left( -\dfrac{1}{x} \right) \left( u + f(u) \right) \label{12} \tag{12}
\end{align}

Si definimos $g(x) = -\dfrac{1}{x}$ y $h(u) = u + f(u)$ entonces

\begin{align}
\dfrac{du}{dx} = g(x) h(u) \label{13} \tag{13}
\end{align}

Vemos que este resultado corresponde a la definición de una ecuación diferencial de variables separables. Si resolvemos esta ecuación usando el método de separación de variables podremos darle solución a las ecuaciones homogéneas.

Método de resolución a las ecuaciones diferenciales homogéneas

A continuación se establecen, como recomendación, los pasos a seguir para resolver una ecuación diferencial homogénea (\ref{7}).

  1. El primer paso es verificar que en efecto la ecuación sea homogénea, para ello verificamos que $M$ y $N$ sean del mismo grado, tal como se muestra en las ecuaciones (\ref{8}) y (\ref{9}).
  1. Una vez que comprobamos que la ecuación es homogénea, podemos reescribir a la ecuación (\ref{7}) como

\begin{align}
M(x, y) + N(x, y) \dfrac{dy}{dx} = 0 \label{14} \tag{14}
\end{align}

Y hacemos el cambio de variable $y = ux$ y $\dfrac{dy}{dx} = u + x \dfrac{du}{dx}$ y sustituimos en la ecuación (\ref{14}).

  1. Una vez que se hizo la correspondiente sustitución ya podremos separar las variables reduciendo el problema a una ecuación de variables separables.

Veamos un ejemplo de una ecuación diferencial no lineal homogénea.

Ejemplo: Verificar que la siguiente ecuación diferencial es homogénea, determinar su grado y resolver la ecuación.

$(x^{2} + y^{2}) dx -xy dy = 0$

Solución: Podemos identificar a las funciones $M$ y $N$ como $M(x, y) = x^{2} + y^{2}$ y $N(x, y) = -xy$. Para obtener el grado de la ecuación diferencial hagamos la sustitución $x$ por $tx$ y $y$ por $ty$.

$M(tx, ty) = (tx)^{2} + (ty)^{2} = t^{2} (x^{2} + y^{2}) = t^{2} M(x, y)$

Por otro lado

$N(tx, ty) = -(tx)(ty) = t^{2} (-xy) = t^{2} N(x, y)$

Se cumple entonces que

$M(tx, ty) = t^{2} M(x, y)$ $\hspace{1cm}$ y $\hspace{1cm}$ $N(tx, ty) = t^{2} N(x, y)$

Por lo tanto la ecuación sí es homogénea y el grado es $n = 2$. Ahora resolvamos la ecuación reduciéndola a la forma de una ecuación de variables separables.

De acuerdo al método de resolución, una vez que ya vimos que sí es homogénea, escribimos a la ecuación diferencial en la forma (\ref{14}).

$$(x^{2} + y^{2}) -(xy) \dfrac{dy}{dx} = 0$$

Ahora hacemos el cambio de variable $y = xu$ y $\dfrac{dy}{dx} = u + x \dfrac{du}{dx}$ y sustituimos en la ecuación diferencial.

$$\left( x^{2} + (xu)^{2} \right) -x(xu) \left( u + x \dfrac{du}{dx} \right) = 0$$

Ahora reducimos esta ecuación a una ecuación de variables separables.

\begin{align*}
\left( x^{2} + (xu)^{2} \right) -x(xu) \left( u + x \dfrac{du}{dx} \right) &= 0 \\
x^{2} + x^{2} u^{2} -x^{2}u \left( u + x \dfrac{du}{dx} \right) &= 0 \\
x^{2} + x^{2} u^{2} -x^{2}u^{2} -x^{3}u \dfrac{du}{dx} &= 0 \\
x^{2} -x^{3}u \dfrac{du}{dx} &= 0 \\
x^{2} \left( 1 -xu \dfrac{du}{dx} \right) &= 0 \\
\end{align*}

Para $x \neq 0$ tenemos

\begin{align*}
1 -xu \dfrac{du}{dx} &= 0 \\
xu \dfrac{du}{dx} &= 1 \\
u \dfrac{du}{dx} &= \dfrac{1}{x} \\
\end{align*}

Ya logramos separar a las variables. Podemos escribir la última igualdad en la forma diferencial

$$u du = \dfrac{1}{x}dx$$

Integrando ambos lados de la ecuación sobre la variable correspondiente tenemos

\begin{align*}
\int{u du} &= \int{\dfrac{dx}{x}} \\
\dfrac{u^{2}}{2} + k_{1} &= \ln|x| + k_{2} \\
\dfrac{u^{2}}{2} &= \ln|x| + k_{2} -k_{1} \\
u^{2} &= 2 \ln|x| + 2(k_{2} -k_{1}) \\
u^{2} &= 2 \ln|x| + c
\end{align*}

Donde $c = 2(k_{2} -k_{1})$, como $u = \dfrac{y}{x}$, sustituimos en el resultado anterior para regresar a nuestras variables originales.

\begin{align*}
\left( \dfrac{y}{x} \right) ^{2} &= 2\ln|x| + c \\
\dfrac{y^{2}}{x^{2}} &= 2\ln|x| + c \\
y^{2} &= x^{2} (2\ln|x| + c)
\end{align*}

Por lo tanto, la solución implícita de la ecuación diferencial $(x^{2} + y^{2}) dx -xy dy = 0$ es

$$y^{2}(x) = x^{2} (2\ln|x| + c)$$

Si deseamos obtener la solución explícita sacamos raíz cuadrada a la ecuación

$$|y(x)| = x \left( \sqrt{2 \ln|x| + c} \right)$$

$\square$

En entradas siguientes continuaremos con el estudio de ecuaciones diferenciales no lineales de primer orden, en particular, en la siguiente entrada estudiaremos las llamadas ecuaciones exactas.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resuelve las siguientes ecuaciones diferenciales separables:
  • $\dfrac{ds}{dt} = -sen(3t)$
  • $\dfrac{dy}{dx} = \dfrac{y}{1 + x^{2}}$
  1. Resolver las siguientes ecuaciones diferenciales homogéneas.
  • $(x -y)dx + xdy = 0$
  • $(y^{2} +yx)dx -x^{2}dy = 0$
  1. Resuelve los siguientes problemas con valores iniciales.
  • $\dfrac{dy}{dx} = e^{3x + 2y}$ $\hspace{1.7cm}$ con $\hspace{0.3cm}$ $y(0) = 0$
  • $\dfrac{ds}{dr} = \dfrac{cos^{2}(r)}{s^{2}} $ $\hspace{1.3cm}$ con $\hspace{0.3cm}$ $s(\pi) = -1$
  • $xy \dfrac{dy}{dx} = y^{3} -x^{3}$ $\hspace{1cm}$ con $\hspace{0.3cm}$ $y(1) = 2$

Más adelante …

En esta entrada estudiamos dos tipos de ecuaciones diferenciales no lineales de primer orden, las separables y las homogéneas. En este curso además de las ya vistas revisaremos las ecuaciones exactas, la ecuación de Bernoulli y la ecuación de Riccati. Dedicaremos la siguiente entrada al estudio de las ecuaciones diferenciales exactas.

Entradas relacionadas