Cálculo Diferencial e Integral III: Polinomio de Taylor para campos escalares

Por Alejandro Antonio Estrada Franco

Introducción

Una intuición que se obtiene de un primer curso de cálculo diferencial e integral es que las funciones que tienen muchas derivadas «se parecen mucho a polinomios», en el sentido de que podemos aproximarlas apropiadamente con este tipo de expresiones. Esta intuición nos las da el teorema del polinomio de Taylor. En muchas aplicaciones, es conveniente estudiar polinomios en vez de funciones en general, así que sería ideal tener una versión de este mismo resultado para cálculo de varias variables. En esta entrada recordaremos un poco del caso unidimensional y luego enunciaremos la teoría correspondiente para el polinomio de Taylor.

Recordatorio de polinomio de Taylor en $\mathbb{R}$

Recordemos qué es lo que dice el teorema del polinomio de Taylor para el caso unidimensional. Esto nos ayudará pues lo usaremos posteriormente para enunciar una versión para varias variables.

Teorema. Sea $f:S\subseteq \mathbb{R}\to \mathbb{R}$ una función y $a\in int(S)$ de tal manera que existen $f^{\prime}(a),\dots ,f^{(k)}(a)$. Sea $$a_{\ell}=\frac{f^{(\ell)}(a)}{\ell!}$$ con $0\leq \ell \leq k$ y definamos a partir de esto $$T_{k,a}(x)=a_{0}+a_{1}(x-a)+\dots +a_{k}(x-a)^k,$$

al que llamamos el polinomio de Taylor de $f$ de grado $k$ alrededor de $a$.

Entonces $$\lim_{x \to a}\frac{f(x)-T_{k,a}(x)}{(x-a)^k}=0.$$

La demostración de este teorema la puedes encontrar en la entrada El Polinomio de Taylor (Parte 1) del curso de Cálculo I. Es recomendable que consultes esta entrada para recordar todo lo referente a este tema en una variable real.

Pidiendo un poco más de regularidad, se puede estudiar el residuo $$R_{k,a}(x):=f(x)-T_{k,a}(x).$$

Por ejemplo, se puede demostrar el siguiente teorema.

Teorema. Sea $f:S\subseteq \mathbb{R}\to\mathbb{R}$. Supongamos que $f^{\prime},\dots ,f^{(k+1)}$ están definidas sobre $[a,x]$. Entonces, se puede expresar el residuo del teorema de Taylor como

\begin{equation}
\label{eq:residuo}
R_{k,a}(x)=\frac{f^{(k+1)}(\xi)}{(k+1)!}(x-a)^{k+1}.
\end{equation}

para algún $\xi\in[a,x]$.

Para la demostración de este teorema y otras expresiones del residuo (por ejemplo, una expresión en términos de integrales), puedes visitar el curso de Cálculo II, en particular la entrada Series de Taylor y de Maclaurin.

Pensemos de momento que $f$ tiene derivadas parciales de todos los órdenes (es decir, que es $C^\infty$). En este caso, $f$ tiene polinomios de Taylor de todos los grados. De entrada, no tendría por qué suceder que $\lim_{k\to \infty} T_{k,a}(x)=f(x)$, y de hecho hay contraejemplos para ello. Pero si además tenemos que se tiene $\lim_{k \to \infty}R_{k,a}(x)=0$, entonces la igualdad anterior sí se cumple. En este caso, verdaderamente $f$ se puede expresar como un polinomio infinito (una serie de potencias) alrededor de $a$ de la siguiente manera:

\begin{equation}\label{eq:taylor-inf}f(x)=\sum_{i=0}^{\infty}\frac{f^{(i)}(a)}{i!}(x-a)^{i}.\end{equation}

Ejemplo. Calculemos en $0$ el polinomio de Taylor de $f(x)=e^x$. Para cada entero positivo $k$ se tiene:

$$\frac{f^{(k)}(0)}{k!}x^{k}=\frac{e^0}{k!}x^{k}=\frac{x^{k}}{k!}.$$

De aquí, por la forma que toma el residuo, existe $\xi\in [0,x]$ para el cual

$$R_{k,0}(x)=\frac{e^\xi}{(k+1)!}x^{k+1}.$$

aquí $e^\xi$ está acotado y el cociente $\frac{x^{k+1}}{(k+1)!}$ se va a cero conforme $k\to \infty$. De este modo, tenemos la igualdad

$$e^x=1+\frac{x}{1}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!}+\dots.$$

$\triangle$

Preliminares para polinomio de Taylor para campos escalares

La manera en la cual generalizaremos el teorema del polinomio de Taylor será a través de evaluar nuestro campo escalar sobre un segmento, muy parecido a como generalizamos el teorema del valor medio. Pongamos la situación en contexto.

Tomemos un abierto $S\subseteq \mathbb{R}^n$ y un campo escalar $f:S\to \mathbb{R}$. Tomemos vectores
\begin{align*}
\bar{a}=(a_1,\ldots,a_n)\\
\bar{v}=(v_1,\ldots,v_n),
\end{align*}

y $t$ en el intervalo $[0,1]$. Supondremos además que para todo dicho $t$ se cumple $\bar{a}+t\bar{v}\in S$.

Podemos recorrer el segmento de $\bar{a}$ a $\bar{a}+\bar{v}$ mediante la trayectoria $\gamma : [0,1] \to \mathbb{R}^{n}$ dada por $\gamma (t)=\bar{a}+t\bar{v}$. Si componemos a esta trayectoria con la función $f$, obtenemos una función $G: [0,1] \to \mathbb{R}$ dada por $$G(t)=(f\circ \gamma )(t)=f(\bar{a}+t\bar{v}).$$

Por la hipótesis de diferenciabilidad de $f$, es una función derivable de una variable real. Por la regla de la cadena su derivada está dada por la siguiente expresión:

\begin{align*}
G^{\prime}(t)&=v_{1}\frac{\partial f}{\partial x_{1}}(\bar{a}+t\bar{v})+\dots +v_n\frac{\partial f}{\partial x_n}(\bar{a}+t\bar{v})
\end{align*}

Vamos a introducir una notación muy usada y útil para el desarrollo que estamos haciendo. Definiremos un operador con la expresión anterior simplemente como

\[ G^{\prime}(t)=(\bar{v}\cdot \triangledown )f(\bar{a}+t\bar{v}).\]

Esta expresión no se sigue de manera tan formal de cosas que hemos hecho antes, pero observa que tiene sentido. En la expresión $\bar{v}\cdot \triangledown$ estamos haciendo algo así como un «producto punto de operadores». En el fondo, este operador manda a cada función diferenciable $f$ a su derivada direccional en la dirección de $\bar{v}$.

Para poder hablar de Taylor, necesitamos derivar iteradamente. Podemos entonces tomar ahora $G’$ y derivarla nuevamente, de donde obtendríamos

\begin{align*}
G^{\prime \prime} (t) &= (\bar{v}\cdot \triangledown) G'(\bar{a}+t\bar{v})\\
&=(\bar{v}\cdot \triangledown)\left((\bar{v}\cdot \triangledown)f(\bar{a}+t\bar{v})\right)\\
&=\left((\bar{v}\cdot \triangledown)(\bar{v}\cdot \triangledown)\right) f(\bar{a}+t\bar{v}).
\end{align*}

Es importante que medites en por qué se da la redistribución de paréntesis que hicimos en la última igualdad. Simplificaremos la expresión $(\bar{v}\cdot \triangledown)(\bar{v}\cdot \triangledown )$ como $(\bar{v}\cdot \triangledown)^2$, y de manera similar definimos $(\bar{v}\cdot \triangledown)^k$ como componer el operador $k$ veces. Continuando como arriba, bajo las hipótesis adecuadas de diferenciabilidad llegamos al siguiente resultado.

Proposición. Sea $k$ un entero positivo y $f:S\subseteq \mathbb{R}^{n}\to \mathbb{R}$ con $S$ abierto y derivadas parciales continuas de orden $1,2,\ldots,k$. Sea $\bar{a}\in S$, y $\bar{v}$ un vector tal que $\bar{a}+t\bar{v}\in S$ para todo $t\in [0,1]$. Entonces:

\begin{equation}\label{eq:iteradas}\left( \frac{d}{dt} \right)^{k}f(\bar{a}+t\bar{v})=(\bar{v}\cdot \triangledown )^{k}f(\bar{a}+t\bar{v}).\end{equation}

Demostración. Queda como tarea moral. Se sugiere hacerlo por inducción.

$\square$

Algo sorprendente y curioso que sucede con las expresiones del estilo $(\bar{v}\cdot \triangle)^k$ es que «se vale el binomio de Newton» para ellas, o en general, cualquier fórmula para elevar a la $k$-ésima potencia. Esto se ve muy claro en el caso de $f:S\subset \mathbb{R}^2\to \mathbb{R}$ y derivadas de orden $2$. Si tenemos $\bar{v}=(v_1,v_2)$, entonces $\bar{v}\cdot \triangledown=v_1\frac{\partial}{\partial x} + v_2\frac{\partial}{\partial y}$. Se puede demostrar, por ejemplo, que si las $k$-ésimas parciales son continuas entonces

\[ \left( v_1\frac{\partial}{\partial x}+v_2\frac{\partial}{\partial y}\right)^{k}=\sum_{i
=0}^{k}\binom{k}{i}v_1^iv_2^{k-i}\frac{\partial ^{i}}{\partial x^{i}}\frac{\partial^{k-i}}{\partial y^{k-i}}.\]

Un caso particular sería el de $n=2$ y $k=2$, en el que se obtiene que:

\begin{equation} \label{eq:binomio} \left( v_1\frac{\partial}{\partial x}+v_2\frac{\partial}{\partial y} \right)^{2}=v_1^{2}\frac{\partial ^{2}}{\partial x^{2}}+2{v_1}{v_2}\frac{\partial ^{2}}{\partial x\partial y}+v_2^{2}\frac{\partial ^{2}}{\partial y^{2}}.\end{equation}

En la práctica esto nos permitirá encontrar las expresiones que necesitamos para el polinomio de Taylor para campos escalares. Observa que estas expresiones son también las que nos confirman que la expresión que obtendremos será un polinomio en $v_1,v_2$ (en general, en las entradas de $\bar{v}$), pues tras aplicar el operador en $f$ y evaluar en un punto, finalmente \eqref{eq:binomio} quedará escrito para ciertas constantes $A,B,C$ como $$Av_1^2+2Bv_1v_2+Cv_2^2,$$ lo cual en efecto es un polinomio (en este caso de grado $2$ y dos variables).

Polinomio de Taylor para campos escalares

Con la notación que hemos introducido, ahora sí podemos enunciar apropiadamente el polinomio de Taylor. Pensemos en que $f$ es $k+1$ veces diferenciable y que todas esas derivadas son continuas. En la sección anterior vimos que $G=f\circ \gamma$ también sería $k+1$ veces diferenciable y dimos fórmulas para sus derivadas en términos de la notación $\bar{v}\cdot \triangledown$.

Aplicando el teorema de Taylor con la versión de residuo dada en la ecuación \eqref{eq:residuo}, para la función $G$, en los puntos $a=0$, $x=1$, tenemos que existe $\xi\in[0,1]$ tal que se satisface lo siguiente:

\[ G(1)=G(0)+G^{\prime}(0)+\frac{G^{(2)}(0)}{2!}+\dots +\frac{G^{(k)}(0)}{k!}+\frac{G^{(k+1)}(\xi)}{(k+1)!}.\]

Al usar las fórmulas dadas por la ecuación \eqref{eq:iteradas}, obtenemos que

\begin{align*}
G^{(s)}(0)&=(\bar{v}\cdot \triangledown )^{s}f(\bar{a}) & \text{para $s\leq k$}\\
G^{(k+1)}(\xi)&=(\bar{v}\cdot \triangledown )^{k+1}f(\bar{a}+\xi \bar{v}).
\end{align*}

Así, reescribiendo todo en términos de $f$ obtenemos que:

\begin{equation}\label{eq:prepoly}f(\bar{a}+\bar{v})=f(\bar{a})+\frac{(\bar{v}\cdot \triangledown )f(\bar{a})}{1!}+\dots +\frac{(\bar{v}\cdot \triangledown)^{k}f(\bar{a})}{k!}+\frac{(\bar{v}\cdot \triangledown )^{k+1}f(\bar{a}+\tau \bar{v})}{(k+1)!}.\end{equation}

Si de esta expresión quitamos el último término (el correspondiente al residuo) y hacemos la sustitución $\bar{w}=\bar{a}+\bar{v}$, obtenemos la siguiente expresión:

\begin{equation} \label{eq:poltaylor}T_{k,\bar{a}}(\bar{w}):=f(\bar{a})+\frac{((\bar{w}-\bar{a})\cdot \triangledown )f(\bar{a})}{1!}+\dots +\frac{((\bar{w}-\bar{a})\cdot \triangledown)^{k}f(\bar{a})}{k!}\end{equation}

le llamamos el polinomio de Taylor de $f$ de grado $k$ alrededor de $\bar{a}$ y converge a $f(\bar{a})$ conforme $\bar{w}\to \bar{a}$.

Ejemplo de polinomio de Taylor para campos escalares

Ejemplo. Determinemos el polinomio de Taylor de grado 3 de la expresión $f(x,y)=e^{5x+3y}$ alrededor del punto $(0,0)$. Para ello, usaremos la expresión de la fórmula \eqref{eq:prepoly} quitando el residuo y fórmulas tipo «binomio de Newton» como la de la ecuación \eqref{eq:binomio}.

Comencemos con el término de grado $1$. Está dado por el operador

$$\left(v_1\frac{\partial}{\partial x}+v_2\frac{\partial}{\partial y}\right)$$

que aplicado a nuestra función es

$$((v_1,v_2)\cdot \triangledown)f(x,y)=5v_1e^{5x+3y}+3v_2e^{5x+3y}.$$

Necesitaremos su evaluación en $(x,y)=(0,0)$, que es $5v_1+3v_2$.

Para pasar al término de segundo grado, necesitamos

\[\left( v_1\frac{\partial}{\partial x}+v_2\frac{\partial}{\partial y} \right)^{2}=v_1^{2}\frac{\partial ^{2}}{\partial x^{2}}+2{v_1}{v_2}\frac{\partial ^{2}}{\partial x\partial y}+v_2^{2}\frac{\partial ^{2}}{\partial y^{2}}.\]

Al aplicar este operador en nuestra $f$, se obtiene:

$$((v_1,v_2)\cdot \triangledown)^2f(x,y)=25v_1^2e^{5x+3y}+30{v_1}{v_2}e^{5x+3y}+9v_2^2 e^{5x+3y}$$

Lo necesitaremos evaluado en $(0,0)$, que es $25v_1^2+30v_1v_2+9v_2^2$.

Finalmente, también requeriremos del término de orden $3$, para el cual es necesario calcular el siguiente operador

\[ \left( v_1\frac{\partial}{\partial x}+v_2\frac{\partial}{\partial y} \right)^{3}=v_1^{3} \frac{\partial}{\partial x^3}+3v_1^{2}{v_2}\frac{\partial}{\partial x^{2}\partial y}+3v_1v_2^{2}\frac{\partial}{\partial x \partial y^2}+v_2^3\frac{\partial}{\partial y^3},\]

y aplicarlo a nuestra $f$ para obtener

$$((v_1,v_2)\cdot \triangledown)^3f(x,y)=125v_1^3e^{5x+3y}+225v_1^2v_2e^{5x+3y}+135v_1v_2^2 e^{5x+3y}+27v_2^3e^{5x+3y}.$$

Una vez más, requerimos la evaluación en $(0,0)$, la cual es $125v_1^3+225v_1^2v_2+135v_1v_2^2+27v_2^3$.

Juntando todo esto, obtenemos que

\begin{align*}
f(v_1,v_2)&=f(0,0)+\frac{((x,y)\cdot \triangledown )f(0,0)}{1!}+\frac{((x,y)\cdot \triangledown )^{2}f(0,0)}{2!}+\frac{((x,y)\cdot \triangledown)^{3}f((0,0))}{3!}\\
&=1+5v_1+3v_2+\frac{25v_1^2+30v_1v_2+9v_2^2}{2}+\frac{125v_1^3+225v_1^2v_2+135v_1v_2^2+27v_2^3}{6}.
\end{align*}

$\square$

Observa que, en efecto, obtenemos un polinomio en dos variables y de grado tres.

Los casos especiales para grado $1$ y grado $2$

Las presentaciones más clásicas del polinomio de Taylor para campos escalares de varias variables son las versiones de primero y segundo grado. Para el polinomio de primer grado, tenemos la siguiente expresión:

$$T_{1,\bar{a}}(\bar{a}+\bar{v})=f(\bar{a})+\sum_{i=1}^{n}(v_i)\frac{\partial f}{\partial x_{i}}(\bar{a}).$$

En el caso de la presentación clásica para la fórmula de segundo orden tenemos

$$\frac{(\bar{v}\cdot \triangledown)^{2}f}{2!}(\bar{a})=\sum_{i=1}^n\sum_{j=1}^nv_{i}v_{j}\frac{\partial ^{2}f}{\partial x_{j}\partial x_{i}}(\bar{a})$$

Donde

$$T_{2,\bar{a}}(\bar{a}+\bar{v})=f(\bar{a})+\sum_{i=1}^{n}v_{i}\frac{\partial f}{\partial x_{i}}(\bar{a})+\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^{n}v_{i}v_{j}\frac{\partial ^{2}f}{\partial x_{j}\partial x_{i}}(\bar{a}).$$

Esta suma tendrá utilidad especial hacia el final del curso, cuando hablemos de optimización. La expresión también puede ponerse en términos de otro objeto matemático que se llama la matriz Hessiana, la cual definiremos más adelante una vez que hayamos hecho un repaso de álgebra lineal, matrices y formas cuadráticas.

Mas adelante…

Con lo que hemos trabajado hasta ahora hemos desarrollado un muy buen entendimiento de las curvas y de los campos escalares, que respectivamente son funciones $f:\mathbb{R}\to \mathbb{R}^m$ y $f:\mathbb{R}^n\to \mathbb{R}$. Sin embargo, nos gustaría ahora poder hablar con mucha mayor generalidad y entender a las funciones del estilo $f:\mathbb{R}^n\to \mathbb{R}^m$. Ya entendimos un poco de cómo son en términos de continuidad, cuando hablamos de la topología de $\mathbb{R}^n$. Sin embargo, para poder hablar de su diferenciabilidad y de otros resultados teóricos será necesario hacer un repaso de algunos conceptos adicionales de álgebra lineal. Por esta razón, en la siguiente unidad hablaremos de temas como transformaciones lineales, matrices, sistemas de ecuaciones, formas lineales y bilineales.

Tarea moral

  1. Encuentra el polinomio de Taylor de primer grado para las siguientes funciones:
    • $f(x,y)=e^(x+y)$
    • $f(x,y)=e^{sen(x+y)}$
    • $f(x,y)=x^2y^2+x+y$
  2. Calcula el polinomio de Taylor de segundo grado para los siguientes campos escalares en el punto dado:
    • $f(x,y)=x^2+xy$ en el punto $(1,1)$.
    • $f(x,y,z)=xsen(yz)$ alrededor del punto $(\pi ,\pi ,\pi)$.
  3. Demuestra por inducción la fórmula \[\left( \frac{d}{dt} \right)^{k}f(\bar{a}+t\bar{v})=(\bar{v}\cdot \triangledown )^{k}f(\bar{a}+t\bar{v}).\]
  4. Demuestra por inducción \[ \left( x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}\right)^{k}=\sum_{i=1}^{k}\binom{k}{i}x^{i}y^{k-i}\frac{\partial ^{i}}{\partial x^{i}}\frac{\partial^{k-i}}{\partial y^{k-i}}.\]
  5. En esta entrada sólo discutimos con detalle lo que pasa con el polinomio de Taylor «hasta cierto grado $k$». Sin embargo, no dimos una versión que generalice el polinomio de Taylor para cuando usamos todos los términos posibles (como en la ecuación \eqref{eq:taylor-inf}). Observa que en el recordatorio de una variable real sí pusimos el resultado para la serie de Taylor. Enuncia y demuestra una versión para campos escalares.

Entradas relacionadas

Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Hace algunas entradas, comenzamos dando una motivación usando a los enteros. En ésta, nos encontramos de nuevo con la necesidad de retomarlos para darle introducción al tema principal de la entrada. Sabemos que $(\z, +)$ es un grupo, de ahí podemos considerar el subgrupo $n\z$ formado por los múltiplos de $n$, y trabajar con las clases módulo $n$. Supongamos que tenemos $a,b\in \z$ y las clases de equivalencia de $a$ y $b$ módulo $n$ . Éstas se definen de la siguiente manera:
\begin{align*}
\bar{a} = a + n\z, \quad \bar{b} = b + n\z.
\end{align*}

Si queremos sumar dos clases de equivalencia, usamos la suma usual en $\z$. Digamos
\begin{align*}
\bar{a} + \bar{b} = \overline{a+b}.
\end{align*}

Aunque lo escribamos así, en realidad lo que estamos haciendo, es definir la suma $+_n$ en $\z_n$ usando $+_\z$ que es la suma del grupo $(\z,+)$. Entonces lo anterior quedaría:
\begin{align*}
\bar{a} +_n \bar{b} = \overline{a+_\z b}.
\end{align*}

Resulta que $+_n$ es una operación bien definida y $(\z_n,+_n)$ es un grupo.

Otra manera de escribirlo sería:
\begin{align*}
(a+\z) +_n (b+\z) = (a+_\z b) + \z.
\end{align*}
Donde, en este caso estamos usando la notación aditiva.

Entonces, ahora nos preguntamos, ¿cómo podemos generalizar esta propiedad?

Tomemos $G$ un grupo y $H$ un subgrupo y consideremos dos clases laterales izquierdas de $H$, digamos $aH$ y $bH$, lo que queremos es definir, en caso de ser posible, un producto entre clases del siguiente modo:
\begin{align*}
aH \cdot_H bH = ab H.
\end{align*}

donde $\cdot_H$ es el nuevo producto entre clases y $ab$ se hace con el producto en $G$.

Sin embargo, debemos verificar que este producto $\cdot_H$ esté bien definido. Para ello tenemos que ver que no depende de los representantes elegidos. Tomemos entonces otros representantes de las clases, para simplificarlo, cambiemos sólo el representante de una de las dos clases, digamos $\tilde{a}\in G$ tal que $\tilde{a}H = aH$.

Entonces, quisiéramos que $abH = \tilde{a}bH$, pero esto sucedería sólo de la siguiente manera,
\begin{align*}
abH = \tilde{a}b H \Leftrightarrow\;& (ab)^{-1} \tilde{a}b\in H\\
\Leftrightarrow\;& b^{-1}a^{-1}\tilde{a}b\in H.
\end{align*}

Entonces, ¿cómo sabemos que $b^{-1}a^{-1}\tilde{a}b\in H$? Lo que sí sabemos es que $a^{-1}\tilde{a} \in H$, pues $\tilde{a}H= aH$. Entonces, bastaría pedir que si $h\in H$, al multiplicar a $h$ a un lado por un elemento de $G$, y al otro por su inverso, sigamos obteniendo elementos en $H$.

En esta entrada usaremos la idea anterior para definir un producto entre dos clases izquierdas usando el producto en $G$.

Subgrupos normales

Primero necesitamos definir formalmente qué es un conjugado.

Definición. Sea $G$ un grupo, $b,c \in G$. Decimos que $b$ es conjugado de $c$ si $b = aca^{-1}$ para alguna $a\in G$.

Dado $a\in G$ y $H$ un subgrupo de $G$,el conjugado de $H$ por el elemento $a$ es
$$aHa^{-1} = \{aha^{-1}|h\in H\}.$$

Observación. $aHa^{-1}$ es un subgrupo de $G$, para toda $a \in G$.

La demostración de esta observación queda de tarea moral.

Definición. Sea $G$ un grupo, $N$ subgrupo de $G$. Decimos que $N$ es normal en $G$ si $ana^{-1} \in N$ para todas $a\in G$, $n\in N$.

Notación. $N\unlhd G$.

Ahora, veamos una proposición. Recordemos que en una entrada pasada vimos que las clases laterales izquierdas no siempre coinciden con las clases laterales derechas y dimos algunos ejemplos. La siguiente proposición nos dirá que con subgrupos normales, la igualdad de clases derechas e izquierdas siempre se da.

Proposición. Sea $G$ un grupo, $N$ subgrupo de $G$. Las siguientes condiciones son equivalentes:

  1. $N\unlhd G$.
  2. $a N a^{-1} = N$ para todo $a\in G$.
  3. Toda clase laterial izquierda de $N$ en $G$ es una clase lateral derecha de $N$ en G.

Demostración. Sea $G$ un grupo, $N \leq G$.

$|1) \Rightarrow 2)]$ Supongamos que $N \unlhd G$. Sea $a\in G$.

P.D. $aNa^{-1} = N$.
Probaremos esto por doble contención.

$\subseteq]$ Como $N\unlhd G$, $ana^{-1} \in N$ para toda $n\in N$. Entonces el conjunto $aNa^{-1} = \{ana^{-1}|n\in N\}$ está contenido en $N$.

$\supseteq]$ Sea $n\in N$, como $N\unlhd G$, $a^{-1}na = a^{-1}n(a^{-1})^{-1} \in N$. Entonces $n = a(a^{-1}n a)a^{-1} \in a N a^{-1}$.

Por lo tanto $aNa^{-1} = N$.

$|2) \Rightarrow 3)]$ Supongamos que para todo $a \in G$, entonces $aNa^{-1} = N$. Sea $a\in G$.

P.D. $aN = Na$.
De nuevo, probaremos esto por doble contención.

$\subseteq]$ Tomemos $an \in aN$ con $n\in N$, como $ana^{-1} \in aNa^{-1}$, y $ aNa^{-1}= N$ por hipótesis, entonces $an = (ana^{-1}) a \in Na$.

$\supseteq]$ Tomemos $na \in Na$ con $n\in N$, como $a^{-1}na \in a^{-1}Na$, y $a^{-1}Na = N$ por hipótesis, entonces $na = a(a^{-1}na) \in aN$.

Por lo tanto $aN = Na$.

$|3)\Rightarrow 1)]$ Supongamos que para todo $a\in G$, existe $b\in G$ tal que $aN = Nb$. Sean $a \in G$ y $n \in N$.

P.D. $ana^{-1} \in N$.

Por hipótesis $aN = Nb$ para alguna $b\in G$. Pero $a \in aN = Nb$, entonces $a\in Nb$, por lo que $a$ es otro representante de la clase lateral $Nb$, y en consecuencia $Na = Nb$. Tenemos entonces que $aN = Nb=Na$

Así, $an\in aN = Na$ y entonces $an = \tilde{n}a$ para alguna $\tilde{n}\in N$. Entonces

\begin{align*}
ana^{-1} = (an)a^{-1} = (\tilde{n}a)a^{-1} = \tilde{n} \in N.
\end{align*}
Por lo tanto $N \unlhd G$.

Así 1), 2) y 3) son equivalentes.

$\blacksquare$

Observación. (Conmutatividad parcial)
Si $N\unlhd G$, dados $n\in N$ y $a\in G$, tenemos que $an = \tilde{n}a$ para alguna $\tilde{n}\in N$, también $na = a \hat{n}$ para alguna $\hat{n} \in N$.

Ejemplos

  1. $A_n \unlhd S_n$ ya que si $\beta \in A_n$ y $\alpha\in S_n$.
    \begin{align*}
    sgn \,(\alpha\beta\alpha^{-1}) &= sgn \,\alpha \; sgn \,\beta \:sgn \,\alpha^{-1}\\
    & = sgn \,\alpha \;(+1) \;sgn \, \alpha \\
    & = +1
    \end{align*}
    Por lo tanto $\alpha\beta\alpha^{-1}\in A_n$.
  2. Consideremos
    \begin{align*}
    Q &= \{\pm 1, \pm i, \pm j, \pm k\}\\
    H &= \{\pm 1, \pm i\}
    \end{align*}
    Las clases laterales izquierdas de $H$ en $Q$ son: $H$ y $jH$.
    Las clases laterales derechas de $H$ en $Q$ son: $H$ y $Hj$.
    Además $jH = \{\pm j, \pm k\} = Hj$. Por lo tanto $H \unlhd Q$.
  3. Consideremos $D_{2(4)}$ las simetrías del cuadrado. Sea $a$ la rotación $\displaystyle\frac{\pi}{2}$, $b$ la reflexión con respecto al eje $x$.
    Sea $H = \{e, b\}$.
    Si tomamos la transformación $aba^{-1}$ podemos desarrollarla algebraicamente y geométricamente. Primero lo haremos de manera algebraica y interpretación geométrica la podrás encontrar en una imagen más abajo.
    Así, como vimos cuando trabajamos con el grupo diédrico:
    $aba^{-1} = aab = a^2b \not\in H$
    con $a^2b$ la reflexión con respecto al eje $y$.
    Por lo tanto $H \not\unlhd D_{2(4)}$.
Representación gráfica de la transformación $aba^{-1}$.

Tarea moral

  1. Sean $W = \left< (1\;2)(3\;4)\right>$, $V = \{(1), (1\;2)(3\;4),(1\;3)(2\;4),(1\;4)(2\;3)\}\leq S_4$. Verifica si $W$ es normal en $V$, si $V$ es normal en $S_4$ y si $W$ es normal en $S_4$ ¿qué puedes concluir con ello?
  2. Sea $G$ un grupo, $H$ y $N$ subgrupos de $G$ con $N$ normal en $G$, prueba o da un contraejemplo:
    1. $N\cap H$ es normal en $H$.
    2. $N\cap H$ es normal en $G$.
  3. Demuestra o da un contraejemplo: Si $G$ es un grupo tal que cada subgrupo de él es normal, entonces $G$ es abeliano.
  4. Sea $G$ un grupo finito con un único subgrupo $H$ de orden $|H|$. ¿Podemos concluir que $H$ es normal en $G$?

Más adelante…

Como ya es costumbre, después de dar las definiciones y de practicarlas un poco con ejemplos, toca profundizar y hablar más sobre las proposiciones y teoremas que involucran a los subgrupos normales. En la siguiente entrada veremos esto.

Entradas relacionadas

Álgebra Moderna I: Caracterización de grupos cíclicos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Gracias al teorema de Lagrange sabemos que el orden de todo subgrupo divide al del grupo que lo contiene, pero no sabemos si para cada divisor del orden del grupo, existe un subgrupo de ese tamaño. El siguiente teorema nos da una respuesta positiva en el caso de los grupos cíclicos finitos.

En los grupos cíclicos, para cada divisor del orden del grupo existe un único subgrupo que tiene por orden dicho divisor. Eso es lo primero que veremos en esta entrada. Después, demostraremos un resultado de la teoría de los números, usando la teoría de los grupos para llegar a una caracterización de los grupos cíclicos. Esta caracterización y sus consecuencias en los campos finitos se basan en el material de los textos de Rotman y aparecen también en el libro de Avella, Mendoza, Sáenz y Souto, mencionados en la bibliografía.

Todo divisor tiene un subgrupo de ese orden

Teorema. Sea $G$ un grupo finito cíclico de orden $n$. Para cada $d \in \z^+$ divisor de $n$ existe un único subgrupo de $G$ de orden $d$.

Demostración.
Sea $G$ un grupo finito cíclico de orden $n$ y sea $a \in G$ tal que $G = \left< a \right>$.

Sea $d\in \z^+$ con $d|n$.

Veamos que existe un subgrupo de $G$ de orden $d$.

P.D. Existe un subgrupo de $G$ de orden $d$.
Como $d|n$, entonces $n = dk$ con $k \in \z$.

Queda como ejercicio para la tarea moral verificar que
\begin{align*}
o(a^k) = \frac{n}{(n ; k)} = \frac{n}{k} = d.
\end{align*}

Así, $|\left< a^k \right>| = o(a^k) = d$.

Veamos ahora que este subgrupo es único.

P.D. Que no hay otro subgrupo de orden $d$.
Sea $H\leq G$ con $|H|=d$. Como $G$ es cíclico, $H$ también es cíclico y, por ende, $H = \left< a^m \right>$ para alguna $m \in \z$, entonces

\begin{align*}
&e = (a^m)^{|H|} = (a^m)^d = a^{md}.
\end{align*}
Como $ a^{md} = e$, podríamos pensar que $o(a) = md$, sin embargo eso no es siempre cierto, lo que sí es cierto es que $n|md$. Entonces, existe $q\in\z$ tal que
\begin{align*}
&md = nq\\
\Rightarrow \;& md = dkq &\text{Sustituyendo } n = dk\\
\Rightarrow \; &m=kq.
\end{align*}

Así $a^m = a^{kq} = (a^k)^q \in \left< a^k \right>$, entonces $H = \left< a^m\right> \leq \left< a^k\right> $. Pero $| \left< a^m\right>| = |\left< a^k\right>| = d$, por lo tanto $ \left< a^m\right> = \left< a^k\right>$.

$\blacksquare$

Demostrando resultados de teoría de números usando teoría de grupos

Para llegar a una caracterización de los grupos cíclicos, primero vamos a introducir alguna notación.

Notación. Sea $C$ grupo cíclico, al conjunto de generadores del grupo cíclico $C$ lo denotaremos por
$$\text{gen } C =\{a\in C | \left< a\right> = C\}.$$

Recordatorio. Dado $d \in \z^+$

$$\varphi(d) = \#\{m \in \{1,2,\dots,d\} | (m;d) = 1\}.$$
Es decir, $\varphi(d)$ es la cantidad de primos relativos con $d$. A la función $\varphi$ se le conoce como la función phi de Euler.

Ahora, veamos un resultado que se refiere más a asuntos de la teoría de los números, y se puede encontrar en el libro de Rotman An introduction to the theory of groups, Teorema 2.16, mencionado en la bibliografía:

Teorema. Sea $n\in \z^+$. Entonces $n = \displaystyle \sum_{\substack{d|n \\ 1\leq d \leq n}} \varphi(d)$.

Demostración.
Sea $G$ un grupo cíclico de orden $n$.

Por el teorema anterior, para cada $d|n$ con $1\leq d\leq n$ existe un único subgrupo de $G$ de orden $d$, digamos $C_d$.

P.D. $\displaystyle G = \bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d$.

Lo probaremos por doble contención.

$\subseteq]$ Sea $a\in G$.

Sabemos que $\left< a \right>$ es un subgrupo de $G$ de orden $o(a)$, con $o(a)\mid n$. Entonces $\left< a \right> = C_{o(a)}$ y además $a \in \text{gen }C_{o(a)}$ por construcción. Así, $\displaystyle a \in \bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d.$

$\supseteq]$ Por construcción, se da que $\text{gen } C_d \subseteq G$ para cada $d|n$, $1 \leq d \leq n$.

Por lo tanto, $\displaystyle G = \bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d$.

Ahora veamos que la unión es disjunta.

Sean $d, d’ \in \{1,\dots, n\}$ divisores de $n$.

P.D. Si $\text{gen } C_d \cap \text{gen } C_{d’}\neq \emptyset,$ entonces $d=d’.$

Sea $a \in \text{gen } C_d \cap \text{gen } C_{d’}$.

Entonces
\begin{align*}
C_d &= \left< a \right> = C_{d’}\\
\Rightarrow \;d &= |C_d| = |C_{d’}| = d’\\
&\therefore d = d’.
\end{align*}

Así, tenemos una unión disjunta, y en consecuencia

\begin{align*}
|G| &= \left|\bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d \right| \\
& = \sum_{\substack{d|n \\ 1\leq d \leq n}} \#\text{gen } C_d. &
\end{align*}

Luego, si $C_d = \left<a\right>$, queda como ejercicio para la tarea moral ver que $C_d = \left<a^k\right>$ si y sólo si $(k;d) = 1$. Por lo que tenemos tantos generadores como primos relativos haya con $d$. Así,
\begin{align*}
|G| =\sum_{\substack{d|n \\ 1\leq d \leq n}} \#\text{gen } C_d = \sum_{\substack{d|n \\ 1\leq d \leq n}} \varphi(d).
\end{align*}

Por último, como $|G| = n$, se sigue que
\begin{align*}
\sum_{\substack{d|n \\ 1\leq d \leq n}} \varphi(d) = n.
\end{align*}

$\blacksquare$

Ahora sí, la caracterización que todos esperábamos

Después de los resultados anteriores ya estamos listos para dar el siguiente teorema, (que aparece en el libro de Rotman An introduction to the theory of groups, Proposición 2.17, mencionado en la bibliografía) pero esta vez lo demostraremos usando la teoría de los grupos.

Teorema. Sea $G$ un grupo finito de orden $n$. $G$ es cíclico si y sólo si para cada $d \in \z^+$ divisor de $n$, $G$ tiene a lo más un subgrupo cíclico de orden $d$.

A pesar de que el enunciado dice que $G$ tiene a lo más un subgrupo cíclico, al final resulta que existe un único. La redacción es adrede para que la demostración del regreso no sea trivial.

Demostración.
Sea $G$ un grupo finito de orden $n$.

$|\Rightarrow]$ Supongamos que $G$ es cíclico, entonces, por un resultado previo, para cada $d \in \z^+$ divisor de $n$, $G$ tiene exactamente un subgrupo cíclico de orden $d$.

$[\Leftarrow|$ Supongamos que para toda $d \in \z^+$ divisor de $n$, $G$ tiene a lo más un subgrupo cíclico de orden $d$; si éste existe lo denotaremos por $C_d$, si no existe definimos $C_d = \emptyset$ y definimos también $\text{gen } C_d = \emptyset$ en ese caso.

Por un argumento análogo al de la demostración del teorema anterior, se tiene que $G$ es la siguiente unión disjunta:
\begin{align*}
G = \bigcup_{\substack{d|n\\1\leq d\leq n}} \text{gen }C_d.
\end{align*}

Entonces, usando el teorema anterior,

\begin{align*}
n = |G| = \sum_{\substack{d|n\\1\leq d \leq n}} \#\text{gen } C_d \leq \sum_{\substack{d|n\\1\leq d \leq n}} \varphi(d) = n
\end{align*}

(donde el teorema anterior se usa en la última igualdad.)

Entonces,

\begin{align*}
\sum_{\substack{d|n\\1\leq d \leq n}} \#\text{gen } C_d =\sum_{\substack{d|n\\1\leq d \leq n}} \varphi(d).
\end{align*}

Así, para toda $d|n$, con $1\leq d\leq n$ se tienen que $\#\text{gen } C_d = \varphi(d)$ de donde $\text{gen } C_d \neq \emptyset$.

Por lo tanto, para toda $d|n$ con $1\leq d \leq n$, $G$ tiene exactamente un subgrupo cíclico de orden $d$. En particular $G$ tiene exactamente un subgrupo cíclico de orden $n$ que debe ser $G$ mismo.

$\therefore G$ es cíclico. $\blacksquare$

Consecuencias

Veamos las siguientes consecuencias del resultado anterior (aparecen en el libro de Rotman A first course in abstract algebra mencionado en la bibliografía en el Teorema 2.18 y la observación previa):

Corolario 1. Sea $G$ un grupo finito de orden $n$. Si para toda $d\in \z^+$ divisor de $n$ hay a lo más $d$ soluciones de $x^d = e$ en $G$, entonces $G$ es cíclico.

Demostración.
Sea $G$ un grupo finito, $|G| = n$, tal que $\forall d \in \z^+$ que $d|n$, existen a lo más $d$ soluciones de $x^d = e$ en $G$.

P.D. $G$ es cíclico.

Supongamos por contradicción que $G$ no es cíclico, entonces, por el teorema anterior tenemos que para alguna $d\in\z^+$ divisor de $n$ existe más de un subgrupo cíclico de orden $d$, es decir, existen $C,C’$ con $C\neq C’$ subgrupos cíclicos de $G$ de orden $d$.

Por un lado, si $a\in C$, $e = a^{|C|} = a^d$. Por otro lado, si $a\in C’$, $e = a^{|C’|} = a^d$. Entonces para toda $a\in C\cup C’$, $a$ es solución de $x^d = e$.

Pero como $C \neq C’$, entonces $\#C\cup C’ > |C| = d$, entonces habría más de $d$ soluciones de $x^d=e$ en $G$. Esto es una contradicción.

Así, para toda $d\in\z^+$ tal que $d\in\n$ existe a lo más un subgrupo cíclico de orden $d$.

Por el teorema anterior, $G$ es cíclico.

$\blacksquare$

En realidad, nos interesa el corolario 1, para probar el corolario 2.

Corolario 2. Para todo campo finito $K$, el grupo $K^* = K\setminus\{0\}$ con la multiplicación del campo, es cíclico.

Demostración.
Sea $d\in \z^+$ tal que $d\big||K^*|$.

Ahora, nos fijamos en el polinomio $f(x) = x^d -1$ que tiene a lo más $d$ raíces en $K^*$. Pero las raíces de $f(x)$ son precisamente las soluciones de la ecuación $x^d = 1$, con $1$ es el neutro multiplicativo de $K$.
Por lo tanto, por el corolario 1, $K^*$ es cíclico.

$\blacksquare$

Tarea moral

1. Sea $G$ un grupo finito cíclico de orden $n$ y sea $a \in G$. Sea $k\in \z^+$.

  • Demuestra que $\displaystyle o(a^k) = \frac{n}{(n;k)} = \frac{n}{k}.$
  • Demuestra que $G = \left< a^k \right>$ si y sólo si $(n;k) = 1.$

2. Dada $d\in \z^+$ definimos

\begin{align*}\phi(d) = \#\{m\in \{1,2,\dots,d\}\, | \, (m;d) = 1\}.\end{align*}

Donde $(m,d)$ es máximo común divisor de $m$ y $d$.

Encuentra $\displaystyle \sum_{\substack{ d|n \\ 1\leq d \leq n}} \phi(d) $ para $n \in \{5,8,9,12\}$.

3. Considera el conjunto
\begin{align*}
K = \left\{ \begin{pmatrix}
a & b \\ b & a+b
\end{pmatrix} \, \Big| a,b\in\z_2
\right\}
\end{align*}
con las operaciones usuales. Prueba que $K$ es un campo con cuatro elementos y verifica que $K^*$ es cíclico.

Más adelante…

Con esta entrada concluimos por el momento los temas relacionados al orden de un grupo y de un subgrupo. En la próxima entrada comenzaremos una nueva tarea: encontrar una multiplicación apropiada entre dos clases laterales, para ello, regresaremos a estudiar un poco a los enteros.

Entradas relacionadas

Investigación de Operaciones: El problema de producción e inventario

Por Aldo Romero

Introducción

Ya hemos visto algunos ejemplos en los que se plantea un problema de programación lineal a partir de un contexto específico. Hemos visto el problema de la dieta, el problema de la mochila y el problema del transporte. Hay algunos problemas que parecen un poco más complicados y que no es tan evidente desde el inicio que se pueden plantear como problemas de programación lineal. En esta ocasión veremos uno de ellos: el problema de producción e inventario.

Abundan las aplicaciones de la programación lineal para planificar la producción y para controlar inventarios. El siguiente es solo una de múltiples aplicaciones que se les puede dar a este tipo de problemas.

A grandes rasgos, el problema consiste en modelar una fábrica que necesita tener lista cierta cantidad de inventario de un producto en determinados momentos del año. La fábrica puede producir cierta cantidad de producto que depende de la temporada del año. Quizás haya temporadas en las que puede producir más de lo que necesita, pero si hace eso incurrirá en costos de almacenaje. ¿Cómo puede distribuir su producción, almacenaje y despacho la fábrica para minimizar el costo y cumplir con su compromiso de inventario? Veamos a continuación que esta situación se puede plantear en términos de un problema de programación lineal.

Ejemplo del problema de producción e inventario

Una empresa productora de videojuegos indie acaba de finalizar su último gran lanzamiento y está lista para producirlo en masa en su formato físico. La siguiente tabla indica la demanda de los primeros 3 meses de lanzamiento.

Meses transcurridos a
partir del lanzamiento
012
Demanda en miles de copias
del mes en curso
806040
Productividad disponible del
mes en curso
1105030

Como el primer mes de lanzamiento es el más importante, la empresa decide que se pueden producir hasta 110 mil copias ese mes, y gradualmente va a reducir su productividad a 50 mil copias el segundo mes y 30 mil el tercer mes; esto con la finalidad de enfocar más tiempo y recursos en otras producciones.

La empresa productora y las tiendas donde se venden tiene un contrato que establece en particular dos cosas:

  • Las tiendas tienen que tener en stock la cantidad de copias demandas cada mes, y esta cantidad de copias será las que la empresa productora entregó este mes junto con las que sobraron el mes pasado
    • Si se entregan más copias que las demandadas por la tienda, se cobrará un costo de almacenamiento de \$2000 al mes por cada mil copias que están siendo almacenadas en tienda fuera de la demanda establecida.

El costo de producción de cada mil copias es de \$20000. Se desea determinar el plan de producción e inventario que satisfaga el contrato con estas tiendas a fin de minimizar los costos.

Variables de decisión

De manera intuitiva, vamos a hacer nuestras variables de decisión las miles de copias que se van a producir el mes en curso desde el lanzamiento del juego.

$x_i$ = miles de copias a producir en el mes $i$ desde el lanzamiento del juego. $(i \in \{1, 2, 3\})$.

Función objetivo

Como se mencionó, el plan de producción tiene que minimizar los costos para la empresa, tanto los gastos de producción de sus videojuegos como el almacenamiento de estos.

El costo de producción es simplemente el número de copias producidas por cada mes, multiplicado por el costo de fabricación de cada copia ($\$20$). Esto es: $20(x_1 + x_2 + x_3)$.

Y luego consideramos el costo de almacenamiento de las copias que no fueron demandadas por la empresa en ese mes. Entonces, para el primer mes, $x_1 – 80$ son las miles de copias que la empresa tiene que cubrir en gastos de almacenamiento. Para el segundo mes, las copias demandadas al momento son las acumuladas del primer y segundo mes ($140000$) y los juegos producidos son solamente $x_1 + x_2$. Entonces, los miles de juegos por los que hay que cubrir el costo de almacenamiento son $x_1 + x_2 – 140$. Y para el tercer mes, las copias demandadas son las acumuladas de los primeros 3 meses ($180000$) y los juegos producidos serán $x_1 + x_2 + x_3$ en miles de copias, y así, los costos de almacenamiento para el tercer mes serán $x_1 + x_2 + x_3 – 180$.

Entonces, el número de miles de copias por las que hay que cubrir costos de almacenamiento para estos 3 meses será: $(x_1 – 80) + (x_1 + x_2 – 140) + (x_1 + x_2 + x_3 -180)$. Y esta cantidad la multiplicamos por el costo de almacenamiento mensual por millar de copias (\$2000).

Entonces, juntando las expresiones, el costo total que hay que minimizar sería:

$$Min \quad z = 20000(x_1 + x_2 + x_3) + 2000[(x_1 – 80) + (x_1 + x_2 – 140) + (x_1 + x_2 + x_3 – 180)]$$

O si lo queremos poner de la forma más resumida posible, esto es:

$$Min \quad z = 26000x_1 + 24000x_2 + 22000x_3 – 800000$$

Restricciones del problema de producción e inventario

Primero, vayamos con las restricciones de oferta:

\begin{align*}
x_1 \leq 110\\
x_2 \leq 50\\
x_3 \leq 30\\
\end{align*}

Después, vayamos con las restricciones de demanda:

\begin{align*}
x_1 \geq 80\\
x_2 + (x_1 – 80) \geq 60\\
x_3 + (x_1 + x_2 – 140) \geq 40\\
\end{align*}

Recordemos que la razón de la última restricción es para que la empresa productora no se quede ninguna copia más de las demandadas para que no haya cuota por almacenamiento en las tiendas para el cuarto mes.

Y naturalmente nuestras variables de decisión son no negativas ya que hablamos de la cantidad de unidades que tenemos de un producto.

Resumen de formulación del problema de producción e inventario

En resumen, nuestro problema de programación lineal quedaría planteado así:

\begin{align*}
Min \quad z = 20000(x_1 + x_2 + x_3) &+ 2000[(x_1 – 80) + (x_1 + x_2 – 140) + (x_1 + x_2 + x_3 – 180)]\\
&s.a\\
x_1 &\leq 110\\
x_2 &\leq 50\\
x_3 &\leq 30\\
x_1 &\geq 80\\
x_2 + (x_1 – 80) &\geq 60\\
x_3 + (x_1 + x_2 – 140) &\geq 40\\
x_i &\geq 0, i \in \{1, 2, 3\}\\
\end{align*}

Más adelante…

La siguiente entrada muestra nuestro último ejemplo introductorio: el problema de la ruta más corta. Como veremos, en este problema también es necesario aprovechar la situación del problema de manera creativa para poder llevarlo a un contexto lineal.

Tarea

  1. El problema se vuelve mucho más sencillo si únicamente hay dos periodos. Plantea un problema que refleje esta situación en el caso particular de la entrada y resuélvelo. Es decir, determina en esos dos periodos (el primer y segundo mes) cuál es la cantidad correcta de unidades a producir por mes, para minimizar el costo total.
  2. Cambia el planteamiento dado en la entrada por uno en el que el costo de almacenaje en las tiendas sea de \$0. En ese caso, ¿cuál sería el plan de producción e inventario óptimo?
  3. En esta entrada dimos la formulación de un caso particular del problema de producción e inventario. Sin embargo, ya tienes todas las herramientas para plantear el problema de manera general. Realiza una formulación general en la que:
    1. Se tengan n periodos con demanda de unidades$d_1, d_2, \ldots, d_n$ por cada periodo.
    2. Se tengan capacidades de producción $o_1, o_2, \ldots, o_n$ unidades en cada periodo.
    3. Se tengan costos $P$ y $A$, de producir y almacenar una unidad de producto respectivamente.
  4. En un problema general de producción e inventario. ¿Por qué podría ser mala idea producir mucho más de lo necesario en las temporadas en las que se puede? Intenta justificar intuitivamente, y luego encuentra algunos casos particulares del problema que apoyen tus argumentos.

Respuestas

1.- Si eliminamos un mes del problema, tendríamos la siguiente tabla de productividad y demanda:

Meses transcurridos a
partir del lanzamiento
01
Demanda en miles de copias
del mes en curso
8060
Productividad disponible del
mes en curso
11050

Tenemos las mismas variables de decisión: $x_i$ = miles de copias a producir el mes $i$ desde el lanzamiento del juego. $i \in \{1, 2\}$

Para la función objetivo, el costo de producción de las copias va a ser: $20000(x_1 + x_2)$. Los gastos de almacenamiento del primer y segundo mes serán: $2000[(x_1 – 80) + (x_1 + x_2 – 140)]$.

Entonces la función objetivo queda de la siguiente manera:

$$Min \quad z = 24000x_1 + 22000x_2 – 440000$$

Las restricciones de oferta y de demanda serían:

\begin{align*}
x_1 &\leq 110\\
x_2 &\leq 50\\
x_1 &\geq 80\\
x2 + (x_1 – 80) &\geq 60\\
\end{align*}

Entonces, el problema con dos periodos de tiempo quedaría planteado de la siguiente manera:

\begin{align*}
Min \quad z &= 24000x_1 + 22000x_2 – 440000\\
&s.a\\
x_1 &\leq 110\\
x_2 &\leq 50\\
x_1 &\geq 80\\
x_2 + (x_1 – 80) &\geq 60\\
x_i &\geq 0, i \in \{1, 2\}\\
\end{align*}

Ahora, una posible solución a este problema sea satisfacer la demanda del primer mes, con tal de que sobren solamente la menor cantidad de copias que al sumarlas con la producción del segundo mes, nos cumplan también la demanda exacta de ese mes. Es decir, producir en el primer mes 90000 copias, almacenar 10000 que sobrarían en tienda y producir hasta el límite de producción el segundo mes que son 50000 copias y juntos con las 10000 que había almacenadas, se cumplirá la demanda que tenemos para el segundo periodo que son 60000 copias. De esta manera no se incurre en gastos innecesarios de almacenamiento, ya que para el tercer mes no hay copias por almacenar que nos generen ese gasto.

2.- Si no hubiera costo por almacenamiento tenemos varias soluciones que podrían ser óptimas, pero en realidad lo sería cualquiera donde se cumplan los valores de demanda al mínimo, es decir, que se produzcan las unidades que nos piden por los tres meses y ni una más.

3.- Sea una empresa tiene que producir un producto y este producto se vende en n periodos de tiempo, con su respectiva demanda ($d_1, \ldots, d_n$) y oferta de productos ($o_1, \ldots, o_n$) en cada uno de ellos.

Se tiene un costo $P$ de fabricación por producto y un costo A de almacenamiento por producto de un periodo a otro.

Se quiere determinar el plan de producción e inventario que satisfaga la demanda y minimice los costos.

Variables de decisión: $x_i$ = número de unidades a producir en el periodo $i$. $i \in \{1, \ldots, n\}$

Función objetivo:

$$Min \quad z = P(x_1 + \ldots + x_n) + A[(x_1-d_1) + (x_1 + x_2 – d_1 – d_2) + \ldots + (\sum_{i=1}^n{x_i} – \sum_{i=1}^n{d_i})]$$

Y por último, las restricciones serían:

\begin{align*}
x_1 &\leq o_1\\
x_2 &\leq o_2\\
&\vdots\\
x_n &\leq o_n\\
x_1 &\geq d_1\\
x_1 + x_2 – d_1 &\geq d_2\\
\vdots\\
\end{align*}

$$(\sum_{i=1}^n{x_i} – \sum_{i=1}^{n-1}{d_i}) \geq \sum_{i=1}^n{d_i}$$

$$x_i \geq 0,\quad i \in \{1, \ldots, n\}$$

4.- Dependería del problema pero en general como se intenta minimizar los costos, esto también sería minimizar los costos que conlleva el almacenaje de productos y si se producen muchos cada periodo, esto incurrirá en el aumento de los gastos mencionados y no será lo optimo para el objetivo que tenemos.

Entradas relacionadas

Teoría de los Conjuntos I: Conjuntos finitos (parte II)

Por Gabriela Hernández Aguilar

Introducción

En esta entrada daremos continuación al tema de conjuntos finitos. Probaremos más resultados que se satisfacen para los conjuntos finitos y veremos cuál es la cardinalidad del conjunto potencia de un conjunto finito dado.

Conjuntos finitos y contención

Teorema. Sean $A$ y $B$ conjuntos tales que $B$ es finito. Si $A\subseteq B$, entonces $A$ es finito. Más aún, $|A|\leq |B|$.

Demostración. (Por inducción sobre $|B|$).

Base de inducción. Supongamos que $|B|=0$. Entonces $B=\emptyset$, por lo que $A=\emptyset$ y así, $A$ es finito y $0=|A|\leq |B|=0$.

Hipótesis de inducción. Supongamos que para $|X|=n$ se cumple que si $Y\subseteq X$, entonces $Y$ es finito y $|Y|\leq |X|$.

Paso inductivo. Sea $B$ un conjunto finito tal que $|B|=n+1$. Veamos que si $A\subseteq B$, entonces $A$ es finito y $|A|\leq |B|$.

Si $A=B$, entonces $A$ es finito y $|A|=|B|\leq|B|$.

Si $A\not=B$, existe $x\in B\setminus A$. Luego, $A\subseteq B\setminus\set{x}$ y como $|B\setminus \set{x}|=n$, tenemos por hipótesis de inducción que $A$ es finito y $|A|\leq |B\setminus \set{x}|=n\leq n+1 =|B|$. En cualquier caso, $A$ es finito y $|A|\leq |B|$.

$\square$

Cardinalidad del conjunto potencia

Como parte de los ejercicios de la unidad de números naturales, definimos la operación binaria potencia en $\mathbb{N}$, que intuitivamente se realiza como sigue $m^{n}=\underbrace{m\cdot m\cdots m}_{n-veces}$.

Teorema. Si $X$ es finito, entonces $\mathcal{P}(X)$ es finito y $|\mathcal{P}(X)|=2^{|X|}$.

Demostración. (Por inducción sobre $|X|$).

Base de inducción. Si $|X|=0$, entonces $X=\emptyset$ y así, $\mathcal{P}(X)=\set{\emptyset}$, por lo que $\mathcal{P}(X)$ es finito y $|\mathcal{P}(X)|=1=2^0=2^{|X|}$.

Hipótesis de inducción. Supongamos que si $A$ es finito tal que $|A|=n$, entonces $\mathcal{P}(A)$ es finito y $|\mathcal{P}(A)|= 2^{|A|}$.

Paso inductivo. Sea $X$ un conjunto finito tal que $|X|=n+1$. Supongamos que $X=\set{X_1,X_2, \dots, X_n, X_{n+1}}$. Luego, consideremos $X’=X\setminus \set{X_1}$, entonces $|X’|=n$ y así, $|\mathcal{P}(X’)|=2^{|X’|}$. Veamos que $\mathcal{P}(X)$ es finito y $|\mathcal{P}(X)|=2^{|X|}$. Para ello veamos primero que $\mathcal{P}(X)=\mathcal{P}(X’)\cup \set{Z\in \mathcal{P}(X): X_1\in Z}$.

Procederemos por doble contención.

$\subseteq$) Sea $Y\in \mathcal{P}(X)$, entonces $Y\subseteq X$. Si $X_1\in Y$, entonces $Y\in \set{Z\in \mathcal{P}(X): X_1\in Z}$ y por lo tanto, $Y\in \mathcal{P}(X’)\cup \set{Z\in \mathcal{P}(X):X_1\in Z}$.

Si $X_1\notin Y$, entonces $Y\subseteq X\setminus \set{X_1}=X’$, por lo que $Y\in \mathcal{P}(X’)$ y por lo tanto, $Y\in \mathcal{P}(X’)\cup \set{Z\in \mathcal{P}(X):X_1\in Z}$.

Concluimos que $\mathcal{P}(X)\subseteq \mathcal{P}(X’)\cup \set{Z\in \mathcal{P}(X):X_1\in Z}$.

$\supseteq$) Sea $Y\in \mathcal{P}(X’)\cup \set{Z\in \mathcal{P}(X): X_1\in Z}$.

Caso 1: Si $Y\in \mathcal{P}(X’)$, entonces $Y\subseteq X’$ y como $X’\subseteq X$, entonces $Y\subseteq X$ y así, $Y\in \mathcal{P}(X)$.

Caso 2: Si $Y\in \set{Z\in \mathcal{P}(X):X_1\in Z}$, entonces $Y\in \mathcal{P}(X)$.

Por lo tanto, $\mathcal{P}(X’)\cup \set{Z\in \mathcal{P}(X):X_1\in Z}\subseteq \mathcal{P}(X)$.

Así, $\mathcal{P}(X)=\mathcal{P}(X’)\cup \set{Z\in \mathcal{P}(X):X_1\in Z}$.

Luego, por hipótesis de inducción tenemos que $\mathcal{P}(X’)$ es finito y $|\mathcal{P}(X’)|=2^n$.

Resulta que $\set{Z\in \mathcal{P}(X)}$ es finito; más aún, afirmamos que $|\set{Z\in \mathcal{P}(X):X_1\in Z}|=|\mathcal{P}(X’)|$. Para probar este último hecho estableceremos una biyección entre $\mathcal{P}(X’)$ y $\set{Z\in \mathcal{P}(X):X_1\in Z}$.

Consideremos $f:\mathcal{P}(X’)\to \set{Z\in \mathcal{P}(X):X_1\in Z}$ dada por $f(Y)=Y\cup \set{X_1}$. Veamos que $f$ es biyectiva.

Inyectividad. Sean $A,B\in \mathcal{P}(X’)$ tales que $f(A)=f(B)$, esto es $A\cup \set{X_1}=B\cup \set{X_1}$. Luego, $A$ y $\set{X_1}$ son ajenos pues $A\subseteq X’=X\setminus \set{X_1}$; asimismo, $B$ y $\set{X_1}$ son ajenos pues $B\subseteq X’=X\setminus \set{X_1}$. De este modo, debe ocurrir que $A=B$. Por lo tanto, $f$ es inyectiva.

Suprayectividad. Sea $Y\in \set{Z\in \mathcal{P}(X):X_1\in Z}$. Entonces $Y\subseteq X$ y $X_1\in Y$.

Veamos que existe $W\subseteq X\setminus \set{X_1}$ tal que $f(W)=Y$. Consideremos $W=Y\setminus \set{X_1}$. Tenemos que $f(W)=(Y\setminus \set{X_1})\cup \set{X_1}=Y$. Por lo tanto, $f$ es suprayectiva.

Así, $f$ es biyectiva y $|\set{Z\in \mathcal{P}(X): X_1\in Z}|=2^n$.

Por lo tanto, usando regla de la suma, tenemos que $|\mathcal{P}(X)|=|\mathcal{P}(X’)\cup \set{Z\in \mathcal{P}(X)}|= 2^n+2^n=2(2^n)= 2^{n+1}$. Esto concluye nuestra prueba.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta entrada.

  1. Demuestra que si $A$ es un conjunto finito, entonces $A$ no es equipotente a ninguno de sus subconjuntos propios.
  2. Demuestra que si $A\subseteq B$ y $B$ es finito, entonces $|B|=|B\setminus A|+|A|$.
  3. Sean $A$ y $B$ conjuntos finitos. Sea $\mathcal{F}$ el conjunto de todas las posibles funciones de $A$ en $B$. Muestra que $\mathcal{F}$ es finito. ¿Cuál es su cardinalidad en términos de las de $A$ y $B$?
  4. Sean $A$ y $B$ conjuntos finitos. Muestra que $A\times B$ es finito. ¿Cuál es su cardinalidad en términos de las de $A$ y $B$?
  5. Demuestra que para cualquier número natural $n$ se tiene que $n<2^n$.

Más adelante…

En la siguiente entrada abordaremos a los conjuntos infinitos. Esto nos acercará a una discusión importante sobre qué son en realidad los cardinales en teoría de los conuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»