Álgebra Lineal I: Aplicaciones de bases ortogonales y descomposición de Fourier

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos hablando de bases ortogonales. Como recordatorio, para poder hablar de esto, necesitamos un espacio vectorial sobre $\mathbb{R}$ equipado con un producto interior, y por lo tanto podemos hablar de normas. Una base ortogonal de $V$ es una base en la cual cada par de vectores tiene producto interior $0$. Es ortonormal si además cada elemento es de norma $1$. Ahora veremos que dada una base ortonormal, podemos hacer una descomposición de Fourier de los vectores de $V$, que nos permite conocer varias de sus propiedades fácilmente.

La teoría que discutiremos está basada en el contenido de la Sección 10.5 del libro Essential Lineal Algebra with Applications de Titu Andreescu. Las últimas dos secciones de esta entrada son un poco abstractas, pero son la puerta a ideas matemáticas interesantes con muchas aplicaciones dentro de la matemática misma y en el mundo real.

Descomposición de Fourier

Es fácil conocer las coordenadas de un vector en términos de una base ortonormal.

Teorema. Si $V$ es un espacio Euclideano de dimensión $n$ con producto interior $\langle\cdot, \cdot\rangle$ y $B=\{e_1,\ldots,e_n\}$ es una base ortonormal con este producto interior, entonces para cualquier vector $v$, la coordenada de $v$ con respecto a $e_i$ es $\langle v, e_i \rangle$.

Demostración. Expresemos a $v$ en la base $B$ como $$v=\alpha_1e_1+\ldots+\alpha_n e_n.$$

Tomemos $j$ en $1,2,\ldots,n$. Usando la linealidad del producto interior, tenemos que
\begin{align*}
\langle v, e_j \rangle &= \left \langle \sum_{i=1}^n \alpha_i e_i, e_j \right \rangle\\
&=\sum_{i=1}^n \alpha_i \langle e_i,e_j \rangle.
\end{align*}

Como $B$ es base ortonormal, tenemos que en el lado derecho $\langle e_j,e_j\rangle = 1$ y que si $i\neq j$ entonces $\langle e_i, e_j\rangle=0$. De esta forma, el lado derecho de la expresión es $\alpha_j$, de donde concluimos que $$\langle v, e_j \rangle = \alpha_j,$$ como queríamos.

$\square$

Definición. Si $V$ es un espacio Euclideano de dimensión $n$ con producto interior $\langle\cdot, \cdot\rangle$ y $B=\{e_1,\ldots,e_n\}$ es una base ortonormal, a $$v=\sum_{i=1}^n \langle v, e_i \rangle e_i$$ le llamamos la descomposición de Fourier de $v$ con respecto a $B$.

Ejemplo. Trabajemos en el espacio vectorial $V=\mathbb{R}_2[x]$ de polinomios reales de grado a lo más $2$. Ya mostramos anteriormente (con más generalidad) que $$\langle p,q \rangle = p(-1)q(-1)+p(0)q(0)+p(1)q(1)$$ es un producto interior en $V$.

Los polinomios $\frac{1}{\sqrt{3}}$, $\frac{x}{\sqrt{2}}$ y $\frac{3x^2-2}{\sqrt{6}}$ forman una base ortonormal, lo cual se puede verificar haciendo las operaciones y queda de tarea moral. ¿Cómo expresaríamos a la base canónica $\{1,x,x^2\}$ en términos de esta base ortonormal? Los primeros dos son sencillos:
\begin{align}
1&=\sqrt{3}\cdot \frac{1}{\sqrt{3}}\\
x&=\sqrt{2}\cdot \frac{x}{\sqrt{2}}.
\end{align}

Para encontrar el tercero, usamos el teorema de descomposición de Fourier. Para ello, calculamos los siguientes productos interiores:

\begin{align*}
\left\langle x^2, \frac{1}{\sqrt{3}}\right\rangle &= \frac{2}{\sqrt{3}},\\
\left \langle x^2, \frac{x}{\sqrt{2}}\right\rangle &=0,\\
\left\langle x^2, \frac{3x^2-2}{\sqrt{6}} \right\rangle &=\frac{2}{\sqrt{6}}.
\end{align*}

De este modo, $$x^2= \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}}\cdot \frac{3x^2-2}{\sqrt{6}}.$$

$\triangle$

Norma usando la descomposición de Fourier

Cuando tenemos bases ortogonales u ortonormales, también podemos calcular la norma de un vector fácilmente.

Teorema. Si $V$ es un espacio Euclideano de dimensión $n$ con producto interior $\langle\cdot, \cdot\rangle$ y $B=\{e_1,\ldots,e_n\}$ es una base ortogonal con este producto interior, entonces para cualquier vector $$v=\alpha_1e_1+\ldots+\alpha_ne_n,$$ tenemos que $$\norm{v}^2 = \sum_{i=1}^n \alpha_i^2 \norm{e_i}^2.$$

En particular, si $B$ es una base ortonormal, entonces $$\norm{v}^2 = \sum_{i=1}^n \langle v, e_i \rangle^2.$$

Demostración. Usando la definición de norma y la bilinealidad del producto interior, tenemos que
\begin{align*}
\norm{v}^2 &= \langle v,v \rangle\\
&=\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \langle e_i, e_j\rangle.
\end{align*}

Como $B$ es base ortogonal, los únicos sumandos que quedan a la derecha son aquellos en los que $i=j$, es decir,
\begin{align*}
\norm{v}^2&=\sum_{i=1}^n \alpha_i^2 \langle e_i, e_i\rangle\\
&=\sum_{i=1}^n \alpha_i^2 \norm{e_i}^2\\
\end{align*}

como queríamos mostrar.

Si $B$ es base ortonormal, cada $\norm{e_i}^2$ es $1$, y por el teorema anterior, $\alpha_i=\langle v, e_i\rangle$. Esto prueba la última afirmación.

$\square$

Ejemplo. Continuando con el ejemplo anterior, como ya escribimos a $x^2$ en términos de la base ortogonal, podemos encontrar fácilmente su norma. Tendríamos que
\begin{align*}
\norm{x^2}^2&=\left(\frac{2}{\sqrt{3}}\right)^2+\left(\frac{2}{\sqrt{6}}\right)^2\\
&=\frac{4}{3}+\frac{4}{6}\\
&=2.
\end{align*}

De esta forma, $\norm{x^2}=\sqrt{2}$. En efecto, esto es lo que obtendríamos si hubiéramos calculado la norma de $x^2$ con la definición.

$\triangle$

Aplicación de descomposición de Fourier a polinomios

Vamos a continuar con un ejemplo que vimos en la entrada anterior. Recordemos que estábamos trabajando en $V=\mathbb{R}_n[x]$, que habíamos elegido $n+1$ reales distintos $x_0,\ldots,x_n$, y que a partir de ellos definimos $$\langle P, Q\rangle = \sum_{i=0}^n P(x_i)Q(x_i).$$ Mostramos que $\langle \cdot , \cdot \rangle$ es un producto interior y que para $j=0,\ldots,n$ los polinomios $$L_i=\prod_{0\leq j \leq n, j\neq i} \frac{x-x_j}{x_i-x_j}$$ forman una base ortonormal de $V$.

Por el teorema de descomposición de Fourier, tenemos que cualquier polinomio $P$ de grado a lo más $n+1$ con coeficientes reales satisface que $$P=\sum_{i=0}^n \langle P, L_i \rangle L_i,$$ lo cual en otras palabras podemos escribir como sigue.

Teorema (de interpolación de Lagrange). Para $P$ un polinomio con coeficientes en los reales de grado a lo más $n$ y $x_0,x_1,\ldots,x_n$ reales distintos, tenemos que $$P(x)=\sum_{i=0}^n P(x_i) \left(\prod_{0\leq j \leq n, j\neq i} \frac{x-x_j}{x_i-x_j}\right).$$

El teorema de interpolación de Lagrange nos permite decir cuánto vale un polinomio de grado $n$ en cualquier real $x$ conociendo sus valores en $n+1$ reales distintos. Ya habíamos mostrado este teorema antes con teoría de dualidad. Esta es una demostración alternativa con teoría de bases ortogonales y descomposición de Fourier.

Aplicación de ideas de Fourier en funciones periódicas

También ya habíamos visto que $$\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx$$ define un producto interior en el espacio vectorial $V$ de funciones $f:\mathbb{R}\to \mathbb{R}$ continuas y periódicas de periodo $2\pi$.

En ese ejemplo, definimos \begin{align*}
C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\
S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.
\end{align*} y $C_0(x)=\frac{1}{\sqrt{2\pi}}$, y mostramos que $$\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}$$ era un conjunto ortonormal.

No se puede mostrar que $\mathcal{F}$ sea una base ortonormal, pues el espacio $V$ es de dimensión infinita, y es bastante más complicado que los espacios de dimensión finita. Sin embargo, la teoría de Fourier se dedica a ver que, por ejemplo, la familia $\mathcal{F}$ es buena aproximando a elementos de $V$, es decir a funciones continuas y periódicas de periodo $2\pi$. No profundizaremos mucho en esto, pero daremos algunos resultados como invitación al área.

Para empezar, restringimos a la familia $\mathcal{F}$ a una familia más pequeña:

$$\mathcal{F}_n:=\{C_m:0\leq m \leq n\}\cup \{S_m:1\leq m \leq n\}$$

Motivados en la descomposición de Fourier para espacios Euclideanos, definimos a la $n$-ésima serie parcial de Fourier de una función $f$ en $V$ a la expresión $$S_n(f)=\sum_{g\in \mathcal{F}_n} \langle f, g \rangle g.$$ Haciendo las cuentas, se puede mostrar que $$S_n(f)=\frac{a_0(f)}{2}+\sum_{k=1}^n \left(a_k(f)\cos(kx)+b_k(f)\sin(kx)\right),$$ en donde para $k\geq 1$ tenemos $$a_k=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\cos(kx)\, dx$$ y $$b_k=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\sin(kx)\, dx.$$

A los números $a_k$ y $b_k$ se les conoce como los $k$-ésimos coeficientes de Fourier. Aunque $\mathcal{F}$ no sea una base para $V$, sí es buena «aproximando» a elementos de $V$. Por ejemplo, un resultado lindo de Dirichlet dice que si $f$ y su derivada son continuas, entonces $$\lim_{n\to \infty} S_n(f)(x) = f(x).$$ Este tipo de teoremas de aproximación se estudian con más a detalle en un curso de análisis matemático avanzado o de análisis de Fourier.

Considera ahora $W_n$ el subespacio de $V$ generado por $\mathcal{F}_n$. Tomemos una función $f$ cualquiera en $V$. La $n$-ésima serie de Fourier de $f$ es un elemento de $W_n$. De hecho, es precisamente la proyección de $f$ en $W_n$. Por esta razón, $$\norm{f_n}^2\leq \norm{f}^2<\infty$$

Podemos calcular la norma de $f_n$, usando el resultado para espacios Euclideanos en el espacio (de dimensión finita) $W_n$. Haciendo esto, podemos reescribir la desigualdad anterior como sigue:

$$\frac{a_0(f)^2}{2}+\sum_{k=1}^n(a_k(f)^2+b_k(f)^2)\leq \frac{1}{\pi} \norm{f}^2.$$

El lado derecho es constante, y en el lado izquierdo tenemos una suma parcial de la serie $$\sum_{k\geq 1}(a_k(f)^2+b_k(f)^2).$$ Los términos son positivos y la sucesión de sumas parciales es acotada, así que la serie converge. Entonces, necesariamente la sucesión de términos debe converger a cero. Acabamos de esbozar la demostración del siguiente teorema.

Teorema (de Riemann-Lebesgue). Sea $f$ una función continua y de periodo $2\pi$. Si $a_n(f)$ y $b_n(f)$ son los coeficientes de Fourier de $f$, entonces $$\lim_{n\to \infty} a_n(f) = \lim_{n\to \infty} b_n(f) = 0.$$

De hecho, se puede mostrar que la desigualdad que mostramos se convierte en igualdad cuando $n\to \infty$. Este es un resultado bello, profundo y cuya demostración queda fuera del alcance de estas notas.

Teorema (de Plancherel). Sea $f$ una función continua y de periodo $2\pi$. Si $a_n(f)$ y $b_n(f)$ son los coeficientes de Fourier de $f$, entonces $$\frac{a_0(f)^2}{2}+\sum_{k=1}^\infty(a_k(f)^2+b_k(f)^2)= \frac{1}{\pi} \int_{-\pi}^\pi f(x)^2\, dx.$$

Aunque no daremos la demostración de este resultado, en una entrada posterior veremos cómo podemos aplicarlo.

Más adelante…

En esta entrada seguimos estudiando las bases ortogonales. Usamos este concepto para hacer una descomposición de Fourier, para conocer propiedades de V y obtener otra manera de calcular la norma de un vector. Así mismo, vimos aplicaciones de la descomposición a polinomios, viendo el teorema de la interpolación de Lagrange ya previamente demostrado mediante teoría de dualidad.

Hasta ahora solo hemos hablado de cómo ver si una base es ortonomal y algunas propiedades de estas bases y conjuntos, en la siguiente entrada hablaremos de un método pata encontrar estas bases ortonormales usando el proceso de Gram-Schmidt.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Verifica que los tres polinomios del ejemplo de descomposición de Fourier en efecto forman una base ortogonal.
  • Calcula la norma de $x^2$ con el producto interior del ejemplo de descomposición de Fourier usando la definición, y verifica que en efecto es $\sqrt{2}$.
  • Con la misma base ortonormal $B$ de ese ejemplo, calcula las coordenadas y la norma del polinomio $1+x+x^2$.
  • Verifica que todo lo que mencionamos se cumple con el producto punto en $\mathbb{R}^n$ y con la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de desigualdades vectoriales

Por Ayax Calderón

Introducción

En esta entrada practicaremos las dos desigualdades vectoriales que hemos visto anteriormente: la desigualdad de Cauchy – Schwarz y con la desigualdad de Minkowski. Veremos que de ellas se obtiene información valiosa sobre los espacios con producto interior.

Como ya se menciono en otras entradas del blog, estos espacios son muy importantes más allá del álgebra lineal, pues también aparecen en otros áreas como el análisis matemático, variable compleja, probabilidad, etc. Así mismo, los espacios vectoriales con producto interior tienen muchas aplicaciones en el mundo real. Por esta razón es muy importante aprender a detectar cuándo podemos usar desigualdades vectoriales.

Problemas resueltos

Comencemos con algunos problemas de desigualdades vectoriales que usan la desigualdad de Cauchy-Schwarz.

Problema 1. Demuestra que si $f:[a,b]\longrightarrow \mathbb{R}$ es una función continua, entonces

$$\left(\int_a ^b f(t)dt\right)^2 \leq (b-a)\int_a ^b f(t)^2 dt.$$

Demostración. Sea $V=\mathcal{C}([a,b],\mathbb{R})$ el espacio de las funciones continuas de $[a,b]$ en los reales.

Veamos que $\langle \cdot , \cdot \rangle: V\times V \longrightarrow \mathbb{R}$ definido por $$\langle f,g \rangle = \int_a^b f(t)g(t) \, dt$$ es una forma bilineal simétrica.

Sea $f\in V$ fija. Veamos que $g\mapsto \langle f,g \rangle$ es lineal.

Sean $g,h \in V$ y $k\in F$, entonces

\begin{align*}
\langle f,g+hk \rangle &= \int_a ^b f(t)(g(t)+kh(t))dt\\
&=\int_a ^b (f(t)g(t)+kf(t)h(t)) dt\\
&=\int_a ^b f(t)g(t)dt +k \int_a ^b f(t)h(t)dt\\
&=\langle f,g \rangle + k \langle f,h \rangle .
\end{align*}

Análogamente se ve que si $g\in V$ fija, entonces $f\mapsto \langle f,g \rangle$ es lineal.

Luego,
\begin{align*}
\langle f,g \rangle &= \int_a ^b f(t)g(t)\, dt\\
&= \int_a ^b g(t)f(t)\, dt\\
&= \langle g,f \rangle.
\end{align*}
Por lo tanto $\langle \cdot, \cdot \rangle$ es una forma bilineal simétrica.

Ahora observemos que $\langle \cdot ,\cdot \rangle$ es positiva.
$$\langle f,f \rangle = \int_a ^b f(t)^2 dt \geq 0$$ pues $f^2 (t)\geq 0$. Aunque no lo necesitaremos, mostremos además que que $\langle \cdot, \cdot \rangle$ es positiva definida. Si $f$ tiene algún valor $c$ en el interior de $[a,b]$ en la que $f(c)\neq 0$, como es continua, hay un $\epsilon>0$ tal que en todo el intervalo $(c-\epsilon,c+\epsilon)$ se cumple que $|f|$ es mayor que $|f(c)|/2$, de modo que
\begin{align*}
\langle f, f \rangle &= \int_a^b f^2(t)\, dt\\
&\geq \int_{c-\epsilon}^{c+\epsilon} f^2(t)\, dt\\
&\geq \int_{c-\epsilon}^{c+\epsilon}\frac{f(c)^2}{4} \, dt\\
&=\frac{\epsilon f(c)^2}{2}>0.
\end{align*}

Así, para que $\langle f, f \rangle$ sea $0$, es necesario que $f$ sea $0$ en todo el intervalo $(a,b)$ y por continuidad, que sea cero en todo $[a,b]$.

Sea $q$ la forma cuadrática asociada a $\langle \cdot, \cdot \rangle$.
En vista de todo lo anterior, podemos aplicar la desigualdad de Cauchy -Schwarz tomando $g$ la función constante $1$, es decir, tal que $g(x)=1$ para todo $x$ en $[a,b]$, la cual claramente es continua.

Entonces, $$\langle f,g \rangle &\leq q(f)q(g),$$ que substituyendo las definiciones es
\begin{align*}
\left( \int_a ^b f(t)\, dt\right)^2 &\leq \left(\int_a ^b f(t)^2 \, dt\right)\left(\int_a ^b 1^2\, dt\right)\\
&= (b-a)\int_a ^b f(t)^2 \, dt
\end{align*}

$\square$

Problema 2. a) Sean $x_1, \dots, x_n \in \mathbb{R}$. Demuestra que
$$ (x_1^2+\dots +x_n^2)\left(\frac{1}{x_1^2} + \dots + \frac{1}{x_n^2}\right) \geq n^2.$$
b) Demuestra que si $f:[a,b]\longrightarrow (0,\infty)$ es una función continua, entonces $$\left ( \int_a^b f(t)dt \right) \left (\int_a^b \frac{1}{f(t)}dt \right) \geq (b-a)^2$$

Demostración. a) Considera $\mathbb{R}^n$ con el producto interior usual. Sean $a,b\in\mathbb{R}^n$ dados por
\begin{align*}
a&=(x_1,\dots,x_n)\\
b&=\left( \frac{1}{x_1},\dots, \frac{1}{x_n}\right ).
\end{align*}

La desigualdad de Cauchy-Schwarz afirma que $\lvert \langle a,b \rangle \rvert \leq \norm{a} \norm{b}$. Se tiene que

\begin{align*}
\langle a,b \rangle &= (x_1,\ldots,x_n)\cdot \left(\frac{1}{x_1},\ldots,\frac{1}{x_n}\right)\\
&=1+1+\ldots+1\\
&=n,
\end{align*}

de modo que
\begin{align*}
|n|&\leq \norm{a} \norm{b}\\
&=\sqrt{(x_1^2+\dots +x_n^2)}\sqrt{\left(\frac{1}{x_1^2}+\dots + \frac{1}{x_n^2}\right )}.
\end{align*}

Si elevamos al cuadrado ambos extremos de esta igualdad, obtenemos la desigualdad deseada.

$\square$

b) En el problema 1 de esta entrada vimos que $$\langle f,g \rangle = \int_a^b f(t)g(t) dt$$ es un producto interior para el espacio de funciones continuas en $[a,b]$, y el espacio de este problema es un subespacio del de funciones continuas, así que también define un producto interior aquí.

Para la función $f$ dada, definamos $\phi (t)=\sqrt{f(t)}$ y $\psi (t)=\frac{1}{\sqrt{f(t)}}$.
Notemos que $\phi$ y $\psi$ son continuas, y además como $\forall t\in [a,b]$ se tiene $f(t)\in(0,\infty)$, también tenemos que $\psi (t), \phi (t)\in (0,\infty)$.

Aplicando la desigualdad de Cauchy-Schwarz $$\langle \phi, \psi \rangle^2 \leq \langle \phi , \phi \rangle \langle \psi , \psi \rangle.$$

Entonces
$$ \left(\int_a^b \phi (t) \psi (t) dt\right)^2 \leq \left(\int_a^b \phi(t)^2 dt \right)\left( \int_a^b\psi (t)^2 dt \right).$$

Luego, substituyendo los valores de $\phi$ y $\psi$:
$$ \left( \int_a^b \sqrt{f(t)}\cdot \frac{1}{\sqrt{f(t)}}dt\right )^2 \leq \left(\int_a^b f(t) dt \right)\left ( \int_a^b\frac{1}{f(t)}dt \right).$$

Finalmente, haciendo la integral a la izquierda:
$$(b-a)^2\leq \left(\int_a^b f(t) dt \right)\left (\int_a^b \frac{1}{f(t)}dt \right).$$

$\square$

Hay algunos problemas de desigualdades en los reales que necesitan que usemos herramientas de desigualdades vectoriales.

Problema 3. Sean $x,y,z$ números mayores que 1, tales que $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}=2$. Muestre que
$$\sqrt{x+y+x} \geq \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$


Demostración. Considera $\mathbb{R}^3$ con el producto interior usual y $u,v\in \mathbb{R}^3$ con
\begin{align*}
u&=\left(\sqrt{\frac{x-1}{x}}, \sqrt{\frac{y-1}{y}},\sqrt{\frac{z-1}{z}}\right),\\
v&=(\sqrt{x},\sqrt{y},\sqrt{z}).
\end{align*}

Aplicamos la desigualdad de Cauchy-Schwarz a $u$ y $v$:

\begin{align*}
\sqrt{x-1} +& \sqrt{y-1} + \sqrt{z-1}\\
&\leq \sqrt{\frac{x-1}{x}+\frac{y-1}{y}+\frac{z-1}{z}}\sqrt{x+y+z}\\
&=\sqrt{(1+1+1)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\sqrt{x+y+z}\\
&=\sqrt{3-2} \cdot \sqrt{x+y+z}\\
&=\sqrt{x+y+z}.
\end{align*}

Por lo tanto, $$\sqrt{x+y+x} \geq \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$

$\square$

Problema 4. Sea $f:[a,b]\longrightarrow (0,\infty)$ una función continua.
Demuestre que $$\int_a^b f(t)dt \leq \left ( (b-a)\int_a^b f(t)^2dt\right)^\frac{1}{2}.$$

Demostración. Ya vimos que $$\langle f,g \rangle = \int_a^b f(t)g(t)dt$$ es un producto interior para el espacio de funciones continuas.
Considera $g$ la función constante $1$.

Aplicando la desigualdad de Minkowski se tiene que
$$\sqrt{\langle f+g,f+g \rangle}\leq \sqrt{\langle f,f \rangle} + \sqrt{\langle g,g \rangle}$$

Tenemos entonces que:

$$\left ( \int_a^b (f(t)+1)^2 dt \right)^\frac{1}{2} \leq \left( \int_a^b f(t)^2 dt \right)^\frac{1}{2} + \left ( \int_a^b dt\right )^\frac{1}{2}.$$

Desarrollando el cuadrado en el lado izquierdo,
$$\left (\int_a^b f(t)^2 dt +2\int_a^b f(t)dt +(b-a) \right )^\frac{1}{2} \leq \left(\int_a^bf(t)^2dt \right)^\frac{1}{2} + (b-a)^\frac{1}{2}$$

Luego, elevando ambos lados de la ecuación al cuadrado
$$\int_a^b f(t)^2 dt + 2\int_a^b f(t) dt +(b-a)$$
$$\leq \int_a^b f(t)^2 dt +2\sqrt{b-a}\left( \int_a^b f(t)^2 dt\right)^\frac{1}{2} +(b-a)$$

Finalmente, cancelando términos igual en ambos lados, obtenemos la desigualdad deseada

$$\int_a^b f(t) dt \leq \left((b-a) \int_a^b f(t)^2 dt\right)^\frac{1}{2}.$$

$\square$

Tarea Moral

  • Resuelve el problema 2.b usando la desigualdad de Minkowski.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Problemas de fórmula de De Moivre y raíces n-ésimas

Por Claudia Silva

Introducción

En una entrada anterior, vimos cómo se comporta la multiplicación en forma polar y cómo podemos aprovechar esto para hacer potencias. Concretamente, el teorema de De Moivre es muy útil para elevar complejos a potencias sin tener que hacer gran cantidad de productos.

Los primeros dos videos son ejercicios que ejemplifican lo anterior. Después, usamos lo que aprendimos en la entrada de raíces $n$-ésimas para resolver dos problemas más.

Al final, compartimos un enlace en el que puedes practicar más con operaciones de números complejos.

Problemas de fórmula de De Moivre

Para empezar, vemos dos problemas de exponenciación completa. El primero es una aplicación directa de la fórmula de De Moivre.

Problema. Usa el teorema de De Moivre para elevar a la potencia indicada $$\left(\sqrt{3}(\cos 25^\circ + i \sin 25^\circ\right)^6.$$

En algunos problemas es posible que sea necesario primero obtener la forma polar de un complejo antes de poder usar la fórmula de De Moivre. El segundo problema es un ejemplo de esto.

Problema. Encuentra el valor de $(\sqrt{3}-i)^{12}$.

Problemas de raíces $n$-ésimas

Si ahora, en vez de querer elevar a cierta potencia, queremos obtener raíces $n$-ésimas, con el uso de un poderoso teorema que dedujimos a partir de la fórmula de De Moivre, sabemos que son exactamente $n$ raíces, y podemos calcularlas explícitamente. A continuación, vemos dos ejercicios que ejemplifican lo anterior.

Problema. Obtén las raíces cúbicas del complejo $3+4i$.

Problema. Obtén las raíces quintas del complejo $16\sqrt{2}(-1+i)$.

Ojo. En algún momento del siguiente video se encuentra que el ángulo es $360^\circ – 45^\circ$. Sin embargo, debe decir $180^\circ – 45^\circ$, pues se debe estar en el cuadrante 2, ya que la parte real es negativa y la compleja es positiva.

Fotos de los ejercicios de hoy

Finalmente, les dejo fotos de lo resuelto en los vídeos, para quienes tengan dificultades para ver los vídeos. En la tercera foto no están tan desarrolladas las cuentas como en el vídeo.

Problemas de fórmula de De Moivre, 1
Problemas de fórmula de De Moivre y de raíces
Problemas de raíces n-ésimas.

Más material de De Moivre y raíces

Puedes practicar más acerca de exponenciación y raíces complejas con los videos y ejercicios del tema en Khan Academy.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Sucesiones periódicas y pre-periódicas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior, comenzamos a hablar de sucesiones. Dimos las definiciones básicas y vimos sucesiones aritméticas y geométricas. Aunque una sucesión tenga una cantidad infinita de términos, las sucesiones aritméticas y geométricas son «sencillas», pues en realidad sólo dependen de dos parámetros: un término inicial y una diferencia (o razón). Ahora veremos otro tipo de sucesiones que también tienen cierta «finitud». Estudiaremos las sucesiones periódicas y pre-periódicas.

La intuición detrás de las sucesiones periódicas y pre-periódicas es que «se repiten y se repiten» después de un punto. Así, estas sucesiones sólo pueden tomar un número finito de valores, y de hecho después de un punto los empiezan a tomar «de manera cíclica».

Sucesiones periódicas

Las siguientes sucesiones tienen una característica peculiar:

  • $1,2,3,4,1,2,3,4,1,2,3,4,1,2,\ldots$
  • $7,8,7,11,7,7,8,7,11,7,7,\ldots$
  • Para $\omega$ una raíz cúbica de la unidad en $\mathbb{C}$: $1,\omega, \omega^2, \omega^3, \omega^4, \omega^5, \omega ^6,\ldots$

Dicho de manera informal, estas sucesiones se «repiten y se repiten».

Definición. Una sucesión es periódica si existe un entero positivo $p$ tal que $x_{n+p}=x_n$ para todo entero $n\geq 0$. A $p$ se le conoce como un periodo y al mínimo $p$ que satisface esto se le llama un periodo mínimo.

Las sucesiones ejemplo tienen periodo $4$, $5$ y $3$ respectivamente.

Cuando una sucesión $\{x_n\}$ es periódica de periodo $p$, se puede mostrar inductivamente que $x_{n+p}=x_{n+mp}$ para todo entero positivo $m$. También, se puede mostrar que cualquier término es igual a alguno de los términos $x_0,\ldots,x_{p-1}$. Concretamente, si usamos el algoritmo de la división para expresar $n=qp+r$ con $r$ el residuo de la división de $n$ entre $q$, tenemos que $x_n=x_r$. Esto hace que trabajar con sucesiones periódicas de periodo $p$ se parezca a trabajar con los enteros módulo $p$.

Problema. La sucesión $\{x_n\}$ es periódica de periodo $91$ y tiene un número irracional. La sucesión $\{y_n\}$ es periódica de periodo $51$. Muestra que si la sucesión $\{x_n+y_n\}$ tiene puros números racionales, entonces la sucesión $\{y_n\}$ tiene puros números irracionales.

Sugerencia pre-solución. Recuerda cómo se resuelven las ecuaciones diofantinas lineales en enteros, o bien usa el teorema chino del residuo.

Solución. Como $\{x_n\}$ tiene periodo $91$, podemos suponer que su término irracional es $x_k$ con $k$ en $\{0,\ldots,90\}$. Ya que $\{y_n\}$ es periódica de periodo $51$, basta con que probemos que $y_r$ es irracional para cada $r$ en $\{0,\ldots,50\}$. Tomemos una de estas $r$.

Como $91$ y $51$ son primos relativos, por el teorema chino del residuo existe un entero $m$ tal que
\begin{align*}
m&\equiv k \pmod {91}\\
m&\equiv r \pmod {51}.
\end{align*}

Sumando múltiplos de $91\cdot 51$ a $m$, podemos suponer que $m$ es positivo. Para esta $m$ tenemos que $x_m=x_k$ y que $y_m=y_r$. De esta forma,
\begin{align*}
y_r&=y_m\\
&=(y_m+x_m)-x_m\\
&=(y_m+x_m)-x_k.
\end{align*}
A la derecha, tenemos una resta de un número racional, menos uno irracional, el cual es un número irracional. Esto muestra que $y_r$ es irracional, como queríamos.

$\square$

Veamos otro ejemplo, que toca un poco el tema de sucesiones recursivas, del cual hablaremos con más profundidad más adelante.

Problema. Considera la sucesión $\{a_n\}$ en $\mathbb{Z}_{13}$ (los enteros módulo $13$, con su aritmética modular), en donde los primeros tres términos son $a_0=[0]_{13}$, $a_1=[1]_{13}$ y $a_2=[2]_{13}$ y para todo entero $n\geq 0$ se tiene que $$a_{n+3}=[a_n+a_{n+1}+a_{n+2}+n]_{13}.$$ Muestra que la sucesión $\{a_n\}$ es periódica.

Sugerencia pre-solución. El residuo al dividir entre $13$ de cada término de la sucesión depende de cuatro enteros entre $0$ y $12$. ¿Cuáles? Usa el principio de las casillas y luego trabaja hacia atrás.

Solución. Para simplificar la notación, no usaremos el subíndice $13$, con el entendido de que siempre se deben simplificar los números de los que hablemos módulo $13$. Para cada $n\geq 0$, consideremos el vector $$v_n=(a_n,a_{n+1},a_{n+2},n).$$

Visto módulo $13$, este vector puede tomar $13^4$ posibles valores, y define el valor de $a_{n+3}$. Por principio de las casillas, debe haber dos enteros $m$ y $p$ tales que $v_m=v_{m+p}$. Afirmamos que $p$ es un periodo para $\{a_n\}$.

Vamos a probar esto. Primero lo haremos para los enteros $n\geq m$. Esto lo haremos mostrando que $v_{m+k}=v_{m+k+p}$ por inducción sobre $k$.

El caso $k=0$ es la igualdad $v_m=v_{m+p}$ de arriba. Si suponemos que $v_{m+k}=v_{m+p+k}$, entonces automáticamente tenemos la igualdad de las primeras dos entradas de $v_{m+k+1}$ y $v_{m+p+k+1}$, y como $a_{m+k+3}$ y $a_{m+k+p+3}$ quedan totalmente determinados por $v_{m+k}=v_{m+p+k}$, entonces también las terceras entradas son iguales. Para la cuarta entrada, usamos que $$m+k\equiv m+p+k\pmod {13},$$ de donde $$m+k+1\equiv m+p+k+1\pmod {13}.$$ Esto termina la inducción. En particular, tenemos que $a_{m+k}=a_{m+k+p}$ para todo $k\geq 0$.

Falta mostrar que la sucesión también es periódica antes de $a_m$. Pero este se hace con un argumento análogo al anterior, pero trabajando hacia atrás, notando que $a_{n-1}$ queda totalmente determinado mediante la ecuación $$a_{n-1}=a_{n+2}-a_n-a_{n+1}-(n-1).$$

$\square$

Sucesiones pre-periódicas

A veces una sucesión puede ser casi periódica, a excepción de sus primeros términos. Estas sucesiones comparten muchas propiedades con las sucesiones periódicas, así que vale la pena definirlas.

Definición. Una sucesión es pre-periódica si existen enteros positivos $N$ y $p$ tales que $x_{n+p}=x_p$ para todo entero $n \geq N$. Si tomamos $N$ como el menor entero para el que se cumpla la propiedad, a los términos $$(x_0,x_1,\ldots,x_{N-1})$$ se les conoce como la parte pre-periódica. La sucesión $\{x_{n+N}\}$ es una sucesión periódica y se le conoce como la parte periódica de $\{x_n\}$.

Las sucesiones pre-periódicas juegan un papel importante en la clasificación de los números racionales.

Teorema. Sea $x$ un real. Las siguientes tres afirmaciones son equivalentes:

  • $x$ es racional
  • Los dígitos después del punto decimal de $x$ en alguna base entera $b\geq 2$ forman una sucesión pre-periódica.
  • Los dígitos después del punto decimal de $x$ en toda base entera $b\geq 2$ forman una sucesión pre-periódica.

Problema. Demuestra que el número $$X:\sum_{j=1}^\infty \frac{1}{10^{j^2}}$$ es un número irracional.

Sugerencia pre-solución. Escribe las primeras sumas parciales de la serie para encontrar un patrón de cómo se ven los dígitos de $X$ después del punto decimal. Procede por contradicción.

Solución. Otra forma de escribir a $X$ es en base $10$: $$X=0.a_1a_2a_3a_4\ldots,$$ en donde $\{a_n\}$ es la sucesión de dígitos después del punto decimal. Nota que $a_i=1$ si y sólo si $i$ es un número cuadrado.

Si $X$ fuera racional, $\{a_n\}$ sería pre-periódica, de periodo, digamos $p$. Pero en $\{a_n\}$ podemos encontrar $p$ ceros consecutivos, incluso después del pre-periodo, ya que hay bloques tan largos como se quiera de enteros que no son números cuadrados. Esto mostraría que el periodo sería de puros ceros, y que por lo tanto a partir de un punto $\{a_n\}$ es constantemente cero. Esto es imposible pues hay números cuadrados arbitrariamente grandes.

$\square$

Combinando tipos de sucesiones

Hasta ahora, hemos hablado de sucesiones aritméticas, geométricas, periódicas y pre-periódicas. Seguiremos hablando de otros tipos de sucesiones en entradas posteriores. Una cosa sistemática que te puede ayudar a entender estos conceptos mejor es preguntarte cuándo una sucesión satisface más de una de estas propiedades.

Problema. Determina todas las sucesiones en $\mathbb{C}$ que sean simultáneamente geométricas y periódicas.

Sugerencia pre-solución. Elige una notación adecuada para trabajar en este problema.

Solución. El primer término $a$ de una sucesión así tiene que ser igual a otro. Como la sucesión es geométrica, eso otro término es de la forma $r^ma$ para $m$ un entero positivo.

Si $a=0$, la sucesión es la sucesión constante $0$, que es geométrica y periódica de periodo $1$. Si $a\neq 0$, entonces $r^m=1$, de modo que $r$ es una raíz $m$-ésima de la unidad.

Y en efecto, para $r$ una raíz $m$-ésima de la unidad y $a$ cualquier complejo, tenemos que $\{ar^n\}$ es una sucesión geométrica y de periodo $m$.

$\square$

Más problemas

Esta entrada es una extensión de las secciones 5 y 6 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica:

Álgebra Superior II: Exponencial, logaritmo y trigonometría en los complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Gracias a las entradas anteriores ya hemos desarrollado un buen manejo de los números complejos. Sabemos cómo se construyen y cómo hacer operaciones básicas, incluyendo obtener conjugados, la forma polar, sacar normas y elevar a potencias. También hemos aprendido a resolver varias ecuaciones en los complejos: cuadráticas, sistemas lineales y raíces $n$-ésimas. Todo esto forma parte de los fundamentos algebraicos de $\mathbb{C}$. Ahora hablaremos un poco de la exponencial, el logaritmo y trigonometría en los complejos.

Aunque mencionaremos un poco de las motivaciones detrás de las definiciones, no profundizaremos tanto como con otros temas. Varias de las razones para elegir las siguientes definiciones tienen que ver con temas de ecuaciones diferenciales y de análisis complejo, que no se estudian sino hasta semestres posteriores.

Función exponencial compleja

Recordemos que, para un real $y$, definimos $\text{cis}(y)=\cos y + i \sin y$. La función $\text{cis}$ y la exponenciación en los reales nos ayudarán a definir la exponencial compleja.

Definición. Definimos la función $\exp:\mathbb{C}\to \mathbb{C}$ como $$\exp(x+yi)=e^x\text{cis}(y).$$

Ejemplo 1. Se tiene que $$\exp\left(1+\frac{\pi}{2} i\right) = e^1 \text{cis}\left(\frac{\pi}{2}\right) = ei.$$

$\triangle$

Ejemplo 2. Se tiene que $$\exp(\pi i) = e^0\text{cis}(\pi) = (1)(-1)=-1.$$ Como veremos más abajo, esto lo podemos reescribir como la famosa identidad de Euler $$e^{\pi i}+1=0.$$

$\triangle$

Ejemplo 3. Se tiene que $$\exp(2+3i)=e^2\text{cis}(3).$$ Como $\cos(3)$ y $\sin(3)$ no tienen ningún valor especial, esta es la forma final de la expresión.

$\triangle$

Propiedades de la función exponencial compleja

Una buena razón para definir la exponencial así es que si $y=0$, entonces la definición coincide con la definición en los reales: $$\exp(x)=e^x\text{cis}(0)=e^x.$$ Si $x=0$, tenemos que $\exp(iy)=\text{cis}(y)$, de modo que si $w$ tiene norma $r$ y argumento $\theta$, podemos reescribir su forma polar como $$w=r\exp(\theta i),$$ y una forma alternativa de escribir el teorema de De Moivre es $$w^n=r^n\exp(n\theta i).$$

Otra buena razón para definir la exponencial compleja como lo hicimos es que se sigue satisfaciendo que las sumas en la exponencial se abren en productos.

Proposición. Para $w$ y $z$ complejos se tiene que $$E(w+z)=E(w)E(z).$$

Demostración. Escribamos $w=a+bi$ y $z=c+di$ con $a,b,c$ y $d$ reales. Tenemos que
\begin{align*}
\exp(w+z)&=\exp((a+c)+(b+d)i)\\
&=e^{a+c}\text{cis}(b+d).
\end{align*}

Por propiedades de la exponencial en $\mathbb{R}$ tenemos que $e^{a+c}=e^ae^c$. Además, por cómo funciona la multiplicación compleja en términos polares, tenemos que $\text{cis}(b+d)=\text{cis}(b)\text{cis}(d)$. Usando estas observaciones podemos continuar con la cadena de igualdades,

\begin{align*}
&=e^ae^c\text{cis}(b)\text{cis}(d)\\
&=(e^a\text{cis}(b)) (e^c\text{cis}(d))\\
&=\exp(a+bi)\exp(c+di)\\
&=\exp(w)\exp(z).
\end{align*}

$\square$

Como $\exp$ extiende a la exponencial real y se vale abrir las sumas de exponentes en productos, puede ser tentador usar la notación $e^{x+yi}$ en vez de $\exp(x+yi)$. Hay que tener cuidado con esta interpretación, pues hasta ahora no hemos dicho qué quiere decir «elevar a una potencia». Cuando lo hagamos, veremos que usar la notación $e^{x+yi}$ sí tiene sentido, pero por el momento hay que apegarnos a la definición.

Hay otras buenas razones para definir la exponencial compleja como lo hicimos. Una muy importante es que es la solución a una ecuación diferencial muy natural. Más adelante, en tu formación matemática, verás esto.

Función logaritmo complejo

Con el logaritmo natural $\ln$ en $\mathbb{R}$ y la multifunción argumento podemos extender el logaritmo a $\mathbb{C}$.

Definición. Definimos la función $L:\mathbb{C}\setminus \{0\} \to \mathbb{C}$ como $$L(z)=\ln \Vert z \Vert + \arg(z) i.$$

Hay que ser un poco más precisos, pues $\arg(z)$ es una multifunción y toma varios valores. Cuando estamos trabajando con logaritmo, lo más conveniente por razones de simetría es que tomemos el argumento en el intervalo $(-\pi,\pi]$. En cursos posteriores hablarás de «otras» funciones logaritmo, y de por qué ésta es usualmente una buena elección.

Ejemplo. Los logaritmos de $i$ y de $-1$ son, respectivamente,
\begin{align*}
L(i)&=\ln \Vert i \Vert + \arg(i) i = \ln(1) + \frac{\pi}{2} i =\frac{\pi}{2} i\\
L(-1)&=\ln \Vert -1 \Vert + \arg(-1) i = \ln(1)+\pi i = \pi i.
\end{align*}

$\triangle$

Propiedades del logaritmo complejo

La función $\exp$ restringida a los números con parte imaginaria en $(-\pi,\pi]$ es invertible y su inversa es $L$. Esto justifica en parte la definición de logaritmo. Demostrar esto es sencillo y queda como tarea moral.

La función $L$ restringida a los reales positivos coincide con la función logaritmo natural, pues para $z=x+0i=x$, con $x>0$ se tiene que $\arg(x)=0$ y entonces $$L(z)=L(x)=\Vert x\Vert+\arg(x)i=x.$$

Como en el caso real, la función logaritmo abre productos en sumas, pero con un detalle que hay que cuidar.

Proposición. Para $w$ y $z$ complejos no $0$, se tiene que $L(wz)$ y $L(w)+L(z)$ difieren en un múltiplo entero de $2\pi i$.

Con la función logaritmo podemos definir potencias de números complejos.

Definición. Para $w,z$ en $\mathbb{C}$ con $w\neq 0$, definimos $$w^z=\exp(zL(w)).$$

Ejemplo. En particular, podemos tomar $w=e$, de donde \begin{align*}e^z&=\exp(zL(e))\\&=\exp(z\ln(e))\\&=\exp(z),\end{align*} de donde ahora sí podemos justificar usar la notación $e^{x+yi}$ en vez de $\exp(x+yi)$.

$\square$

Esta definición de exponenciación en $\mathbb{C}$ es buena, en parte, porque se puede probar que se satisfacen las leyes de los exponentes.

Proposición. Para $w, z_1, z_2$ en $\mathbb{C}$, con $w\neq 0$, se cumple que $$z^{w_1+w_2}=z^{w_1}z^{w_2}$$ y que $$(z^{w_1})^{w_2}=z^{w_1w_2}.$$

La demostración es sencilla y se deja como tarea moral.

Funciones trigonométricas complejas

Finalmente, definiremos las funciones trigonométricas en $\mathbb{C}$. Para ello, nos basaremos en la función exponencial que ya definimos.

Definición. Para $z$ cualquier complejo, definimos $$\cos(z)=\frac{e^{iz}+e^{-iz}}{2}$$ y $$\sin(z)=\frac{e^{iz}-e^{-iz}}{2}.$$

Una de las razones por las cuales esta definición es buena es que extiende a las funciones trigonométricas reales. En efecto, si $z=x+0i=x$ es real, entonces $\cos(z)$ es \begin{align*}
\frac{e^{iz}+e^{-iz}}{2}&=\frac{\text{cis}(x)+\text{cis}(-x)}{2}\\
&=\frac{2\cos(x)}{2}\\
&=\cos(x),
\end{align*} y de manera similar para $\sin(z)$.

Las funciones trigonométricas en $\mathbb{C}$ siguen cumpliendo varias propiedades que cumplían en $\mathbb{R}$.

Proposición. Para $w$ y $z$ complejos, se tiene que
\begin{align*}
\cos(w+z)=\cos(w)\cos(z)-\sin(w)\sin(z)\\
\sin(w+z)=\sin(w)\cos(z)+\sin(z)\cos(w).
\end{align*}

Demostración. Procedemos por definición. Tenemos que
\begin{align*}
4&\cos(w)\cos(z)\\
&=(e^{iw}+e^{-iw})(e^{iz}+e^{-iz})\\
&=(e^{i(w+z)}+e^{i(w-z)}+e^{i(z-w)}+e^{i(-z-w)})
\end{align*}

y que
\begin{align*}
4&\sin(w)\sin(z)\\
&=(e^{iw}-e^{-iw})(e^{iz}-e^{-iz})\\
&=(e^{i(w+z)}-e^{i(w-z)}-e^{i(z-w)}+e^{i(-z-w)}),
\end{align*}

de modo que
\begin{align*}
4(\cos(w)&\cos(z)-\sin(w)\sin(z))\\
&=2(e^{i(w+z)}+e^{-i(w+z)})\\
&=4\cos(w+z).
\end{align*}

Dividiendo entre $4$ ambos lados de la igualdad, obtenemos la primer identidad. La segunda se demuestra de manera análoga, y queda como tarea moral.

$\square$

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina los valores de $\exp(3+\frac{3\pi}{4}i)$ y de $L(-i)$.
  2. Muestra que para $z$ con parte imaginaria en $(-\pi,\pi]$ se tiene que $L(\exp(z))=z$.
  3. Determina el valor de $(1+i)^{1+i}$.
  4. Muestra las leyes de los exponentes para la exponenciación en $\mathbb{C}$.
  5. Determina el valor de $\sin(i)$ y de $\cos(1+i)$.
  6. Muestra la identidad de seno de la suma de ángulos en $\mathbb{C}$.
  7. Investiga qué otras propiedades de las funciones trigonométricas reales se extienden al caso complejo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»