Geometría Analítica I: Rectas paralelas e intersección de rectas

Por Elsa Fernanda Torres Feria

Introducción

En entradas anteriores hemos definido las rectas en formas distintas y hemos realizado algunos ejercicios. El siguiente paso en nuestro curso es definir la noción de paralelismo y su relación con la intersección de rectas. Buscamos esto ya que no hay que olvidar que uno de nuestros objetivos más importantes es ver que desde nuestro modelo analítico podemos recuperar los postulados euclideanos.

Comenzaremos enunciando las nociones básicas de paralelismo. Luego hablaremos de intersección de rectas. De manera intuitiva, podemos imaginar que el punto de intersección de dos rectas es aquel que cumple con la ecuación de cada una al mismo tiempo ; esta idea será nuestra guía para desarrollar la teoría. Una vez que hayamos razonado este tema, volveremos para concluir la parte de paralelismo.

Paralelismo

Comencemos con la siguiente definición.

Definición. Dos rectas $l_1$ y $l_2$ $\in \mathbb{R}^2$ son paralelas si o bien son la misma, o bien no se intersectan, esto es que

$l_1 \cap l_2 = \emptyset,$

en donde $\emptyset$ denota al conjunto vacío. En símbolos, escribiremos $l_1 \parallel l_2$.

También es posible dar una definición de paralelismo para vectores.

Definición. Dados dos vectores $u,v \in \mathbb{R}^2$ distintos de $0$, decimos que $u$ es paralelo a $v$ si existe un número real $t$ tal que

$u=tv$

En símbolos, escribiremos $u \parallel v$.

Estas nociones parecen distintas, sin embargo hay un resultado crucial que las conecta: dos rectas serán paralelas si y sólo si al escribirlas en forma paramétrica tenemos que sus vectores dirección son paralelos. Aún no tenemos la teoría suficiente para demostrar este resultado por completo, pero ya podemos demostrar una parte.

Lema. Tomemos dos rectas con las siguientes expresiones en forma paramétrica:

$l=\{ p+rq : r \in \mathbb{R} \}$ y $m= \{ u+sv : r \in \mathbb{R} \}.$

Si $q$ y $v$ son paralelos, entonces las rectas son paralelas.

Demostración. Comencemos suponiendo que los vectores son paralelos por lo que debemos demostrar que $l\cap m =\emptyset$.

Si $q$ y $v$ son paralelos, entonces existe un $t \in \mathbb{R}$ tal que $q=tv$. Supongamos que la intersección de $l$ y $m$ es no vacía. Para ver que son paralelas debemos probar entonces que son la misma. Un punto en ambas nos daría la igualdad $$u+sv=p+rq$$ para algunos valores de $s$ y $r$.

Recordemos que por hipótesis $q=tv$, por lo que al sustituir este valor en la igualdad anterior tenemos $$u+sv=p+r(tv),$$ de donde $$u-p=rtv-sv.$$

Al despejar $p$ tenemos que

\begin{align*}
p&=u-rtv+sv \\
&=u-(rt-s)v
\end{align*}

Al sustituir $p$ y $q$ en la definición de la recta $l$ obtenemos que

\begin{align*}
l&=\{ ((u-v(rt-s))+r(tv) : r,s,t \in \mathbb{R} \} \\
&=\{ u-rtv+sv+rtv : r,s,t \in \mathbb{R} \} \\
&= \{ u+sv-rtv+rtv : r,s,t \in \mathbb{R} \} \\
&= \{ u+sv : s \in \mathbb{R} \}\\
&= m.
\end{align*}

De esta manera, obtenemos que $l=m$, como queríamos.

$\square$

Intersección de rectas

De manera intuitiva sabemos que dos rectas no paralelas se intersectan en un punto. En esta parte de la entrada, queremos encontrar ese punto.

Antes de estudiar el procedimiento general, realicemos un ejemplo para obtener una visión de lo que nos espera.

Ejemplo:

Tomemos dos rectas en su forma paramétrica dadas por

$l_1=\{ (2,-8)+r(7,-3) : r \in \mathbb{R} \}, \text{ } l_2={ (7,-4)+s(1,2) : s \in \mathbb{R} }$

Nuestro objetivo en este ejemplo es encontrar el punto $p$ en el cual $l_1$ y $l_2$ se intersectan, esto es el punto que cumpla ambas ecuaciones

\begin{align*}
(2,-8)+r(7,-3)&=p=(7,-4)+s(1,2) \\
\Rightarrow 2,-8)+r(7,-3)&=(7,-4)+s(1,2)
\end{align*}

Al juntar los términos que contienen un parámetro de un lado del igual y aquellos que son puntos definidos del otro y desarrollar obtenemos

\begin{align*}
(2,-8)-(7,-4)&=s(1,2)-r(7,-3) \\
\Leftrightarrow (2-7,-8+4)&=(s-7r,2s+3r) \\
\Leftrightarrow (-5,-4)&=(s-7r,2s+3r)
\end{align*}

Dado que son vectores que queremos sean iguales, entonces deben ser iguales entrada a entrada; por lo que tenemos un sistema de ecuaciones

\begin{cases}
-5=s-7r \dots (a)\\
-4=2s+3r \dots (b)
\end{cases}

Afortunadamente, ya sabemos como resolver sistemas de ecuaciones. En este caso en especial, podemos multiplicar la ecuación $a$ por $-2$ para obtener $10=-2s+14r$ y sumar este resultado a la ecuación $b$:

\begin{align*}
10&=-2s+14r\\
-4&=2s+3r \\
\hline
6&=17r
\end{align*}

$\Rightarrow r=\frac{6}{17}$

Ya que obtuvimos el valor de $r$, podemos sustituirlo en alguna de las ecuaciones principales para obtener $s$ y obtenemos su valor

$s=\frac{-43}{17}$

Usando cualquiera de los dos valores, encontramos que el punto de intersección es

$(2,-8+\frac{6}{17}(7,-3)\approx (4.4705,-9.0588)\approx (7,-4)+\frac{-43}{17}(1,2)$

Procedimiento general

Usemos como base el ejemplo pasado para establecer un procedimiento general para encontrar el punto de intersección de dos rectas.

Comencemos con las rectas

$l_1={ (p_1,p_2)+r(q_1,q_2) : r \in \mathbb{R} }, \text{ } l_2={ (u_1,u_2)+s(v_1,v_2) : s \in \mathbb{R} }$

Con base en el ejemplo, el siguiente paso es establecer un punto digamos $w$ que cumpla ambas ecuaciones

\begin{align*}
(p_1,p_2)+r(q_1,q_2)&=w=(u_1,u_2)+s(v_1,v_2) \\
(p_1,p_2)+r(q_1,q_2)&=(u_1,u_2)+s(v_1,v_2)
\end{align*}

Colocamos de un lado del igual los elementos que se multiplican por un parámetro y lo demás del otro lado y desarrollamos

\begin{align*}
r(q_1,q_2)-s(v_1,v_2)&=(u_1,u_2)-(p_1,p_2) \\
(rq_1-sv_1,rq_2-sv_2)&=(u_1-p_1,u_2-p_2)
\end{align*}

Como tenemos la igualdad de dos vectores, deben ser iguales entrada a entrada, esto es

\begin{cases}
rq_1-sv_1= u_1-p_1 \dots (a)\\
rq_2-sv_2= u_2-p_2 \dots (b)
\end{cases}

En este punto, debemos solucionar el sistema de ecuaciones de manera general, para lo cual multiplicaremos $(a)$ por $q_2$ y $(b)$ opr $q_1$ y restaremos las expresiones resultantes

\begin{align*}
rq_1q_2-sv_1q_2&=u_1q_2-p_1q_2 \\
rq_2q_1-sv_2q_1&=u_2q_1-p_2q_1\\
\hline
sv_2q_1-sv_1q_2&=u_1q_2-p_1q_2-u_2q_1+p_2q_1
\end{align*}
A partir de esta última expresión podemos despejar el parámetro $s$ para obtener

$s=\frac{u_1q_2-p_1q_2-u_2q_1+p_2q_1}{v_2q_1-v_1q_2}$

Notemos que $s$ se puede indefinir si $v_2q_1-v_1q_2=0$, esto es que

$v_2q_1=v_1q_2$

pero la única manera de que esto suceda es si $l_1 \parallel l_2$, que no es el caso que estamos tratando. Por lo tanto, el sistema siempre tiene solución. Así, el punto de intersección $w$ está dado por

\begin{align*}
w&=(u_1,u_2)+s(v_1,v_2) \\
&=(u_1,u_2)+\frac{u_1q_2-p_1q_2-u_2q_1+p_2q_1}{v_2q_1-v_1q_2}(v_1,v_2)
\end{align*}

Es posible encontrar el punto $w$ al encontrar el valor del parámetro $r$ y es de manera análoga a lo que acabamos de realizar.

Recapitulemos ligeramente lo que acaba de pasar, pues acabamos de demostrar la parte faltante del lema enunciado en la sección de paralelismo. Por lo descrito arriba, resulta que si las rectas son paralelas, entonces no hay un punto de intersección, esto es que el sistema de ecuaciones no tiene solución, pero esto pasa solamente si los vectores son paralelos.

$\square$

Podemos enunciar esto último como el lema que es el «regreso» del lema de la sección anterior.

Lema. Si los vectores directores de dos rectas en su forma paramétrica no son paralelos, entonces las rectas se intersectan en un único punto.

El quinto postulado

Concluyamos esta entrada con la demostración del quinto postulado.

Teorema. Dada una recta $l \in \mathbb{R}^2$ y un punto $P$ fuera de ella, siempre existe una única recta $m$ que pasa por $P$ y es paralela a $l$.

Demostración. Escribamos a la recta $l$ en forma paramétrica:

$l=\{ U+rV : r \in \mathbb{R} \}.$

Proponemos a la recta

$m=\{ P+rV : r \in \mathbb{R} \}.$

como una recta que pasa por $P$ y es paralela a $l$. Por como $m$ está definida, esta recta cumple que pasa por $P$ (tomando $r=0$). Además, sabemos que $1\dot V=V$, por lo que (por definición de vectores paralelos) $V$ es paralelo a $V$ y esto implica que $m$ es paralela a $l$ (por el lema).

De esta manera, logramos construir una recta por $P$ y paralela a $l$.

Para demostrar la unicidad, supongamos que hay otra recta $m’$ paralela a $l$ y que pasa por $P$. Como $m’$ es paralela a $l$ y $l$ es paralela a $m$, tenemos que $m’$ es paralela a $m$ (ver Tarea Moral). Dos rectas son paralelas o bien si no se intersectan, o bien si son iguales. Como $m’$ y $m$ tienen ambas al punto $P$ debe sucede lo segundo, es decir, que sean iguales.

$\square$

Más adelante…

En esta entrada tratamos la intersección de rectas en su forma paramétrica. Conforme avancemos en el curso, hablaremos de las rectas en otras formas a partir de las cuales también nos será posible encontrar su intersección. Hasta ahora hemos demostrado los postulados 1, 3 y 5. Necesitamos algunas definiciones y teoría adicional para poder demostrar los postulados 2 y 4.

Tarea moral

  • Demuestra que «ser paralela a» es una relación de equivalencia entre rectas. Demuestra que «ser paralelo a» es una relación de equivalencia entre vectores.
  • En el desarrollo general para encontrar la intersección de dos rectas, existe un caso en el que el sistema de ecuaciones no tiene solución, esto es cuando $v_2q_1-v_1q_2=0$. Justifica porqué este caso no es posible a partir de las hipótesis dadas.
  • Encuentra el parámetro $r$ en la sección antes mencionada, para encontrar a $w$ en términos de la otra recta.
  • Encuentra las intersecciones de cada pareja de las siguientes las rectas
    • $l_1=\{ (3,2)+t(2,0) : t \in \mathbb{R} \}$
    • $l_2=\{ (5,1)+s(-4,3) : s \in \mathbb{R} \}$
    • $l_3=\{ (-6,-1)+r(0,-7) : r \in \mathbb{R} \}$
  • Prueba que las rectas $l=\{(-1,5)+t(4,-2) : t \in \mathbb{R}\}$ y $m=\{ (0,2)+s(-20,10) : s \in \mathbb{R} \}$ son paralelas.

Álgebra Lineal II: Diagonalizar

Por Julio Sampietro

Introducción

En la entrada anterior estudiamos la triangularización de matrices, que consistía en llevar matrices a una forma triangular superior. En esta fortaleceremos esta idea, y buscaremos maneras de llevar una matriz a una matriz diagonal: a este proceso se le conoce como diagonalizar.

Matrices y transformaciones diagonalizables

A lo largo de esta sección fijamos $F$ un campo. Todos los espacios vectoriales se asumirán de dimensión finita.

Definición. Una matriz $A\in M_n(F)$ es llamada diagonalizable si es similar a una matriz diagonal en $M_n(F)$.

Una transformación lineal $T:V\to V$ sobre un espacio vectorial $V$ se llama diagonalizable si existe una base de $V$ tal que la matriz de $T$ respecto a esa base sea diagonal.

Es decir una matriz $A\in M_n(F)$ es diagonalizable si y sólo si podemos escribir

\begin{align*}
A=PDP^{-1}
\end{align*}

para alguna matriz invertible $P\in M_n(F)$ y una matriz diagonal $D=[d_{ij}]\in M_n(F)$. Nota que la definición implica que cualquier matriz similar a una matriz diagonalizable es a su vez diagonalizable. De misma manera, una transformación lineal es diagonalizable si su representación es diagonalizable respecto a cualquier base (aunque no será necesariamente diagonal en cualquier base).

Damos la siguiente caracterización de transformaciones diagonalizables.

Teorema. Una transformación lineal $T:V\to V$ es diagonalizable si y sólo si $V$ tiene una base compuesta por eigenvectores de $T$.

Demostración. Supongamos que $T$ es diagonalizable. Por tanto existe una base $v_1,\dots, v_n$ de $V$ tal que la matriz asociada a $T$ en esta base es diagonal. Si $(a_{ii})_{i=1}^{n}$ son las entradas diagonales de $A$, entonces por definición $T(v_{i})=a_{ii} v_i$ para todo $i=1,\dots, n$. Luego $v_1,\dots, v_n$ es una base de $V$ compuesta por eigenvectores de $T$.

Conversamente, supongamos que $T$ tiene una base $v_1,\dots, v_n$ compuesta por eigenvectores de $T$. Si $T(v_i)=d_i v_i$ entonces la matriz respecto a $v_1,\dots, v_n$ de $T$ es diagonal con entradas $d_i$.

$\square$

Primeras propiedades

Tenemos dos observaciones inmediatas.

Observación. El teorema nos proporciona una manera de diagonalizar explícitamente una matriz. Si $A\in M_n(F)$ es diagonalizable, entonces encontramos una base de $V=F^n$ formada por eigenvectores y los acomodamos como columnas de una matriz $P$. Entonces $P^{-1}AP=D$ es diagonal y $A=PDP^{-1}$.

Observación. Supongamos que $A$ es diagonalizable y que $A=PDP^{-1}$ para alguna matriz diagonal $D$ y una matriz invertible $P$.

  1. El polinomio característico de $A$ y de $D$ es el mismo, puesto que son matrices similares. De esto deducimos que
    \begin{align*}
    \prod_{i=1}^{n}(X-d_{ii})=\chi_{A}(X).
    \end{align*}
    En particular, los eigenvalores de $A$ son las entradas diagonales de $D$ (contados con multiplicidad).
  2. Sea $\lambda\in F$ un eigenvalor de $A$. Entonces la multiplicidad algebraica es igual al número de índices $i=1,\dots, n$ tales que $d_{ii}=\lambda$ (esto por el inciso anterior). Por otro lado, la dimensión geométrica de $\lambda$ como eigenvalor de $A$ o $D$ es la misma puesto que la asignación $X\mapsto P^{-1}X$ induce un isomorfismo entre $\ker(\lambda I_n-A)$ y $\ker(\lambda I_n-D)$. Pero además la multiplicidad geométrica de $\lambda$ como eigenvalor de $D$ también coincide con el número de índices $i=1,\dots, n$ tales que $\lambda_{ii}=n$, ya que el sistema $DX=\lambda X$ es equivalente a $(d_{ii}-\lambda )x_i=0$. Concluimos que en una matriz diagonalizable, la multiplicidad algebraíca y la multiplicidad geométrica coinciden.

Un par de problemas

A continuación resolvemos un par de problemas: el primero sirve para aplicar lo que hemos visto hasta ahora, y el segundo nos será útil más adelante.

Problema 1. Demuestra que la matriz

\begin{align*}
A=\begin{pmatrix}
1 & a\\ 0 & 1\end{pmatrix}
\end{align*}

no es diagonalizable si $a\neq 0$.

Solución. Supongamos que $A$ es diagonalizable y escribamos $A=PDP^{-1}$ con $P$ invertible y $D$ diagonal. Como $A$ es triangular superior con entradas diagonales iguales a $1$, deducimos que $1$ es el único eigenvalor de $A$. Por la observación anterior tenemos que las entradas diagonales de $D$ son $1$, por tanto $D=I_n$. Pero entonces $A=PI_nP^{-1}=I_n$ una contradicción si $a\neq 0$.

$\square$

El siguiente problema es más técnico, y nos servirá para demostrar uno de los teoremas fundamentales que caracteriza a las matrices diagonalizables.

Problema 2. Sea $k>1$ y sean $P_1,\dots, P_k$ polinomios primos relativos dos a dos. Si $P=P_1\cdot P_2\cdots P_k$ es su producto y $Q_i=\frac{P}{P_i}$, demuestra que los $Q_1,\dots, Q_k$ son primos relativos (es decir, no existe un polinomio que los divida a todos simultáneamente).

Solución. Supongamos que existe un polinomio $Q$ irreducible que divide a todos los $Q_i$. Puesto que $Q\mid Q_1=P_2\cdots P_k$ deducimos que $Q$ divide a $P_j$ para algún $j\in \{2,\dots, k\}$. Pero como $Q$ divide también a $Q_j$, esto quiere decir que $Q$ divide a $P_i$ para algún $i\neq j$, lo que contradice que los $P_i$ son primos relativos dos a dos.

$\square$

Un teorema de descomposición

Terminamos esta entrada con un teorema algo técnico que será de mucha utilidad en la próxima entrada, cuando caractericemos a las matrices diagonalizables.

Teorema. Sea $T$ una transformación lineal de algún espacio $V$ en si mismo (no necesariamente de dimensión finita). Entonces para cualesquiera polinomios $P_1,\dots, P_k\in F[X]$ primos relativos dos a dos se cumple que

\begin{align*}
\ker P(T)=\bigoplus_{i=1}^{k} \ker P_i(T),
\end{align*}

dónde $P=P_1\cdots P_k$.

Demostración. Consideramos a los polinomios $Q_i=\frac{P}{P_i}$ como en el problema anterior. Como son primos relativos, el teorema de Bezout nos dice que existen polinomios $R_1,\dots, R_k$ tales que

\begin{align*}
Q_1 R_1+\dots +Q_k R_k=1.
\end{align*}

Como $P_i$ divide a $P$, se sigue que $\ker P_i(T)\subset \ker P(T)$ para todo $i\in \{1,\dots, k\}$. Por otro lado si $x\in \ker P(T)$ y escribimos $x_i=(Q_i R_i)(T)(x)$, la relación anterior nos dice que

\begin{align*}
x=x_1+\dots+x_k
\end{align*}

Más aún $P_i(T)(x_i)=(P_i Q_i R_i)(T)(x)$ y $P_iQ_i R_i$ es un múltiplo de $P$. Dado que $x\in \ker P(T)\subset \ker(P_i Q_i R_i)(T)$, se sigue que $x_i\in \ker P_i(T)$, y como $x=x_1+\dots +x_k$ concluimos que

\begin{align*}
\ker P(T)=\sum_{i=1}^{k} \ker P_i(T).
\end{align*}

Queda por demostrar que si $x_i\in \ker P_i(T)$ y $x_1+\dots + x_k=0$ entonces $x_i=0$ para todo $i\in \{1,\dots, k\}$. Tenemos que

\begin{align*}
Q_1(T)(x_1)+Q_1(T)(x_2)+\dots+ Q_1(T)(x_k)=0.
\end{align*}

Pero $Q_1(T)(x_2)=\dots= Q_1(T)(x_k)=0$ dado que $Q_1$ es un múltiplo de $P_2,\dots, P_k$ y $P_2(T)(x_2)=\dots=P_k(T)(x_k)=0$. Entonces $Q_1(T)(x)=0$ y similarmente $Q_j(T)(x_j)=0$ para $j\in \{1,\dots, k\}$. Pero entonces

\begin{align*}
x_1=(R_1 Q_1)(T)(x_1)+\dots+ (R_k Q_k)(T)(x_k)=0
\end{align*}

y similarmente se demuestra que $x_2=\dots =x_k=0$. Queda demostrado el teorema.

$\square$

Más adelante…

En la próxima entrada usaremos lo demostrado en esta entrada para dar una caracterización de las matrices diagonalizables, como hicimos con las matrices triangularizables.

Tarea moral

Estos ejercicios no forman parte de la evaluación del curso, pero son útiles para practicar los conceptos vistos en esta entrada.

  1. Diagonaliza la matriz
    \begin{align*}
    A=\begin{pmatrix}
    -1 & 2\\ 4 & 1\end{pmatrix}\in M_2(\mathbb{C}).
    \end{align*}
  2. ¿Es la siguiente matriz diagonalizable?
    \begin{align*}
    B=\begin{pmatrix}
    5 & 0 & 0\\ 0 & 5 & 0\\ 1 & 0 & 5\end{pmatrix}\in M_3(\mathbb{R}).
    \end{align*}
  3. Sea $V$ un espacio vectorial de dimensión finita y $T:V\to V$ lineal. Demuestra que si $T$ es diagonalizable, entonces $T^2$ también lo es y además $\ker T=\ker T^2$.
  4. Sean $A,B\in M_n(F)$ dos matrices tales que $A$ es invertible y $AB$ es diagonalizable. Demuestra que $BA$ también lo es.
  5. Sea $A\in M_n(\mathbb{C})$ tal que existe $d>0$ con $A^{d}=I_n$. Demuestra que $A$ es diagonalizable.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Ecuaciones Diferenciales I – Videos: Ecuaciones diferenciales exactas

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos el estudio de las ecuaciones no lineales de primer orden. En particular, resolvimos ecuaciones diferenciales que llamamos separables. Ahora, en esta nueva entrada resolveremos otro tipo de ecuaciones no lineales que llamaremos ecuaciones diferenciales exactas, que podemos escribir en la forma $M(t,y)+N(t,y)\frac{dy}{dt}=0$ y donde las funciones $M$ y $N$ cumplen ciertas condiciones que hacen a la ecuación exacta.

Por otro lado, muchas veces las funciones $M$ y $N$ no cumplen las condiciones que hacen a la ecuación diferencial exacta. Revisaremos entonces un método para hacer a las ecuaciones diferenciales exactas. Este método es llamado método del factor integrante, que es bastante similar al método del factor integrante para las ecuaciones lineales no homogéneas, cuyo tema puedes revisar en la siguiente entrada, o ver específicamente el video relacionado aquí.

Ecuaciones exactas

En el primer video introducimos el concepto de ecuación diferencial exacta, y analizamos cuáles son las condiciones que deben satisfacer las funciones $M(t,y)$ y $N(t,y)$ para que una ecuación sea exacta, esto mediante un teorema de caracterización para este tipo de ecuaciones.

En el segundo video resolvemos un par de ejemplos de ecuaciones exactas.

Ecuaciones no exactas y método del factor integrante

En el primer video revisamos el caso cuando una ecuación no satisface las condiciones para ser exacta. Resolvemos este tipo de ecuaciones mediante el método del factor integrante, donde buscamos una función $\mu$ que al multiplicarla por la ecuación diferencial, hace a esta ecuación exacta.

En el segundo video resolvemos un par de ejemplos por el método del factor integrante.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que la ecuación diferencial $$2t+y^{2}+(2ty)\frac{dy}{dt}=0$$ es exacta y encuentra su solución.
  • Encuentra la solución al problema de condición inicial para la ecuación del ejercicio anterior para $y(1)=0$.
  • Determina el valor de $a$ para que la ecuación diferencial $$\frac{1}{t^{2}}+\frac{1}{y^{2}}+\frac{at+2}{y^{3}}\frac{dy}{dt}=0$$ sea exacta y encuentra su solución.
  • Verifica que $\mu(t)=t$ y $\mu(t,y)=\frac{1}{ty(2t+y)}$ son factores integrantes para la ecuación $$3ty+y^{2}+(t^{2}+ty)\frac{dy}{dt}=0.$$ Es decir, una ecuación diferencial puede tener más de un factor integrante.
  • Encuentra la condición para que un factor integrante $\mu$ de $M(t,y)+N(t,y)\frac{dy}{dt}=0$ dependa únicamente de $y$ y encuentra la expresión para $\mu(y)$. (Recuerda los pasos que seguimos en el tercer video de esta entrada para el caso $\mu(t)$).
  • Verifica que la ecuación $$3t^{2}y+2ty+y^{3}+(t^{2}+y^{2})\frac{dy}{dt}=0$$ no es exacta; encuentra un factor integrante para esta ecuación y resuélvela.

Más adelante

En la siguiente entrada continuaremos con el estudio a las ecuaciones no lineales de primer orden y revisaremos dos ecuaciones no lineales particulares: la ecuación de Bernoulli y la ecuación de Riccati.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Límites en el infinito

Por Juan Manuel Naranjo Jurado

Introducción

Previamente se revisó el concepto de límite de una función, así como el de límites laterales. En la revisión de estos temas nos habíamos enfocado en revisar el límite de una función $f$ en un punto $x_0$. Ahora ampliaremos el concepto estudiando $f$ para el caso cuando $x$ tiende a infinito.

Límite en el infinito

La intuición detrás de la definición de límite en el infinito es que $f$ tiene límite $L$ cuando $x$ tiende a infinito si para valores lo suficientemente grandes de $x$ nos acercamos arbitrariamente a $L.$

Definición. Sea $f: A \rightarrow \mathbb{R}$. Decimos que $f$ tiende al límite $L \in \mathbb{R}$ cuando $x$ tiende a infinito si para cualquier $\varepsilon > 0$ existe $M \in \mathbb{R}$, tal que para cualquier $x>M$, se tiene que $|f(x)-L|<\varepsilon$ y lo denotamos $$\lim_{x \to \infty} f(x) = L.$$

Ejemplo 1. Prueba que $$\lim_{x \to \infty} \frac{1}{x} = 0.$$
Demostración.

Sea $\varepsilon > 0$ y tomemos $M = \frac{1}{\varepsilon}$. De esta forma, para todo $x > M$ se tiene que $x > \frac{1}{\varepsilon}$, y por lo tanto $-\varepsilon < 0 <\frac{1}{x} < \varepsilon$, es decir, $|\frac{1}{x}-0|< \varepsilon.$
$$\therefore \lim_{x \to \infty} \frac{1}{x} = 0.$$

$\square$

Podemos observar que la definición es bastante natural una vez hemos entendido el concepto de límite, por lo cual procederemos directamente a revisar algunas de sus propiedades.

Propiedades de los límites en el infinito

Al igual que la definición revisada para el límite de una función en un punto, el límite de una función cuando $x$ tiende a infinito también es único.

Proposición. El límite de una función cuando $x$ tiende a infinito es único, es decir, si $f$ tiende a $L$ cuando $x \rightarrow \infty$ y $f$ tiende a $L’$ cuando $x \rightarrow \infty$, entonces $L = L’.$

La demostración es muy similar a la realizada en la entrada de definición formal del límite, por lo cual se omitirá, pero de ser necesario puedes realizarla para repasar los conceptos.

Análogamente a las entradas anteriores, tenemos una relación entre el límite al infinito de una función y el límite de una sucesión.

Teorema. Sea $f: A \rightarrow \mathbb{R}$. Los siguientes enunciados son equivalentes.

  1. $$\lim_{x \to \infty} f(x) = L.$$
  2. Para cualquier sucesión $\{a_n\}$ en $A$ que diverge a infinito se tiene que la sucesión $\{f(a_n)\}$ converge a $L.$

Notemos que para que el límite en el infinito tenga sentido, se debe cumplir que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}.$

Demostración.

$1) \Rightarrow 2)]$ Sea $\varepsilon >0$. Supongamos que $$\lim_{x \to \infty} f(x) = L.$$
Y sea $\{ a_n \}$ en $A$ que diverge a infinito.

Por hipótesis $f$ tiende a $L$ cuando $x$ tiende a infinito, entonces existe $M \in \mathbb{R}$ tal que si $x > M$ se tiene que $|f(x)-L| < \varepsilon.$

Además, como $\{a_n\}$ diverge a infinito, entonces para $M$ existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ se tiene que $a_n > M.$ Por lo tanto, $|f(a_n)-L| < \varepsilon.$
$$\therefore \lim_{n \to \infty} f(a_n) = L.$$


$1) \Leftarrow 2)]$ Realizaremos esta demostración por contrapositiva, es decir, probaremos que si $$\lim\limits_{x \to \infty} f(x) \neq L,$$

entonces existe $\{a_n\}$ en $A$ tal que $$\lim\limits_{n \to \infty} a_n = \infty \qquad \text{ y } \qquad \lim\limits_{n \to \infty} f(a_n) \neq L.$$

Supongamos que $\lim\limits_{x \to \infty} f(x) \neq L$. Entonces existe $\varepsilon > 0$ tal que para todo $M_n > a$ existe $x’_n > M_n$ tal que $|f(x’_n) -L| \geq \varepsilon.$

De esta forma, es posible generar la sucesión $\{ x’_n \}$ en $A.$ Primero veremos que esta sucesión diverge a infinito.

Sea $\alpha \in \mathbb{R}$. Entonces existe $M_{n_0} \in \mathbb{R}$ tal que $M_{n_0} > \alpha$. Además, $x’_{n_0} > M_{n_0} > \alpha$, y por lo tanto para todo $n \geq n_0$ se sigue que $x’_n > M_n \geq M_{n_0} > \alpha$. Es decir, $x’_n > \alpha$ para todo $n \geq n_0$.

$$\therefore \lim_{n \to \infty} x’_n = \infty.$$

Además, se tiene que $|f(x’_n)-L| \geq \varepsilon$ para todo $n \in \mathbb{N}$.

Consideremos $\{a_n\} = \{x’_n\}$, entonces

$$\lim\limits_{n \to \infty} a_n = \infty \qquad \text{ y } \qquad \lim\limits_{n \to \infty} f(a_n) \neq L.$$

Por lo tanto, concluimos que $2) \Rightarrow 1)$

$\square$

Después de este teorema, nuevamente logramos obtener las mismas propiedades que conocemos del límite de una sucesión.

Proposición. Sean $f: A \rightarrow \mathbb{R}$, $g: A \rightarrow \mathbb{R}$ con $A \subset \mathbb{R}$ tal que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}$. Si además

$$\lim_{x \to \infty} f(x) = L \quad \text{ y } \quad \lim_{x \to \infty} g(x) = T$$

entonces

  1. $$\lim_{x \to \infty} c \cdot f(x) = cL.$$
  2. $$\lim_{x \to \infty} (f+g)(x) = L+T.$$
  3. $$\lim_{x \to \infty} (f-g)(x) = L-T.$$
  4. $$\lim_{x \to \infty} (f \cdot g)(x) = LT.$$
  5. Si $T \neq 0$ y $g(x) \neq 0$ para $x > a$, entonces $$\lim_{x \to \infty} \frac{f}{g}(x) = \frac{L}{T}.$$

Ahora veremos una proposición que nos será útil para el cálculo de límites.

Proposición. Para todo $k \in \mathbb{N}$ se tiene que $$\lim_{x \to \infty} \frac{1}{x^k} = 0.$$

Demostración.

Procederemos a realizar esta demostración mediante inducción.
Caso base: $k = 1$.
En el ejemplo anterior se probó mediante la definición que $$\lim_{x \to \infty} \frac{1}{x^1} = \lim_{x \to \infty} \frac{1}{x} = 0.$$
Hipótesis de inducción: $$\lim_{x \to \infty} \frac{1}{x^k} = 0.$$
Ahora veamos que también se cumple para $k+1$.

\begin{align*}
\lim_{x \to \infty} \frac{1}{x^{k+1}} = & \lim_{x \to \infty} \frac{1}{x^k} \cdot \frac{1}{x^1} \\ \\
= & \lim_{x \to \infty} \frac{1}{x^k} \lim_{x \to \infty} \frac{1}{x^1} \\ \\
= & 0 \cdot 0 = 0.
\end{align*}

\begin{gather*}
\therefore \lim_{x \to \infty} \frac{1}{x^{k+1}} = 0. \\ \\
\therefore \lim_{x \to \infty} \frac{1}{x^k} = 0 \text{, } \forall k \in \mathbb{N}.
\end{gather*}

$\square$

Revisaremos un par de ejemplos donde aplicaremos las propiedades enunciadas.

Ejemplo 2. Determina $$\lim_{x \to \infty} \frac{8x+5}{x^3+10}.$$

Notemos que
\begin{align*}
\lim_{x \to \infty} \frac{8x+5}{x^3+10} = & \lim_{x \to \infty} \frac{8x+5}{x^3+10} \cdot \frac{\frac{1}{x^3}}{\frac{1}{x^3}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{8x}{x^3} + \frac{5}{x^3}}{\frac{x^3}{x^3}+\frac{10}{x^3}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{8}{x^2} + \frac{5}{x^3}}{1+\frac{10}{x^3}} \\ \\
= & \frac{\lim\limits_{x \to \infty} \frac{8}{x^2} + \frac{5}{x^3}}{\lim\limits_{x \to \infty} 1+\frac{10}{x^3}} \\ \\
= & \frac{0 + 0}{1+0} \\ \\
= & \frac{0}{1} \\ \\
= & 0.
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{8x+5}{x^3+10} = 0.$$

Ejemplo 3. Calcula el siguiente límite $$\lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x}.$$

Como consideraremos que $x \rightarrow \infty$, podemos suponer, particularmente, que $x>0$, entonces

\begin{align*}
\frac{1}{\sqrt{x^2-2x}-x} = & \frac{1}{\sqrt{x^2-2x}-x} \cdot \frac{\sqrt{x^2-2x}+x}{\sqrt{x^2-2x}+x} \\ \\
= & \frac{\sqrt{x^2-2x}+x}{\left( \sqrt{x^2-2x} \right)^2 – x^2}\\ \\
= & \frac{\sqrt{x^2-2x}+x}{x^2-2x – x^2} \\ \\
= & \frac{\sqrt{x^2-2x}+x}{-2x} \\ \\
= & -\frac{\sqrt{x^2-2x}}{2x} – \frac{x}{2x} \\ \\
= & -\frac{\sqrt{x^2-2x}}{\sqrt{4x^2}} – \frac{1}{2} \text{, como $x$ es positivo, $\sqrt{4x^2} = |2x| = 2x$ } \\ \\
= & -\sqrt{\frac{x^2-2x}{4x^2}} – \frac{1}{2} \\ \\
= & -\sqrt{\frac{x^2}{4x^2} – \frac{2x}{4x^2}} – \frac{1}{2} \\ \\
= & -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2}.
\end{align*}
$$\Rightarrow \frac{1}{\sqrt{x^2-2x}-x} = -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2}.$$

Entonces tenemos que
\begin{align*}
\lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x} = & \lim_{x \to \infty} \left( -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2} \right) \\
= & -\sqrt{\frac{1}{4} – 0} – \frac{1}{2} \\
= & -\frac{1}{2} -\frac{1}{2} \\
= & -1.
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x} = -1.$$

A continuación enunciaremos el teorema del sándwich para este tipo de límites.

Proposición. Sean $f$, $g$, $h: A \rightarrow \mathbb{R}$ con $A \subset \mathbb{R}$ tal que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}$. Si existe $M_1 \in \mathbb{R}$ tal que para todo $x >M_1$ se tiene que $$f(x) \leq g(x) \leq h(x) \quad \text{ y } \quad \lim_{x \to \infty} f(x) = L = \lim_{x \to \infty} h(x).$$

Entonces $$ \lim_{x \to \infty} g(x) = L.$$

Nuevamente, omitiremos la demostración pues es análoga a la revisada en una entrada anterior.

Extensión del límite en el infinito

Así como tenemos el límite en el infinito, existe una definición análoga que considera el límite de una función cuando $x$ tiende a $- \infty$.

Definición. Sean $A \subseteq \mathbb{R}$ y $f: A \rightarrow \mathbb{R}$. Decimos que $f$ tiende al límite $L \in \mathbb{R}$ cuando $x$ tiende a $- \infty$ si para cualquier $\varepsilon > 0$ existe $m \in \mathbb{R}$, tal que para cualquier $x<m$, se tiene que $|f(x)-L|<\varepsilon$ y lo denotamos $$\lim_{x \to -\infty} f(x) = L.$$

La definición nos indica que $f$ tiene límite $L$ cuando $x$ tiende a $-\infty$ si para valores lo suficientemente pequeños de $x$ nos acercamos arbitrariamente a $L$.

Esta extensión de límite tiene propiedades análogas revisadas en esta entrada.

Más adelante…

En la siguiente entrada revisaremos una nueva variante del límite de una función: los límites infinitos. Es decir, veremos el caso donde el límite de una función es infinito.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demostrar que si $f: A \rightarrow \mathbb{R}$ es tal que $$\lim_{x \to \infty} x f(x) = L$$ con $L \in \mathbb{R}$, entonces $$\lim_{x \to \infty} f(x) = 0.$$
  • Sean $f$ y $g$ dos funciones definidas en $(a, \infty)$ tales que $$\lim_{x \to \infty} f(x) = L \quad \text{ y } \quad \lim_{x \to \infty} g(x) = \infty.$$
    Entonces se tiene que $$\lim_{x \to \infty} f(g(x)) = L.$$
  • Prueba que $$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(-x).$$
  • Prueba que $$\lim_{x \to 0^-} f(\frac{1}{x}) = \lim_{x \to -\infty} f(x).$$
  • Calcula los siguientes límites
    $i$) $$\lim_{x \to \infty} \frac{\sqrt{x+1}}{x} \text{, definido para } x >0.$$
    $ii$) $$\lim_{x \to \infty} \frac{\sqrt{x}-x}{\sqrt{x}+x} \text{, definido para } x >0.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Probabilidad I-Videos: Probabilidad condicional

Por Aurora Martínez Rivas

Introducción

Muchas afirmaciones sobre el azar toman la forma “si ocurre B, entonces la probabilidad de A es p”, donde B y A son eventos y p es una probabilidad como vimos anteriormente. A estas probabilidades se les llama probabilidades condicionales.

Abordaremos más el tema en el video que encontraras a continuación.

Probabilidad condicional

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Prueba las siguientes afirmaciones.

  •  La probabilidad condicional cumple la condición dos y tres de una medida de probabilidad es decir prueba que la probabilidad condicional aplicada al espacio muestral $\Omega$ es igual a 1 y que si $\ A_1,A_2,…$ son eventos ajenos dos a dos, entonces $P\left(\displaystyle\bigcup_{k=1}^{\infty}{A_k|B}\right)=\displaystyle\sum_{k=1}^{\infty}{P(A_k|B)}$.
  • Si $\ A_1,A_2,…$ son eventos entonces $P\left(\displaystyle\bigcup_{k=1}^{\infty}{A_k|B}\right)\le\displaystyle\sum_{k=1}^{\infty}{P(A_k|B)}$.
  • Si $A$ y $B$ son eventos entonces $P\left(A\middle|\ B\right)=1-P(A^c|B)$.
  • Si $A_1,A_2$ son eventos tales que $A_1\subset A_{2\ }$ entonces $P\left(A_1\middle|B\right)≤P\left(A_2\middle|B\right)$.
  • Para cualesquiera eventos $A_1,\ A_2,\ldots,A_n$ tal que $P\left(\displaystyle\bigcap_{k=1}^{n-1}A_k\right)>0$ se cumple que $P\left(\displaystyle\bigcap_{k=1}^{n}A_k\right)=P\left(A_1\right)P\left(A_2\middle|\ A_1\right)P\left(A_3\middle|\ A_1\cap A_2\right)\ldots\ P(A_n|\displaystyle\bigcap_{k=1}^{n-1}A_k)$

Más adelante…

En la práctica, es posible tener un conocimiento parcial sobre el resultado de un experimento, o se puede presentar que las condiciones de un experimento puedan cambiar. Es por esto que usando ideas intuitivas sobre la probabilidad definimos la probabilidad condicional.  

También puede darse el caso de que la ocurrencia de un evento no tenga ningún efecto sobre la probabilidad de que ocurra otro. Esto nos lleva a definir en el siguiente video el concepto de independencia.

Entradas relacionadas