Probabilidad I-Videos: Axiomas de la probabilidad y propiedades

Introducción

Anteriormente vimos que los eventos pueden verse como subconjuntos del espacio muestral , sin embargo, no necesariamente todos los subconjuntos del espacio muestral son eventos. En este video se analizaran varias definiciones que nos permitirán formalizar ideas que hasta el momento son muy vagas, entre estas las condiciones que se deben cumplir para poder hablar de un evento, una medida de probabilidad, un espacio de probabilidad y algunas propiedades elementales.

Axiomas de la probabilidad y propiedades

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

  • Si $P(A)$ es la probabilidad de que un evento A ocurra, prueba que para $A_1,A_2,\ldots, A_n$ eventos, se cumple que: $\begin{multline*}P\left(\bigcup_{i=1}^{n}A_i\right)=\sum_{i=1}^{n}P\left(A_i\right)- \sum_{i<j\le n}P\left(A_i\bigcap A_j\right)+\\ \sum_{i<j<k\le n }P\left(A_i\bigcap A_j\bigcap A_k\right)+\ldots+\left(-1\right)^{n+1}P(A_1\bigcap A_2\bigcap\ldots\bigcap A_n)\end{multline*}$.
  • Muestra que $P\left(\bigcup_{i=1}^{n}A_i\right)\le\sum_{i=1}^{n}P\left(A_i\right)$.
  • Sean $A_r,\ \ r\geq1$, eventos tales que $P\left(A_r\right)=1$ para toda $r$. Prueba que $P\left(\bigcap_{r=1}^{\infty}A_r\right)=1$.
  • Prueba que $P\left(\bigcap_{i=1}^{\infty}A_i\right)\geq\ \sum_{i=1}^{n}P\left(A_i\right)-(n-1)$.
  • Prueba que $P\left(A\cap B\right)-P\left(A\right)P\left(B\right)=P\left(\left(A\cup B\right)^c\right)-P\left(A^c\right)P\left(B^c\right)$.

Más adelante…

Cuando nos interesa la probabilidad de un evento asociado a un experimento aleatorio, en ocasiones es necesario encontrar dicha probabilidad, dada la condición suplementaria de que ha ocurrido algún otro evento asociado al experimento aleatorio. Llamaremos a tales probabilidades condicionales, hablaremos más de estas en el siguiente video.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.