Álgebra Superior I: Demostraciones directas e indirectas

Por Guillermo Oswaldo Cota Martínez

Esta entrada es parte de una serie de notas introductorias sobre técnicas de demostración. Cada una es independiente de la otra, y para su explicación, se usa el siguiente diagrama de un mundo imaginario llamado el mundo de los Blorgs. Para leer más sobre ello, haz click aquí.

Introducción

Hasta ahora hemos introducido algunos conceptos introductorios de lo que es una demostración matemática, pero apenas estamos por iniciar este recorrido hacia lo que son estas. Ahora, empezaremos por ver dos formas de pensar al demostrar que son las demostraciones directas e indirectas.

La demostración directa

Ahora vamos a explorar un poco más esto de las demostraciones, qué son y cómo nos ayudan. ¿Recuerdas nuestro ejemplo de que todos los blorgs amarillos comían peces? Este es un ejemplo de una demostración directa. Este nombre viene del hecho de que partimos de una secuencia de proposiciones válidas y vamos conectando las proposiciones una tras una hasta que tenemos la conclusión deseada. En general este tipo de demostraciones van a ser cadenas de puras implicaciones. Por ejemplo

$P_0 \Rightarrow P_1, P1\Rightarrow P_2, P_2 \Rightarrow \dots, P_{n-1} \Rightarrow P_{n} $

De donde concluimos que $P_0 \Rightarrow P_{n}$. Esto en términos sencillos quiere decir: Las demostraciones directas van a ser aquellas que podemos dar «el paso claro» por ejemplo si sabemos que con madera podemos construir las patas y el asiento, y con patas y el asiento podemos construir una silla, entonces ya sabríamos que con madera podemos construir una silla, pues decimos: «Primero con la madera construimos las patas y el asiento, y después con las patas y el asiento construimos la silla». Cuando veamos otros tipos de demostraciones, verás más fácilmente porqué tienen este nombre. Mientras tanto veamos otro ejemplo.

Proposición. Un blorg que vive en las montañas come los lunes.

Demostración. Recordemos cómo empezamos la demostración de la entrada pasada, empezamos con un blorg que vive en las montañas y veremos poco a poco que come los lunes. Para empezar, nota que con las siguientes proposiciones:

$P(x) = x \text{ vive en las montañas} $

$Q(x) = x \text{ es un blerg},$

se cumple que:

$$P(x) \Rightarrow Q(x).$$

Además, sabemos que todos los blergs comen los lunes, es decir, suponiendo que $R(x) = x \text{ come los lunes}$ entonces:

$$Q(x) \Rightarrow R(x).$$

Y la siguiente regla de inferencia es válida:

\begin{array}{rl}
& P \Rightarrow Q \\
& Q \Rightarrow R \\
\hline
\therefore & P \Rightarrow R
\end{array}.

Entonces podemos aplicar esta regla de inferencia a nuestro problema, dando como resultado que

$$P(x) \Rightarrow R(x) $$

Ahora recuerda que en las demostraciones nuestro objetivo va a ser «generalizar». No basta con que un blorg en las montañas coma los lunes, si no quisieramos que siempre que veamos a un blorg en las montañas, sepamos que come los lunes.

Para esto, empezaremos con un blorg a quien le llamaremos $x$ y lo único que sabemos de este blorg es que vive en las montañas, es decir $P(x)$. Ahora, aplicando las reglas de inferencia, sabemos que si $P(x)$ entonces también $R(x)$. Esto quiere decir que sabiendo que un blorg vive en las montañas, ya sabemos que también come los lunes. Recuerda que para hacer este paso aplicamos las reglas de inferencia. De esta manera, $x$ come los lunes.

Por lo tanto, los blorgs que viven en las montañas comen los lunes.


$\square$

Demostraciones indirectas

Otra estrategia para demostrar cosas va a ser mediante lo que se conoce como la demostración indirecta. Y esta forma de demostrar proposiciones va a usar la siguiente regla de inferencia:

\begin{array}{rl}
& P \Rightarrow Q \\
\hline
\therefore &(\neg Q) \Rightarrow (\neg P)
\end{array}.

¿Recuerdas que la premisa es equivalente a la conclusión? Pues el que sea equivalente es suficiente para que sea una regla de inferencia válida. Hay ocasiones en la que no es tan sencillo hacer la demostración directa, pues al hacer la demostración indirecta, no probamos que una proposición $P$ implique $Q$, sino que en vez de eso, probamos que $\neg Q$ implica $\neg P$. Esta herramienta nos va a ser útil, pues resultará que en ocasiones es mejor trabajar con las negaciones que con las proposiciones sin negar, veamos un ejemplo.

Proposición. Si un blorg es amigo de los delfines, entonces es amarillo.

Demostración. Como estamos dando un ejemplo de la demostración indirecta, entonces pensémosle como tal. Primero tomemos nuestras proposiciones.

$P(x) = x \text{ es amigo de los delfines}$

$Q(x) = x \text{ es amarillo}.$

Y tenemos la proposición $P(x) \Rightarrow Q(x)$. Lo que nos dice la regla de inferencia es que habremos demostrado esta proposición si demostramos que $\neg Q \Rightarrow \neg P$. Ahora notemos que

$\neg Q(x) = x \text{ no es amarillo} = x \text{ es azul o rojo}$
$\neg P(x) = x \text{ no es amigo de los delfines}.$

Nota que si un blorg no es amarillo, entonces solo puede ser azul o rojo (pues los blorgs solo pueden ser de tres colores). De esta manera, en vez de demostrar que $P(x) \Rightarrow Q(x)$ demostraremos que $\neg Q \Rightarrow \neg P$. Para ello, es suficiente tomar a un blorg $x$ que sea azul o rojo. A continuación vamos a dividir esta demostración en casos. Como tenemos dos colores posibles para los blorgs, vamos a ver primero qué pasa si nuestro blorg es rojo y después qué pasa si es azul. Veamos cómo se ve esto.

Caso 1. $x$ es rojo.

Como nuestro blorg es rojo, entonces es un blerg, y sabemos que los blergs solo son amigos de los blurgs. Entonces no es amigo de los delfines.

¿Notas cómo probamos la conclusión? Ahora ya sabemos que la proposición es cierta siempre que nuestra $x$ sea rojo entonces no será amigo de los delfines. Con esto solo nos queda un caso.

Caso 2. $x$ es azul.

El caso que falta es que el blorg sea azul, es decir que sea un blurg. Pero aún así se cumple que $x$ no sea amigo de delfines, pues es amigo de los blargs y blergs.

Entonces lo que acabamos de hacer fue demostrar que en cualquier caso, el blorg $x$ no es amigo de los delfines. Así que podemos concluir que $\neg Q \Rightarrow \neg P$

$\square$

Sobre la demostración

Vamos a hacer algunas observaciones sobre la forma en que demostramos nuestras proposiciones.

  1. Hasta ahora tenemos dos formas de demostrar: la directa y la indirecta. En pocas palabras la directa usa sucesiones de proposiciones que ya sabemos para llegar a una conclusión, mientras que la indirecta no empieza por lo que quiere demostrar, sino que nota que si la conclusión no es cierta, entonces la premisa no lo es.
  2. En nuestra segunda demostración dividimos nuestro problema en casos, esto es, notamos que si nuestro blorg no era amarillo, solo podía ser azul o rojo. Entonces lo que hicimos en ese punto fue irnos por los dos caminos: el camino en donde el blorg es rojo y el camino en donde es azul. Y notamos que en cualquiera de los caminos, no se cumplía la premisa. Habrá ocasiones en las que notes que para demostrar una proposición deberás considerar todos los casos, entonces tendrás que dividir tu problema en los distintos casos para hacer la demostración.
  3. Algo más que mencionar de nuestra última demostración es que no siempre vamos a dividir una demostración indirecta en casos, pues fue una coincidencia que en nuestra demostración necesitásemos del uso de los distintos casos. Entonces una demostración indirecta no siempre va a usar casos, pero hay ocasiones en las que serán necesarios.

Más adelante…

Continuando con nuestras estrategias, la siguiente consistirá en la contradicción. En pocas palabras para demostrar que una proposición es verdadera, supondremos que no lo es. Y en una serie de pasos lógicos, veremos que habrá proposiciones que son falsas y verdaderas a la vez (esto no puede pasar), llamándose esto una contradicción.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra directamente que los blorgs rojos comen frutas.
  2. Demuestra directamente que los blorgs rojos comen frutas los lunes.
  3. Demuestra indirectamente que si un blorg no come peces, entonces es un blerg.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Demostraciones matemáticas (El mundo de los Blorg)

Por Guillermo Oswaldo Cota Martínez

Introducción

Esta entrada es parte de una serie de notas sobre demostrar

Antes de empezar a encontrarnos con lo que son las demostraciones matemáticas, vamos a empezar con un pequeño mundo, este es un lugar que estaremos visitando a lo largo de varias entradas, así que será bueno que pongas atención.

El mundo de los Blorgs

Antes de que pienses que te equivocaste de entrada y veas un pequeño cuento, déjame decirte que todo está relacionado. Solo que antes de continuar vamos a conocer a los Blorgs, después verás cómo se relaciona todo.

Imagina por un momento el mundo de los Blorgs, es un mundo paralelo al nuestro que se puede encontrar en aquel mundo que existe más allá de lo que la esquina del espejo deja ver. Es un lugar que se parece un poco al piso sobre el que estamos, despierta con casi los mismos tonos del alba por la mañana pero con algunas cosas distintas. Para empezar estamos hablando de un mundo en el que habitan mayoritariamente criaturas llamadas Blorgs. Aquellos que alguna vez los vieron, comentan que curiosamente son pequeñas criaturas parecidas a los conejos. Y con algunas otras descripciones en mente, podríamos empezar a clasificar los Blorgs de acuerdo a distintas características como por ejemplo su dieta, su rutina, dónde viven, etc. Pero se decidió que era mejor clasificarlos según su color, y aquí es donde las cosas se ponen interesantes. Por un lado están los Blergs, estos son las criaturas rojas que viven por las montañas. Después podemos considerar a los Blargs que son aquellos Blorgs amarillos y viven debajo del mar, no son muy sociales pero es lo que hay. Finalmente están los Blurgs que son azules y prefieren vivir en el bosque. Entonces podemos dividir a los Blorgs en sus razas: Blergs, Blargs y Blurgs. Algo importante que tenemos que decir también: Ningún blorg tiene más de un color.

Quizá sean de color distinto y vivan en lugares diferentes, pero esto no les impide tener algunas cosas en común. Por ejemplo, todos los Blurgs comen pescados, pues tienen un lago cerca de su bosque, y al ser los Blargs marinos, también comen peces. El hecho de haber vivido tanto tiempo en terreno alto, hizo que los Blergs prefieran cultivar sus cosechas: Frutos dulces y verduras siempre comen. Por alguna razón, será costumbre o creencia, todos los Blorgs comen solamente los lunes, es decir, que cada criatura come una vez a la semana, eso les ha ayudado a no depender tanto de la comida en el día a día. Aunque aquí es donde los Blurgs no coinciden: ellos no esperan tanto y también comen algo los viernes.

La vida siendo Blorg

Tristemente, los Blargs no pueden salir del mar, pues a pesar de ser Blorgs, el salir del agua les despinta lo amarillo y les quita fuerza es por esto que casi no hablan con sus contrapartes terrestres. Por otro lado los Blerg y los Blurg se llevan muy bien, los Blurgs comparten la madera que tienen con los Blergs y los Blergs comparten los cultivos que hacen con los Blurgs. No está de más decir que todos los Blergs son amigos de los Blurgs. Esto hace que los Blargs se sientan más ajenos a ellos, pues aunque sí se llevan con los Blurgs, prefieren juntarse con los delfines que viven junto a ellos, son amistosos con los Blargs y siempre están dispuestos a negociar peces a cambio de paseos a lo largo del mar. Pero nadie se queja, así es la vida siendo un Blorg.

De esta manera, podemos resumir la información que sabemos de los Blorgs en el siguiente diagrama:

Una diferencia que podemos saber de los Blorgs es que ellos le llaman al lugar en donde viven «Axios» y dentro de ella, no hacen diferencia entre lo que es una característica o costumbre, ellos no tienen una palabra para cada una de ellas, ellos en su lugar usan la palabra «Axioma«* (¿recuerdas qué significa esta palabra?). Esto quiere decir que para los Blargs, ser amarillos es un axioma, al igual que para ellos hablar con delfines o comer peces es un axioma.

Así que es natural poder hacer conclusiones a partir de estos Axiomas. Por ejemplo: ¿Qué opinarías si te digo que todos los Blorgs comen peces? ¿O si te digo que todos los Blorgs que viven en montañas comen los lunes? Pues quizá puedas dar respuesta a estas preguntas intuitivamente. Pero ¿Cómo es que nos aseguramos que la respuesta es correcta o no? En Axios no basta con decir que todos los Blorgs que viven en las montañas comen los lunes. Los Blorgs no entienden la intuición, pero nosotros sí. A ellos hay que convencerlos con demostraciones, a ellos tenemos que explicarles mediante lógica el porqué una proposición sucede. Es decir que si queremos afirmar que todos los Blorgs que viven en las montañas comen los lunes, tenemos que decir paso a paso el porqué es así. Y esto lo lograremos mediante reglas de inferencia válidas. Vamos a anotar esto que acabamos de dcir como una definición (¿recuerdas qué era una definición?):

Definición: Una demostración matemática es el uso de pasos lógicos usando reglas de inferencia válidas para llegar de una hipótesis a una conclusión.

La intuición con inferencia

Para introducir un poco más qué van a ser las demostraciones en las matemáticas, vamos a pensar en Legos, aquellos pequeños bloques que encajan unos con otros con los que se pueden armar lo que se te ocurra. Y piensa a las reglas de inferencia como las instrucciones para armar algo.

Ahora imagina que queremos armar un escritorio hecho de estas piezas. Entonces primero tendríamos que armar las patas y después la mesa. Entonces las reglas de inferencia nos van a ayudar diciéndonos: Las patas hay que acomodarlas de cierta manera junto a la mesa para que se haga una mesa. Y una vez construido el escritorio, ahora podríamos querer ponerlo en un cuarto junto a una cama y una lámpara. Entonces usaremos otras reglas de inferencia para crear la cama y otras para la lámpara, juntando las tres partes (escritorio, cama y lámpara) tendríamos hecho un cuarto. Entonces si quisiéramos «demostrar» cómo se hace un cuarto con estas piezas de lego, tendríamos que explicar cómo se hace la lámpara, cómo se hace la cama y cómo la lámpara. Esto es lo que haremos en matemáticas: construir cosas dando las instrucciones adecuadas. Incluso podríamos ir más allá: Una vez que sabemos cómo construir un cuarto, podríamos también demostrar cómo se hace una cocina y un baño. Entonces si tuviéramos ese conocimiento de cómo se hacen estos tres, podríamos construir una casa. Y después sabiendo cómo se construyen casas, podríamos crear ciudades y países enteros. Pero como todo: un paso a la vez.

Armando piezas con los Blorgs

Nuestras piezas de lego con los Blorgs van a ser los axiomas. Ahora si le dijeramos a un Blorg que los Blorgs amarillos comen peces, no nos creerían, deberíamos darles una demostración de esto:

Proposición. Los Blorgs amarillos comen peces.

Demostración. Para empezar, vamos a notar que es una proposición del tipo «Si $x$ es un blorg amarillo entonces $x$ come peces». Esto es lo que queremos demostrar, entonces vamos a ir armando las piezas de lego poco a poco con los axiomas que ya sabíamos:

  • Usaremos que todos los Blorgs amarillos son Blargs. Es decir «si $x$ es un blorg amarillo, entonces $x$ es un blarg»
  • Usaremos que todos los Blargs comen peces. Es decir «si $x$ es un blarg, entonces $x$ come peces»

En las demostraciones vamos a ir usando cosas que ya conocemos (en este caso los axiomas) para poder ir aplicando pasos lógicos y reglas de inferencia para llegar a la conclusión deseada. Entonces como queremos ver que todos los Blorgs amarillos comen peces, entonces resulta natural «agarrar» un blorg amarillo y ver que ese blorg come peces (si pasa con un blorg amarillo, pasará para todos los Blorgs amarillos pues todos nuestros pasos lógicos aplicarán para todos los Blorgs amarillos). Así que empecemos considerando a $x$ un blorg amarillo. Sabemos que r «si $x$ es un blorg amarillo, entonces $x$ es un blarg» entonces como nuestro $x$ es un blorg amarillo, entonces es un blarg.

Ahora, sabemos que nuestra $x$ es un blarg, pero además sabemos que «si $x$ es un blarg, entonces $x$ come peces» entonces también nuestro blarg come peces. Por lo tanto los Blorgs amarillos comen peces.

$\square$

¿Viste cómo es que hicimos la demostración? Si consideramos

$ P(x) : x$ es blorg amarillo,

$ Q(x) : x$ es blarg,

$ R(x) : x$ come peces,

entonces realmente lo que hicimos fue usar la siguiente regla de inferencia válida:

$$ \begin{array}{rl} & P \Rightarrow Q \\ & Q \Rightarrow R \\ \hline \therefore & P \Rightarrow R \end{array}.$$

En este caso solo usamos esta regla de inferencia, pero más adelante veremos cómo se pueden usar otras y distintas reglas de inferencia. Apenas estamos empezando este tema, así que si aún tienes muchas dudas, no te preocupes y vuelve a leer la demostración si es necesario.

Notas

Estas son algunas anotaciones del artículo y no es necesario que las sepas, únicamente son curiosidades o temas por aparte que forman parte de cultura matemática

* Esta palabra viene del griego ἀξίωμα que significa «lo que se considera justo» y de hecho viene de la palabra ἄξιος (áxios) que significa «valioso» y en la antigua grecia se consideraban aquellas cosas que parecían evidentes y no hacía falta justificar.

Más adelante…

Apenas estamos empezando a explicar qué son estas «demostraciones». En el mundo de la matemática no hay algo como el recetario de las demostraciones, pero hay ideas o formas de pensar los problemas que te servirán para tener una idea de por dónde empezar a pensar a la hora de demostrar. Así que en las siguientes entradas vamos a ver algunas de estas «formas» de pensar los problemas y lo haremos con ayuda de los Blorgs.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Qué necesita un blorg para comer peces y ser amigo de los delfines?
  2. ¿Es posible que un blorg coma peces y frutos?
  3. ¿Qué argumentos lógicos podrías usar para demostrar que todo blorg rojo come los lunes?
  4. Verifica que

$$ \begin{array}{rl} & P \Rightarrow Q \\ & Q \Rightarrow R \\ \hline \therefore & P \Rightarrow R \end{array}$$

es una regla de inferencia válida.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Inferencias matemáticas

Por Guillermo Oswaldo Cota Martínez

Introducción

Antes de entrar de lleno a lo que será una parte importante en tu carrera en las matemáticas, vamos a establecer algunas definiciones que nos permiten aterrizar un poco la idea de usar una serie de proposiciones para ‘demostrar’ otras cosas. En esta entrada veremos algo llamado inferencias matemáticas.

La implicación

Pensemos un momento en la siguiente proposición:

$$((Q \Rightarrow P) \land Q) \Rightarrow P $$

Lo que nos quiere decir en términos sencillos es «Si sucede que $Q$ implica $P$» y sucede $Q$ entonces sucede $P$, es como decir «Si $n$ es impar entonces $n+1$ es par y además sabemos que $n$ es impar» ¿Qué podrías decir entonces? Por un lado sabes que si $n$ es impar entonces $n+1$ es par, pero aún no sabes nada sobre si $n$ es impar o no, pero la siguiente parte del enunciado, te dice que en efecto, $n$ es impar. Entonces podríamos concluir con estas dos premisas, que $n+1$ es par. Imagina por un momento que no sabes si 8 es impar o par. Entonces tú sabes que 7 es impar, y además sabes que siempre después de un número impar viene uno par, con esta información es suficiente para saber que 8 es par, ¿No lo crees?

Lo que hicimos en este ejemplo fue agarrar dos proposiciones: $P\Rightarrow Q$, $Q$ a las que les llamaremos Premisas y dijimos que si se cumplían ambas, entonces también se cumplía $P$ que en este caso le llamaremos Conclusión.

Premisas y Conclusiones

Esto no es otra cosa que las llamadas reglas de inferencia y estas se forman con proposiciones $P_1,P_2,\dots,P_n$ a las que se les nombra premisas, junto a una proposición $R$ llamada conclusión. Y se le llama regla de inferencia a la siguiente proposición:

$$( P_1 \land P_2 \land \dots \land P_n) \Rightarrow R $$

La forma en que escribiremos las reglas de inferencia es la siguiente:

$$ \begin{array}{rl}& P_1\\&P_2\\ & \vdots \\ &P_n\\ \hline \therefore & R\ \text{(Por lo tanto R)} \end{array}$$

Volvamos de nuevo a nuestro ejemplo. Las premisas en este caso son $Q$ y $Q \Rightarrow P$ y la conclusión es $P$. Ahora veamos la tabla de verdad de la regla de inferencia $((Q \Rightarrow P) \land Q) \Rightarrow P $:

$P$$Q$$Q \Rightarrow P$$Q \Rightarrow P \land Q$$(Q \Rightarrow P \land Q) \Rightarrow P$
$0$$0$ 1 0
$0$$1$ 0 0 1
$1$$0$ 1 0 1
$1$$1$ 1 1

¿Notas algo peculiar? ¡Pues resulta que la regla de inferencia que dijimos es una tatuología! (Y sí, reciclamos las tablas de verdad de la entrada donde introdujimos el concepto tautología). En el caso en donde una regla de inferencia sea una tautología, diremos que es una regla de inferencia válida .

Los ingredientes de la validez

Ahora que tenemos las partes de la inferencia, veamos un poco su comportamiento. Supongamos que tenemos la regla de inferencia válida

$$ (P_1 \land P_2 \land \dots \land P_n) \Rightarrow Q $$

Sabemos que como es una regla válida, siempre va a ser una tautología. Por un lado tenemos a las premisas $P_1,P_2,\dots P_n$, y estas van a entrar a la regla de inferencia unidas mediante la conjunción: $P_1 \land P_2 \land \dots \land P_n$. Con que una de estas premisas sea falsa, entonces nuestra conclusión ya falla, pues no podríamos decir con seguridad que la conclusión sea válida. Entonces para poder decir que $Q$ se cumple, necesitamos que todas y cada una de las premisas se cumpla.

Algunos ejemplos de inferencias

A continuación vamos a ver algunos ejemplos de algunas reglas de inferencias válidas.

La regla de inferencia válida más simple que se nos puede ocurrir es la siguiente:

$$ \begin{array}{rl}& P\\ \hline \therefore & P \end{array}$$

En donde básicamente estamos diciendo que si tenemos la premisa $P$ entonces va a pasar $P$, lo cual es muy fácil de verificar.

Ahora considera el caso en donde tenemos las premisas $P$ y $Q$ y la conclusión es $P\land Q$. En este caso tendríamos la regla de inferencia:

$$ \begin{array}{rl} & P\\ & Q\\ \hline \therefore & P \land Q \end{array}$$

Esto claramente es válido, pues la proposición $(P \land Q) \Rightarrow (P \land Q)$ siempre es cierta.

Nota que para que una regla de inferencia no sea válida, se tenga que tener ‘un caso’ en que las premisas sean ciertas y la conclusión no. Por ejemplo, considera la siguiente regla de inferencia:

$$ \begin{array}{rl} & P \\ \hline \therefore & Q \end{array}$$

La premisa $P$ puede ser cierta, pero nada nos asegura que $Q$ pase, ya que puede ser cierta o falsa, entonces esta no es una premisa válida. Piensa esto como: ¿Qué pasaría si todas y cada una de las premisas fuera cierta? Entonces ¿podría verificar que la conclusión es cierta?

Retomemos de nuevo el ejemplo con el que empezamos el tema:

$$ \begin{array}{rl} & Q \Rightarrow P \\ & Q\\ \hline \therefore & P \end{array}$$

Y ahora, piensa: ¿Qué pasaría si todas mis premisas fueran ciertas? Entonces sabríamos que pasa $Q$, y anotamos mentalmente que «$Q$ es verdadero». Pero además $Q \Rightarrow P$ también es verdad. Y como tenemos que $Q$ es verdad, entonces $P$ también es verdad. Y justo esta es la conclusión a la que queríamos llegar ¡Yay! Entonces al suponer que todas nuestras premisas fueron verdaderas, y aplicando un poco de «lógica» llegamos a que nuestra conclusión es verdadera. Un poco de esto se va a tratar la matemática que sigue. A partir de ahora vamos a empezar a usar esta forma de pensar, estamos rascando la fibra de la matemática y con ello empieza el viaje hacia un bosque lleno de distintas áreas, desde el álgebra y el cálculo, pasando por la geometría y la probabilidad. Todas ellas llevan la capa de la matemática porque partirán de un tronco común que nosotros estamos sentando en estas hojas. No en muchas entradas verás cómo todo esto se relaciona al quehacer matemático.

Más adelante…

Acabamos de establecer la base para uno de los cimientos sobre el cuál se sustenta la idea de «matemáticas» que es justo la forma en que pensaremos de ahora en adelante. No te preocupes si aún no puedes expresar bien la lógica detrás de las reglas de inferencia o sus trucos. Esto apenas comienza, pues en las siguientes entradas relacionaremos lo visto ahora con los bloques que construirán a la matemática: las demostraciones. Y por ahí conocerás antes una historia que te introducirán a esta idea.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que $P \Rightarrow P$ es una regla de inferencia válida.
  2. Verifica que las siguientes reglas de inferencia son válidas con tablas de verdad:
  • $$ \begin{array}{rl} & \neg P \Rightarrow \neg Q \\ & \neg P \\ \hline \therefore & \neg Q \end{array}$$
  • $$ \begin{array}{rl} & P \lor Q \\ & \neg P \\ \hline \therefore & Q \end{array}$$

Ahora haz lo mismo pero da un razonamiento «deductivo» (supón que todas las premisas y explica por qué la conclusión es cierta) de porqué es válida la siguiente regla de inferencia:

  • $$ \begin{array}{rl} & P \Rightarrow Q \\ & Q \Rightarrow R \\ \hline \therefore & P \Rightarrow R \end{array}$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Negaciones de proposiciones con conectores y cuantificadores

Por Guillermo Oswaldo Cota Martínez

Introducción

Ya hemos visto cómo podemos hacer uso de las proposiciones que usan conectores y algunos ejemplos de sus negaciones. Y también ya hemos visto sobre el significado de los cuantificadores así como su uso y ejemplos. Pues en esta entrada haremos uso del conector negación para entender qué significa negar una proposición con conector o cómo son las negaciones de los cuantificadores.

Conectores y su negación

Ya hemos repasado cuatro conectores binarios:

  • Conjunción
  • Disyunción
  • Implicación
  • Doble Implicación

Ahora veamos qué sucede cuando negamos cada uno de estos.

Conjunción y disyunción

Esta es una propiedad que ya visitamos con anterioridad cuando hablamos de la conjunción y disyunción, y que a la negación de estas dos se les conocen como Leyes de Demorgan y nos dicen que la negación de estas corresponden a:

  • $\neg (P \lor Q) = \neg P \land \neg Q$
  • $\neg (P \land Q) = \neg P \lor \neg Q$

Siendo que trabajemos con alguna de estas, solo es necesario recordar: La conjunción se niega con la disyunción y la disyunción se niega con la conjunción.

Implicación

Para ver cómo es que se niega este conector, recordemos su equivalencia lógica: $P \Rightarrow Q = \neg P \lor Q$. Lo siguiente que podemos hacer es aplicar las leyes de Demorgan para encontrar cómo es la negación de esta. Nota que $\neg (P \Rightarrow Q) = \neg(\neg P \lor Q) =P \land \neg Q $. Lo cuál nos quiere decir: «La negación de la implicación es que se cumpla la hipótesis y no la tesis», que es la única forma en que no se cumple la implicación.

Doble implicación

Ahora, recordemos que la doble implicación $P \Leftrightarrow Q$ es una equivalencia lógica a $(P\Rightarrow Q) \land (Q \Rightarrow P)$. De esta manera

$$ \begin{aligned} \neg(P \Leftrightarrow Q) &= \neg((P\Rightarrow Q) \land (Q \Rightarrow P))\\ &=\neg(P\Rightarrow Q) \lor \neg(Q \Rightarrow P) \\ &= (P \land \neg Q) \lor (Q \land \neg P)\end{aligned}$$

Esto es una equivalencia a decir «Las dos proposiciones deben tener valores de verdad distintos». Para que la negación de la doble implicación sea verdadera necesitamos que $P$ sea verdad y $Q$ falsa o $Q$ verdad y $P$ falsa.

Para recapitular esta parte, recuerda la siguiente tabla:

ConectorNegación
$P \lor Q$$\neg P \land \neg Q$
$P \land Q$$\neg P \lor \neg Q$
$P \Rightarrow Q$$P \land \neg Q $
$P \Leftrightarrow Q$$(P \land \neg Q) \lor (Q \land \neg P)$

Negando cuantificadores

Ahora que ya hemos visto sobre las negaciones de los conectores, es turno de que hablemos un poco de los cuantificadores. Y para esto recordemos que un cuantificador nos da información de cómo una proposición con término variable o también conocidas como predicados.

Negación de cuantificadores universales

Observa por un momento el siguiente predicado:

«Todos los números primos son impares»

Esta proposición la podemos ver de la forma $\forall x P(x)$ en el universo de discurso de los número enteros. Y la proposición nos dice que cada número primo que tomemos, será impar. ¿Esto es verdad? Pues resulta que no. Y de hecho el único número primo que no es impar es el 2. En este caso no podemos decir que sea verdad el cuantificador, esto pues existe al menos un número entero que no cumple la proposición. ¿Ves a dónde vamos con las palabras resaltadas?

Para negar el cuantificador $\forall$ usamos el cuantificador $\exists$ diciendo que existe un elemento que no cumple la propiedad:

$\neg(\forall x P(x)) = \exists x \neg P(x)$

Pensemos en el significado de la expresión. Si tenemos el esquema proposicional $\neg(\forall x P(x))$ significa que en el universo de discurso, existe una variable $a$ donde $P(a)$ es falsa, es decir $\neg P(a)$ es verdadera.

Negación de cuantificadores existenciales

Por otro lado, pensemos en el siguiente ejemplo:

«Existe un número entero mayor a 1 y menor a 2»

Para poder decir si es verdad o no, deberíamos ponernos de acuerdo en qué es un número entero o qué significa que sea menor o mayor que otro. Pero nuestra intuición nos dice que esto no es cierto (y estamos en lo correcto al pensar así). Ahora ¿Cómo se te ocurre que podríamos negar la expresión $\exists x P(x)$, donde nuestro universo de discurso son los números enteros y $P(x) : 1<x<2$? Pues necesitaríamos que no exista algún elemento que cumpla la condición, entonces podemos decir:

$\neg (\exists x P(x)) = \nexists x P(x)$

Pero podemos ir un poco más allá, y notar que lo que nos dice esta negación es que cualquier elemento que tomemos de nuestro universo de discurso, no cumplirá con la proposición. Es decir, «Para todo x en el universo de discurso, no se cumplirá el predicado». Dicho de otra forma:

$= \neg (\exists x P(x)) = \forall x \neg (P(x))$

Y por transitividad, ahora sabemos que $\nexists x P(x) = \forall x \neg (P(x))$. Y en nuestro ejemplo significa que «cada número entero no cumplirá que sea menor a 2 y mayor a 1».

Más adelante…

Llegando a este punto, ya tenemos el conocimiento necesario para hablar de una sustancia muy importante en la matemática: las demostraciones. Esto es, ¿Cómo podemos estar seguros de cuándo algo se cumple y cuándo no? ¿Qué significa que un enunciado se derive de otros enunciados? Y más importante: en lo que a partir de ahora estudiarás en las matemáticas, vamos a introducir algunas técnicas de demostración que te ayudarán a entender de qué estamos hablando en matemáticas cuando haya que verificar algo. Y para esto usaremos algo conocido como reglas de inferencia.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Cuál es la negación de las siguientes proposiciones?
    • $P\lor (Q \Rightarrow S)$
    • $(P \Leftrightarrow (Q\land \neg S))$
    • $P \land (Q\lor R)$
    • $P \Rightarrow(Q \Rightarrow P)$
  2. ¿Cuál es la negación de los siguientes predicados?
    • $\forall x (P(x)\Rightarrow Q(x))$
    • $\exists y (\forall x(P(x)\land Q(y)))$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Ecuaciones Diferenciales I – Videos: Ecuación diferencial de Euler

Por Eduardo Vera Rosales

Introducción

En la entrada anterior desarrollamos la teoría de soluciones en series de potencias alrededor de un punto ordinario de la ecuación diferencial $$a_{0}(t)\frac{d^{2}{y}}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0.$$ En cierta forma el teorema de existencia de soluciones con desarrollo en series de potencias alrededor del punto ordinario que probamos nos facilitó las cosas.

Sin embargo, cuando tenemos puntos singulares la teoría falla. Es por eso que debemos encontrar un método alternativo para estudiar soluciones alrededor de puntos singulares a nuestra ecuación diferencial. Antes de comenzar de manera general, lo primero que haremos será considerar una ecuación diferencial en particular, con $t_{0}=0$ como punto singular, la cual es bastante sencilla de resolver: esta es la ecuación de Euler, debido al famoso matemático Leonhard Euler (si no lo conoces o quieres saber acerca de él, te dejo el siguiente enlace a su biografía), y que tiene la forma $$t^{2}\frac{d^{2}{y}}{dt^{2}}+\alpha t\frac{dy}{dt}+\beta y=0$$ donde $\alpha$ y $\beta$ son constantes.

Resolveremos esta ecuación y en la próxima entrada trataremos de generalizar este mismo resultado a una clase más general de ecuaciones con puntos singulares.

Vamos a comenzar!

Leonhard Euler
Leonhard Euler. Blog de matemática y TIC’s (2018).

Ecuación de Euler

En el primer video resolvemos de manera general la ecuación de Euler para cualquier intervalo que no contenga al punto singular $t_{0}=0$, y en el segundo video resolvemos un ejemplo particular de este tipo de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que si $(\alpha -1)^{2}-4\beta=0$ entonces $W[t^{r_{1}}, t^{r_{1}}\ln{t}]\neq0$, donde $r_{1}$ es la única raíz de la ecuación cuadrática $r^{2}+(\alpha -1)r+\beta=0$. Por tanto, la solución general a la ecuación de Euler cuando $(\alpha -1)^{2}-4\beta=0$ y $t>0$ es $y(t)=c_{1}t^{r_{1}}+c_{2}t^{r_{1}}\ln{t}$.
  • Si $(\alpha -1)^{2}-4\beta<0$ entonces las raíces $r_{1}$ y $r_{2}$ a la ecuación $r^{2}+(\alpha -1)r+\beta=0$ son complejas. Prueba que $t^{r_{1}}$ y $t^{r_{2}}$ son efectivamente soluciones a la ecuación de Euler, y que además son linealmente independientes. Por tanto, la solución general a la ecuación de Euler cuando $(\alpha -1)^{2}-4\beta<0$ y $t>0$ es $y(t)=c_{1}t^{r_{1}}+c_{2}t^{r_{2}}$. (Sigue el hint dado en el video para hacer las cuentas más sencillas).
  • La solución general encontrada en el problema anterior es una función de variable compleja. Haz elecciones adecuadas de $c_{1}$ y $c_{2}$ para ver que si $r_{1}=a+bi$ y $r_{2}=a-bi$, entonces $t^{a}cos(b\ln{t})$ y $t^{a}sin(b\ln{t})$ son soluciones a la ecuación de Euler para el caso del ejercicio anterior. Prueba que éstas son soluciones linealmente independientes, y por tanto $y(t)=k_{1}t^{a}cos(b\ln{t})+k_{2}t^{a}sin(b\ln{t})$ es solución general a la ecuación de Euler, donde $y$ es una función de valores reales.
  • Resolver la ecuación $$t^{2}\frac{d^{2}{y}}{dt^{2}}+2t\frac{dy}{dt}+4y=0$$ tanto para $t>0$ como para $t<0$.
  • Resuelve el problema de condición inicial $$t^{2}\frac{d^{2}{y}}{dt^{2}}-7t\frac{dy}{dt}+9y=0; \,\,\,\,\, y((1)=0, \frac{dy}{dt}(1)=2, t>0.$$

Más adelante

Una vez que hemos encontrado la solución general a la ecuación de Euler, lo siguiente tratar de utilizar este mismo método para resolver una clase más general de ecuaciones diferenciales con puntos singulares. Dado que algunas de estas ecuaciones serán bastante complicadas de resolver, clasificaremos los puntos singulares en dos tipos: regulares e irregulares, y nos enfocaremos exclusivamente a resolver ecuaciones diferenciales alrededor de puntos singulares regulares.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»