Cálculo Diferencial e Integral I: Polinomios de Taylor (Parte 1)

Por Karen González Cárdenas

Introducción

Recordemos que una función polinómica $p$ es de la forma:
$$p(x)=a_0+ a_1 x+ \ldots +a_n x^{n}$$
donde vemos que es fácil calcular el valor de $p$ para cualquier valor de $x$. Desafortunadamente, esto no es así con funciones como:
\begin{align*}
f(x)&= \sin(x) & g(x)&= \log(x) & h(x)&=e^{x}
\end{align*}

En esta entrada estudiaremos algunos resultados que nos ayudarán a encontrar polinomios que sean buenas aproximaciones a funciones como $f$, $g$ y $h$.

Revisitando a los polinomios

Si tenemos un polinomio:
$$p(x)=a_0+ a_1 x+ \ldots +a_n x^{n}$$
vemos que los coeficientes $a_i$ los podemos reescribir en términos de $p(x)$ y de sus derivadas en cero:
$$a_0=p(0).$$
Observación: Consideramos a la «derivada cero de $p$» como la función original.
$$p'(x)=a_1+2a_2 x+\ldots +n a_n x^{n-1} \Rightarrow a_1=p'(0)$$
\begin{align*}
p \dquote (x)=2a_2+ \ldots + n(n-1)a_nx^{n-2} &\Rightarrow 2a_2=p \dquote (0)\\
&\Rightarrow a_2=\frac{p \dquote (0)}{2}
\end{align*}

Si continuamos con este procedimiento vemos que para el k-ésimo coeficiente ocurre que:
$$p^{k}(x)=k! \cdot a_k \Rightarrow a_k=\frac{p^{(k)}(0)}{k!}$$

Observaciones:

  • Consideramos $0! =1$ y recordemos que k factorial se define como:
    $$k!= 1 \cdot 2 \cdot \ldots \cdot (k-1) \cdot k$$
    Así $6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 =720$.
  • Usaremos $p^{(k)}(0)$ para referirnos a la k-ésima derivada del polinomio en cero. Por lo que:
    $$p^{(0)}(0)=p(0)$$
  • $a_k$ está bien definido cuando $k=0$

Usando un desarrollo similar ahora para un polinomio de la forma:
$$p(x)=a_0+ a_1 (x-a)+a_2 (x-a)^{2}+ \ldots +a_n (x-a)^{n}$$
donde estamos reemplazando las potencias de $x$ por potencias de $x-a$.

Vemos que sus coeficientes $a_i$ en términos de $p$ en $a$ serían:
$$a_0=p(0)$$
$$p^{(1)}(x)=a_1+2a_2(x-a)+\ldots + n a_n (x-a)^{n-1} \Rightarrow a_1= p^{(1)} (a)$$
\begin{align*}
p^{(2)}(x)=2a_2+ \ldots +(n-1)(n) a_n (x-a)^{n-2} &\Rightarrow 2a_2 = p^{(2)}(a)\\
&\Rightarrow a_2 = \frac{p^{(2)}(a)}{2}
\end{align*}
\begin{align*}
p^{(3)}(x)= 6 a_3+ \ldots + (n-2)(n-1)(n)a_n(x-a)^{n-3} &\Rightarrow 6a_3 = p^{(3)}(a)\\
&\Rightarrow a_3 =\frac{ p^{(3)}(a)}{6}
\end{align*}
$$\vdots$$
Concluimos que:
$$a_k=\frac{p^{(k)}(a)}{k!}$$

Generalizando aún más…

Para generalizar más el planteamiento anterior, tomemos ahora una función $f$ que tiene sus $n$ derivadas en $a$:
$$f^{(1)}(a), \ldots , f^{(n)}(a).$$

Tenemos que los coeficientes $a_i$ en términos de $f(a)$ están dados por:
$$a_k=\frac{f^{(k)}(a)}{k!}$$
con $0 \leq k \leq n$.

Así definimos:
$$T_{n,a}(x)= a_0+a_1(x-a)+ \ldots + a_n(x-a)^{n}$$
al polinomio de Taylor de grado $n$ de la función $f$ en $a$.
Por lo que:
$$T_{n,a}^{(k)}(a)=f^{(k)}(a)\quad , 0\leq k \leq n.$$

Definición de polinomio de Taylor

Definición (Polinomio de Taylor): Sea $f: (x_0,y_0) \rightarrow \r$, $a \in (x_0,y_0)$ con $f$ n-veces derivable en $a$. El polinomio de Taylor para $f$ con centro en $a$ de grado $n$ se define como:
$$T_{n,a}(x)=\sum_{j=0}^{n} \frac{f^{(j)}(a)}{j!}(x-a)^{j}$$
donde $f^{(0)}(a)=f(a)$.

¿Es una buena aproximación?

Ya que hemos definido al polinomio de Taylor para una función $f$, queremos saber si éste es una buena aproximación. Para ello veamos la demostración del siguiente teorema:

Teorema: Sea $f: (x_0,y_0) \rightarrow \r$, $a \in (x_0,y_0)$ tal que $f$ es de clase $C^{(n)}$ en $a \Rightarrow$ existe el polinomio de Taylor $T_{n,a}$ con:
$$a_k=\frac{f^{k}(a)}{k!} \quad , 0 \leq k \leq n$$
que cumple con que:
$$\lim_{x \to a} \frac{f(x)-T_{n,a}(x)}{(x-a)^{n}}=0$$

Demostración: Iniciemos sustituyendo por definición a $T_{n,a}(x)$
\begin{align*}
\frac{f(x)-T_{n,a}(x)}{(x-a)^{n}} &= \frac{f(x)- \sum_{j=0}^{n} \frac{f^{(j)}(a)}{j!}(x-a)^{j}}{(x-a)^{n}}\\
&= \frac{f(x)- \sum_{j=0}^{n-1} \frac{f^{(j)}(a)}{j!}(x-a)^{j}}{(x-a)^{n}} – \frac{\frac{f^{(n)}(a)}{n!}(x-a)^{n}}{(x-a)^{n}}\\
&= \frac{f(x)- \sum_{j=0}^{n-1} \frac{f^{(j)}(a)}{j!}(x-a)^{j}}{(x-a)^{n}} – \frac{f^{(n)}(a)}{n!}
\end{align*}

Para facilitar un poco la redacción consideremos a:
\begin{align*}
S(x)&=\sum_{j=0}^{n-1} \frac{f^{(j)}(a)}{j!}(x-a)^{j}\\
h(x)&= (x-a)^{n}
\end{align*}

Por lo que tenemos:
$$\frac{f(x)-S(x)}{h(x)}- \frac{f^{(n)}(a)}{n!} .$$

Probemos que el límite cuando $x$ tiende a $a$ es cero:
$$\lim_{x \to a} \frac{f(x)-S(x)}{h(x)}- \frac{f^{(n)}(a)}{n!} =0.$$

Que es equivalente a probar que:
$$\lim_{x \to a} \frac{f(x)-S(x)}{h(x)}=\frac{f^{(n)}(a)}{n!}.$$
Observemos que para $h$ se tiene en sus derivadas los siguiente:
\begin{align*}
h^{(0)}(x)&= (x-a)^{n} = \frac{n! (x-a)^{n-0}}{(n-0)!}\\
h^{(1)}(x)&= n (x-a)^{n-1} = \frac{n! (x-a)^{n-1}}{(n-1)!}\\
h^{(2)}(x)&= n (n-1)(x-a)^{n-2} = \frac{n! (x-a)^{n-2}}{(n-2)!}\\
\end{align*}
$$\vdots$$
$$h^{(k)}(x)=\frac{n! (x-a)^{n-k}}{(n-k)!}$$

Y para $S(x)$ vemos que sus derivadas en $a$ son:
\begin{align*}
S(x)&=a_0+a_1 (x-a)+a_2(x-a)^{2}+ \ldots + a_{n-1}(x-a)^{n-1}\\
&\Rightarrow S(a)=a_0\\
S^{(1)}(x)&= a_1+2 a_2 (x-a)+ \ldots +(n-1)a_{n-1}(x-a)^{n-2}\\
&\Rightarrow S^{(1)}(a)=a_1\\
S^{(2)}(x)&= 2a_2+ \ldots + (n-1)(n-2)a_{n-1} (x-a)^{n-3}\\
&\Rightarrow S^{(2)}(a)=2 a_3
\end{align*}
$$\vdots$$

Reescribiendo los $a_i$ obtenemos:
\begin{align*}
S^{(0)}(a)&= \frac{f^{(0)}(a)}{0!}=f^{(0)}(a)\\
S^{(1)}(a)&= \frac{f^{(1)}(a)}{1!}=f^{(1)}(a)\\
S^{(2)}(a)&= \frac{f^{(2)}(a)}{2!}(2)=f^{(2)}(a)\\
\end{align*}

$$\vdots$$

\begin{align*}
S^{(k)}(a)&= \frac{f^{(k)}(a)}{k!}(k!)=f^{(k)}(a)
\end{align*}

De este modo al considerar los límites:
\begin{align*}
\lim_{x \to a}(f(x)-S(x)) &= f(a)- S(a)=0\\
\lim_{x \to a}(f^{(1)}(x)-S^{(1)}(x)) &= f^{(1)}(a)- S^{(1)}(a)=0\\
\end{align*}
$$\vdots$$
\begin{align*}
\lim_{x \to a}(f^{(n-2)}(x)-S^{(n-2)}(x)) &=0\\
\end{align*}

Y los límites para $h$:
\begin{align*}
\lim_{x \to a}h(x)&= g(a)= (a-a)^{n}=0\\
\lim_{x \to a} h^{(1)}(x)&=g^{(1)}(a)= \frac{n! (a-a)^{n-1}}{(n-1)!}=0\\
\end{align*}
$$\vdots$$
\begin{align*}
\lim_{x \to a} h^{(n-2)}(x)&=g^{( n-2 )}(a)= 0\\
\end{align*}
Del análisis anterior notamos que podemos aplicar la Regla de L’Hôpital que nos decía que teniendo que: $$\lim_{x \to a^+} f(x) = 0 = \lim_{x \to a^+} g(x).$$

Si $\lim\limits_{x \to a^+} \frac{f'(x)}{g'(x)} = L \in \RR$, entonces $\lim\limits_{x \to a^+} \frac{f(x)}{g(x)} = L$.

Así al hacerlo $n-1$ veces en el siguiente límite se da la igualdad:
\begin{align*}
\lim_{x \to a}\frac{f(x)-S(x)}{(x-a)^{n}}&=\lim_{x \to a}\frac{f^{(n-1)}(x)-S^{(n-1)}(x)}{\frac{n!(x-a)^{n-n+1}}{(n-n+1)!}}\\
&=\lim_{x \to a}\frac{f^{(n-1)}(x)-S^{(n-1)}(x)}{\frac{n!(x-a)}{(1)!}}\\
&=\lim_{x \to a}\frac{f^{(n-1)}(x)-S^{(n-1)}(x)}{n! (x-a)}\\
\end{align*}

Recordemos que $S(x)$ es un polinomio de grado $n-1$ por lo que al haberlo derivado $n-1$ veces lo que obtenemos para $S^{(n-1)}(x)$ es una constante que resulta ser:
$$ S^{(n-1)}(x) = f^{(n-1)}(a).$$

Sustituyendo en el límite:
\begin{align*}
\lim_ {x \to a}\frac{f^{(n-1)}(x)-S^{(n-1)}(x)}{n! (x-a)} &= \lim_{x \to a}\frac{ f^{(n-1)}(x)- f^{(n-1)}(a)}{n! (x-a) }\\
&= \frac{1}{n!}\left(\lim_{x \to a}\frac{ f^{(n-1)}(x)- f^{(n-1)}(a)}{x-a} \right )
\end{align*}

De este modo el límite resultante es por definición la n-ésima derivada de $f$ en $a$, es decir:
$$ \lim_{x \to a}\frac{ f^{(n-1)}(x)- f^{(n-1)}(a)}{x-a} = f^{(n)}(a).$$

Consecuentemente:
$$\lim_{x \to a}\frac{f(x)-S(x)}{(x-a)^{n}}=\frac{ f^{(n)}(a)}{n!}.$$

$\square$

Con la demostración terminada podemos afirmar que los polinomios de Taylor son una buena aproximación, ahora veamos algunos ejemplos.

Ejemplo 1

Comencemos por obtener el polinomio de Taylor para la función exponencial en $a=0$:
$$f(x)=e^{x}.$$
Veamos que todas las derivadas son de la forma:
$$f^{(k)}(x)=e^{x}.$$
Por lo que la k-ésima derivada valuada en $a=0$:
$$f^{(k)}(a)=e^{0}=1.$$
Sustituyendo en la definición de polinomio de Taylor tenemos:
$$T_{n,a}(x)=\sum_{j=0}^{n} \frac{1}{j!}x^{j}$$
Comencemos por ver cuáles serían los polinomios de Taylor de grado $0$,$1$ y $2$:
\begin{align*}
T_{0,0}(x)&=\frac{1}{0!}\\
T_{1,0}(x)&= \frac{1}{0!} + \frac{1}{1!}(x-0)\\
T_{2,0}(x)&= \frac{1}{0!} + \frac{1}{1!}(x-0) + \frac{1}{2!}(x-0)^{2}\\
\end{align*}

Al graficar dichos polinomios notamos que entre mayor es el grado del polinomio, mejor es la aproximación a la función:

Ejemplo 2

Ahora obtendremos el polinomio de Taylor de grado $5$ con centro en $a=0$ para:
$$g(x)=\sin(x).$$

Por lo que tenemos, calculamos las primeras cinco derivadas de $g$ y las evaluamos en cero:
\begin{align*}
g(x)&=\sin(0)=0\\
g^{(1)}(x)&=\cos(0)=1\\
g^{(2)}(x)&=-\sin(0)=0\\
g^{(3)}(x)&=-\cos(0)= -1\\
g^{(4)}(x)&=\sin(0)=0\\
g^{(5)}(x)&=\cos(0)=1\\
\end{align*}

Aplicando la definición de Taylor tenemos que su polinomio sería:
\begin{align*}
T_{5,0}&=\frac{0}{0!}(x-0)^{0}+\frac{1}{1!}(x-0)^{1}+\frac{0}{2!}(x-0)^{2}+\frac{(-1)}{3!}(x-0)^{3}+\frac{0}{4!}(x-0)^{4}+\frac{1}{5!}(x-0)^{5}\\
&=x-\frac{1}{3!}x^{3}+\frac{1}{5!}x^{5}
\end{align*}

Al graficar este polinomio $T_{5,0}=x-\frac{1}{3!}x^{3}+\frac{1}{5!}x^{5}$ vemos lo siguiente:

Ya que hemos revisado algunos ejemplos, en la siguiente sección te dejamos una lista de funciones de las que se te pide encontrar sus respectivos polinomios de Taylor siguiendo un procedimiento análogo.

Más adelante

Ahora que vimos la definición formal de los polinomios de Taylor, que resultan ser una buena aproximación para cualquier función $f$ con las características ya especificadas y algunos ejemplos, en la siguiente entrada veremos un resultado relacionado con su residuo.

Tarea moral

Obtener el polinomio de Taylor para las siguientes funciones:

  • $f(x)= \tan(x)$ de grado $3$ con $a=0$.
  • $g(x)= \sin(x)$ de grado $4$ con $a=\frac{\pi}{6}$.
  • $h(x)= e^{e^{x}}$ de grado $3$ con $a=0$.
  • $k(x)= \log(x+1)$ de grado $4$ con $a=0$.
  • $j(x)= \cos(x)$ de grado $m$ con $a=\frac{\pi}{2}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: La derivada de la función inversa

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada estudiaremos la relación que existe entre la derivada de una función y la derivada de su función inversa (en los casos donde esta última exista). Para ello, estableceremos una restricción, enfocándonos en las funciones que son estrictamente monótonas y, usando los resultados de la continuidad de la función inversa, podremos asegurar la continuidad de sus funciones inversas.

Derivada de la función inversa

Consideremos una función que sea estrictamente monótona y continua en un intervalo $A$, entonces se tiene que la inversa $f^{-1}$ está definida sobre el intervalo $B = f(A)$. Con la finalidad de relacionar ambas funciones, usaremos el hecho de que la composición de ambas genera la función identidad, es decir, $f^{-1}(f(x))=x$. Además, si ambas funciones son derivables y considerando $a \in A$ y $f(a) = b \in B$, mediante la regla de la cadena obtenemos:

\begin{gather*}
& (f^{-1}(f(a)) )’ = a’. \\ \\
\Rightarrow & (f^{-1})'(f(a)) \cdot f'(a) = 1. \\ \\
\Rightarrow & (f^{-1})'(b) = \frac{1}{f'(a)}.
\end{gather*}

Es importante destacar que para aplicar la regla de la cadena se asumió que tanto $f$ como $f^{-1}$ son derivables. Por lo que esto no nos ayuda a probar que $f^{-1}$ es derivable, pero nos permite tener una noción de qué debería suceder en caso de serlo.

A continuación probaremos el Teorema de Carathéodory que quedó como tarea moral en esta entrada y que nos será de utilidad más adelante.

Teorema de Carathéodory. Sea $f$ definida en un intervalo $A$ y sea $a \in A$. Entonces $f$ es derivable en $a$ si y solo si existe una función $\rho$ en $A$ que es continua en $a$ y satisface:
$$f(x) – f(a) = \rho (x) (x-a) \text{ para } x \in A.$$
En este caso, se tiene que $\rho(a) = f'(a)$.

Demostración.

$ \Rightarrow]$ Sea $A$ un intervalo y supongamos que $f: A \to \RR$ es derivable en $a \in A$.

Como $f'(a)$ existe, podemos definir la siguiente función.

$$\rho (x) = \begin{cases} \frac{f(x)-f(a)}{x-a} & \text{ si } x \neq a \text{ y } x \in A \\
f'(a) & \text{ $x = a$}. \end{cases}$$

Podemos observar que la función tiene la estructura de la definición de límite en $a$. Además, como $\lim\limits_{x \to a} \rho(x) = f'(a)$, se concluye que $\rho$ es una función continua en $a$. Si $x \in A$, podemos dividir el problema en dos casos.

Caso1: $x = a$.

Como $x= a$, entonces tanto para $f(x)-f(a)$ como para $\rho (x) (x-a)$ se obtiene cero, por lo cual se cumple que $f(x) – f(a) = \rho (x) (x-a)$.

Caso 2: $x \neq a$.

Se sigue que $x-a \neq 0$, y por tanto

\begin{align*}
\rho (x) (x-a) & = \frac{f(x)-f(a)}{x-a} (x-a) \\
& = f(x)-f(a).
\end{align*}

De ambos casos, se concluye que $f(x) – f(a) = \rho (x) (x-a)$.

$\Leftarrow]$ Sea $A$ un intervalo y supongamos que existe una función $\rho$ que es continua en $a$ y que cumple $$f(x) – f(a) = \rho (x) (x-a) \text{ para } x \in A.$$

Consideremos $x \neq a$. Al dividir la expresión anterior entre $x-a \neq 0$ y usando el hecho de que $\rho$ es continua en $a$, se tiene que el siguiente límite existe

\begin{align*}
\rho(a) & = \lim_{x \to a} \rho(x) \\
& = \lim_{x \to a} \frac{f(x)-f(a)}{x-a}.
\end{align*}

Se concluye que $f$ es derivable en $a$ y $f'(a) = \rho(a)$.

$\square$

Ahora veremos un teorema que nos indica qué sucede con la derivada de la función inversa.

Teorema. Sean $A \subset \RR$ un intervalo y $f:A \to \RR$, tal que $f$ es estrictamente monótona y continua en $A$. Sean $B = f(A)$ y $f^{-1}: B \to \RR$ la función estrictamente monótona y continua inversa de $f$. Si $f$ es derivable en $a \in A$ y si $f'(a) \neq 0$, entonces $f^{-1}$ es derivable en $b = f(a)$ y

$$f^{-1}(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}.$$

Demostración.

Para $a \in \RR$, por el teorema de Carathéodory, se obtiene una función $\rho$ en $A$ tal que $\rho$ es continua en $a$ y se cumple que

$$f(x)-f(a) = \rho(x)(x-a), \text{ para }x \in A.$$

y $\rho(a)=f'(a)$. Puesto que $\rho(a) \neq 0$ por hipótesis, existe un intervalo alrededor de $a$ donde la función no es cero, es decir, existe $V = (a-\delta, a+\delta)$ tal que $\rho(x) \neq 0$ para todo $x \in V \cap A$ (por el primer teorema visto en esta entrada).

Por lo anterior, si $U = f(V)$, entonces $f^{-1}$ satisface que $f(f^{-1}(y)) = y$ para todo $y \in U$, así se tiene que

\begin{gather*}
y-b=f(f^{-1}(y))-f(a) = \rho(f^{-1}(y)) \cdot (f^{-1}(y)-f^{-1}(b)). \\ \\
\therefore y-b = \rho(f^{-1}(y)) \cdot (f^{-1}(y)-f^{-1}(b)).
\end{gather*}

Dado que $\rho(f^{-1}(y)) \neq 0$ para $y \in U$, de la expresión anterior se sigue

$$f^{-1}(y)-f^{-1}(b) = \frac{1}{\rho (f^{-1}(y))} \cdot (y-b).$$

Como la función $1/(\rho \circ f^{-1})$ es continua en $b$, se aplica el teorema de Carathéodory para concluir que $(f^{-1})'(b)$ existe, y además

\begin{align*}
(f^{-1})'(b) & = \frac{1}{\rho(f^{-1}(b))} \\
& =\frac{1}{\rho(a)} \\
& = \frac{1}{f'(a)}.
\end{align*}

$$\therefore (f^{-1})'(b) = \frac{1}{f'(a)}.$$

$\square$

Es posible relajar los supuestos hechos respecto a la función $f^{-1}$, con lo que se obtiene el siguiente teorema.

Teorema. Sea $f: A \to \RR$ estrictamente monótona en $A$. Sea $B = f(A)$ y sea $f^{-1}: B \to \RR$ la función inversa de $f$. Si $f$ es derivable en $A$ y $f'(x) \neq 0$ para $x \in A$, entonces $f^{-1}$ es derivable en $B$ y

$$(f^{-1})’ (b) = \frac{1}{(f’ \circ f^{-1}) (b)} \text{, para }b \in B.$$

Demostración.

Si $f$ es derivable en $A$, entonces se tiene que $f$ es continua en $A$ y por hipótesis es estrictamente monótona, por las propiedades revisadas en esta entrada, se sigue que $f^{-1}$ es continua en $B$ y estrictamente monótona. Por el teorema anterior, podemos concluir que

$$(f^{-1})’ (b) = \frac{1}{(f’ \circ f^{-1})(b)}.$$

$\square$

Ejemplos de la derivada de la inversa

Ejemplo 1. Encuentra la derivada en $b=8$ de la función inversa de $f(x) = x^5 + 4x + 3.$

Notamos que $f$ es continua y estrictamente creciente. Además, $f'(x) = 5x^4 + 4$ nunca es cero. Por el teorema revisado en esta entrada, su función inversa es derivable en cada punto. Si se toma $b= 8$, entonces, considerando que $f(1) = 8$, se obtiene que

\begin{align*}
(f^{-1})'(8) & = (f^{-1})'(f(1)) \\
& = \frac{1}{f'(1)} \\
& = \frac{1}{9}.
\end{align*}

$$\therefore (f^{-1})'(x) = \frac{1}{9}.$$

Ejemplo 2.

Consideremos $f_n(x)=x^n$ para todo $x$ si $n$ es impar. Y $f_n(x)=x^n$ para todo $x \geq 0$ si $n$ es par. Para ambos casos, $f_n$ es una función continua y estrictamente monótona, cuya función inversa está dada por $f_n^{-1}(y) = y^{1/n}$.

Así, por el teorema revisado en esta entrada, para $y \neq 0$ se tiene que

\begin{align*}
(f^{-1})'(y) & = \frac{1}{f_n'(f_n^{-1}(y))} \\ \\
& = \frac{1}{n(f_n^{-1}(y))^{n-1}} \\ \\
& = \frac{1}{n(y^{1/n})^{n-1} } \\ \\ 
& = \frac{1}{n} \cdot \frac{1}{y^{1-1/n}} \\ \\
& = \frac{1}{n} \cdot y^{1/n-1}.
\end{align*}

$$\therefore (f^{-1})'(y) = \frac{1}{n} \cdot y^{1/n-1}.$$

Por tanto, si $f(x) = x^a$ y $a$ es un entero o el recíproco de un número natural, entonces $f'(x) = ax^{a-1}$. A continuación probaremos que esto también es cierto para cualquier racional.

Sea $a = m/n$, donde $m$ es un entero y $n$ es un número natural. Si

$$f(x) = x^{m/n} = (x^{1/n})^m.$$

Empleando la regla de la cadena tenemos

\begin{align*}
f'(x) & = m(x^{1/n})^{m-1} \cdot \frac{1}{n} \cdot x^{1/n-1} \\
& = \frac{m}{n} \cdot x^{(m/n-1/n)+(1/n-1)} \\
& = \frac{m}{n} x^{m/n-1}.
\end{align*}

$$\therefore f'(x) = \frac{m}{n} x^{m/n-1}.$$

Más adelante…

En la siguiente entrada probaremos que las funciones trigonométricas son derivables en su dominio y estudiaremos también qué sucede para sus funciones inversas, para lo cual emplearemos lo que se ha visto en la presente entrada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Explica por qué es fundamental la hipótesis de que $f'(a) \neq 0$ en el primer teorema revisado en esta entrada.
  • Para cada función $f$, encuentra su inversa $f^{-1}$:
    • $f(x) = x^3+1.$
    • $f(x) = (x-1)^3.$
    • $f(x) = \begin{cases} x, & x \text{ racional} \\ -x, & x \text{ irracional}. \end{cases}$
  • Dado que la función $h(x) = x^3+2x+1$ para $x \in \RR$ tiene una inversa $h^{-1}$ en $\RR,$ encuentra el valor de $(h^{-1})'(y)$ en los puntos correspondientes a $x=0,1,-1.$
  • Supón que $f$ es derivable con derivada $f'(x) = (1+x^3)^{-1/2}.$ Demuestra que $g = f^{-1}$ satisface $g^{(2)}(x) = \frac{3}{2}g(x)^2.$ Nota: $g^{(2)}(x)$ hace referencia a derivar dos veces la función $g,$ es decir, $g^{(2)}(x) = (g'(x))’.$
  • Halla una fórmula para $(f^{-1})^{(2)}.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones de Bessel, Chebyshev e Hipergeométrica

Por Omar González Franco

En las matemáticas el arte de proponer una pregunta
debe tener un valor más alto que resolverlo.
– Georg Cantor

Introducción

En la entrada anterior resolvimos 3 de las ecuaciones diferenciales especiales que deseamos resolver, en esta entrada concluiremos con el resto de ecuaciones.

Recordemos que las ecuaciones diferenciales especiales que deseamos resolver son:

  • Ecuación de Hermite.

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Laguerre.

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Legendre.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0$$

  • Ecuación de Bessel.

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0$$

  • Ecuación de Chebyshev.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0$$

  • Ecuación Hipergeométrica de Gauss.

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0$$

  • Ecuación de Airy.

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Resolvamos ahora la ecuación de Bessel.

Ecuación de Bessel

La ecuación de Bessel es

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0 \label{1} \tag{1}$$

Con $\lambda \in \mathbb{R}$. La ecuación de Bessel es una ecuación diferencial de segundo orden, pero suele denominarse de orden $\lambda$.

Friedrich Wilhelm Bessel (1784-1846) fue un matemático y astrónomo alemán conocido por generalizar las llamadas funciones de Bessel, éstas funciones son soluciones canónicas de la ecuación de Bessel. Las funciones de Bessel fueron definidas primero por el matemático Daniel Bernoulli. Como astrónomo Bessel fue el primero en determinar el paralaje de una estrella, publicando en 1838 los datos que había calculado de 61 Cygni.

Resolvamos la ecuación. Dividamos todo por $x^{2}$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1}{x} \dfrac{dy}{dx} + \dfrac{(x^{2} -\lambda^{2})}{x^{2}} y = 0 \label{2} \tag{2}$$

Identificamos que

$$P(x) = \dfrac{1}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{(x^{2} -\lambda^{2})}{x^{2}}$$

Es claro que ambas funciones no están definidas en $x = 0$, de manera que este punto es un punto singular. Definiendo las funciones $p(x)$ y $q(x)$ se obtiene que

$$p(x) = 1 \hspace{1cm} y \hspace{1cm} q(x) = x^{2} -\lambda^{2}$$

Los límites son

$$\lim_{x \to 0}p(x) = 1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = -\lambda^{2}$$

Los límites existen, esto nos indica que el punto $x_{0} = 0$ es un punto singular regular. La solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r} \label{3} \tag{3}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \label{4} \tag{4}$$

Sustituyamos en la ecuación de Bessel.

$$x^{2} \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + x \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + (x^{2} -\lambda^{2}) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo y simplificando, se tiene

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}c_{n}x^{n + r + 2} -\lambda^{2}\sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En la tercer serie hacemos la sustitución $n = k -2$ y en el resto hacemos $k = n$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 2}^{\infty}c_{k -2}x^{k + r} -\lambda^{2}\sum_{k = 0}^{\infty}c_{k}x^{k + r} = 0$$

Necesitamos extraer los términos para $k = 0$ y $k = 1$ y así hacer que todas las series comiencen en $k = 2$.

Para $k = 0$ obtenemos la ecuación indicial.

\begin{align*}
r(r -1)c_{0}x^{r} + rc_{0}x^{r} -\lambda^{2}c_{0}x^{r} &= 0 \\
c_{0}x^{r}[r(r -1) + r -\lambda^{2}] &= 0 \\
r(r -1) + r -\lambda^{2} &= 0
\end{align*}

La ecuación indicial es

$$r^{2} -\lambda^{2} = 0 \label{5} \tag{5}$$

Las raíces son $r_{1} = \lambda$ y $r_{2} = -\lambda$.

Para $k = 1$, se obtiene

\begin{align*}
(r + 1)rc_{1}x^{r + 1} + (r + 1)c_{1}x^{r + 1} -\lambda^{2}c_{1}x^{r + 1} &= 0 \\
c_{1}x^{r + 1}[(r + 1)r + (r + 1) -\lambda^{2}] &= 0 \\
\end{align*}

Como lo que esta entre corchetes no se anula para las raíces de la ecuación indicial, entonces debe ser que $c_{1} = 0$.

Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 2}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 2}^{\infty}c_{k -2}x^{k + r} -\lambda^{2}\sum_{k = 2}^{\infty}c_{k}x^{k + r} = 0 \label{6} \tag{6}$$

Reescribiendo todo en una serie, se tiene

$$\sum_{k = 2}^{\infty} [(k + r)(k + r -1)c_{k} + (k + r)c_{k} + c_{k -2} -\lambda^{2}c_{k}] x^{k + r} = 0$$

De donde,

$$c_{k}[(k + r)(k + r -1) + (k + r) -\lambda^{2}] + c_{k -2} = 0 \label{7} \tag{7}$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{c_{k -2}}{\lambda^{2} -(r + k)^{2}}, \hspace{1cm} k = 2, 3, 4, \cdots \label{8} \tag{8}$$

Para el caso en el que $r = \lambda$, la relación de recurrencia es

$$c_{k} = -\dfrac{c_{k -2}}{k(k + 2\lambda)}, \hspace{1cm} k = 2, 3, 4, \cdots \label{9} \tag{9}$$

Determinemos los coeficientes para este caso.

$k = 2$.

$$c_{2} = -\dfrac{c_{0}}{2(2 + 2\lambda)} = -\dfrac{1}{4(1 + \lambda)}c_{0}$$

$k = 3$.

$$c_{3} = \dfrac{c_{1}}{3(3 + 2\lambda)}$$

Pero $c_{1} = 0$, entonces $c_{3} = 0$. En general, $c_{1} = c_{3} = c_{5} = \cdots = 0$.

Para $k = 4$, se tiene

$$c_{4} = -\dfrac{c_{2}}{4(4 + 2\lambda)} = \dfrac{1}{(4)(8)(1 + \lambda)(2 + \lambda)}c_{0}$$

$k = 6$.

$$c_{6} = -\dfrac{c_{4}}{6(6 + 2\lambda)} = -\dfrac{1}{(4)(8)(12)(1 + \lambda)(2 + \lambda)(3 + \lambda)}c_{0}$$

En general,

$$c_{2k} = \dfrac{(-1)^{k}}{2^{2k}k!(1 + \lambda)(2 + \lambda)(3 + \lambda) \cdots (k + \lambda)}c_{0} \label{10} \tag{10}$$

Entonces la primer solución de la ecuación de Bessel es

$$\hat{y}(x) = c_{0}y_{1}(x) \label{11} \tag{11}$$

Con

\begin{align*}
y_{1}(x) &= 1 -\dfrac{1}{4(1 + \lambda)}x^{2} + \dfrac{1}{(4)(8)(1 + \lambda)(2 + \lambda)}x^{4} -\dfrac{1}{(4)(8)(12)(1 + \lambda)(2 + \lambda)(3 + \lambda)}x^{6} + \cdots \\
&\cdots + (-1)^{k} \dfrac{1}{2^{2k}k!(1 + \lambda)(2 + \lambda)(3 + \lambda) \cdots (k + \lambda)}x^{2k + \lambda} + \cdots \label{12} \tag{12}
\end{align*}

No obtendremos la segunda solución para $r = -\lambda$, pero si que aún podemos decir más de la primer solución y con ello conocer la forma de la segunda solución.

Definamos la función Gamma y apoyémonos de ella.

La convergencia de la integral requiere que $x -1 > -1$, o bien, $x > 0$.

La función Gamma posee la propiedad conveniente de que

$$\Gamma (1 + x) = x \Gamma(x) \label{14} \tag{14}$$

Debido a esta propiedad es que al valor arbitrario $c_{0}$ de la solución de la ecuación de Bessel se le suele atribuir el valor

$$c_{0} = \dfrac{1}{2^{\lambda} \Gamma(1 + \lambda)} \label{15} \tag{15}$$

Como

\begin{align*}
\Gamma (1 + \lambda + 1) &= (1 + \lambda)\Gamma(1 + \lambda) \\
\Gamma (1 + \lambda + 2) &= (2 + \lambda)\Gamma(2 + \lambda) = (2 + \lambda)(1 + \lambda)\Gamma(1 + \lambda) \\
&\vdots \\
\Gamma(1 + \lambda + k) &= (1 + \lambda)(2 + \lambda) \cdots (k + \lambda)\Gamma (1 + \lambda)
\end{align*}

Entonces el coeficiente $c_{2k}$ dado en (\ref{10}) se puede escribir como

\begin{align*}
c_{2k} &= \left( \dfrac{1}{2^{\lambda} \Gamma(1 + \lambda)} \right) \left( \dfrac{(-1)^{k}}{2^{2k}k!(1 + \lambda)(2 + \lambda)(3 + \lambda) \cdots (k + \lambda)} \right) \\
&= \dfrac{(-1)^{k}}{2^{2k + \lambda}k!(1 + \lambda)(2 + \lambda) \cdots (k + \lambda)\Gamma(1 + \lambda)} \\
&= \dfrac{(-1)^{k}}{2^{2k + \lambda}k!\Gamma(1 + \lambda + k)}
\end{align*}

Para $k = 0, 1, 2, 3, \cdots$. Usando esta forma de los coeficientes, la solución de la ecuación de Bessel para $r = \lambda$ se puede escribir de la siguiente manera, usualmente denotada por $J_{\lambda}(x)$.

$$J_{\lambda}(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{n!\Gamma(1 + \lambda + n)} \left( \dfrac{x}{2} \right)^{2n + \lambda} \label{16} \tag{16}$$

Si $\lambda \geq 0$, la serie converge al menos en el intervalo $[0, \infty)$.

De tarea moral demuestra que para $r = -\lambda$ la segunda solución de la ecuación de Bessel es

$$J_{-\lambda}(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{n!\Gamma(1 -\lambda + n)} \left( \dfrac{x}{2} \right)^{2n -\lambda} \label{17} \tag{17}$$

Por lo tanto, la solución general de la ecuación de Bessel es

$$y(x) = C_{1} J_{\lambda}(x) + C_{2} J_{-\lambda}(x) \label{18} \tag{18}$$

Las funciones $J_{\lambda}(x)$ y $J_{-\lambda}(x)$ se llaman funciones de Bessel de primera clase de orden $\lambda$ y $-\lambda$, respectivamente.

Dependiendo del valor de $\lambda$ la solución puede contener potencias negativas de $x$ y, por tanto, converger en $(0, \infty)$.

Debemos tener cuidado con la solución general (\ref{18}).

  • Si $\lambda = 0$ es claro que las soluciones (\ref{16}) y (\ref{17}) son las mismas.
  • Si $\lambda > 0$ y $r_{1} -r_{2} = \lambda -(-\lambda) = 2\lambda$ no es un entero positivo, entonces (\ref{16}) y (\ref{17}) son linealmente independientes y (\ref{18}) es la solución general, pero
  • Si $r_{1} -r_{2} = 2\lambda$ es un entero positivo podría existir una segunda solución en serie y entonces las soluciones (\ref{16}) y (\ref{17}) no son linealmente independientes, lo que significa que (\ref{18}) no es la solución general.

Observamos que $2\lambda$ es entero positivo si $\lambda$ es un entero positivo, pero también lo es si $\lambda$ es la mitad de un número impar positivo, sin embargo en este último caso se puede demostrar que (\ref{16}) y (\ref{17}) si son linealmente independientes. Por lo tanto, la solución general de la ecuación de Bessel es (\ref{18}) siempre que $\lambda \neq$ entero.

Ecuación de Chebyshev

La ecuación de Chebyshev es

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0 \label{19} \tag{19}$$

Con $\lambda$ una constante real (o compleja) y $|x| < 1$.

Esta ecuación lleva el nombre del matemático ruso Pafnuty Chebyshev (1821-1894) conocido por su trabajo en el área de la probabilidad y estadística.

La ecuación de Chebyshev en su forma estándar es

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{x}{1 -x^{2}} \dfrac{dy}{dx} + \dfrac{\lambda^{2}}{1 -x^{2}} y = 0 \label{20} \tag{20}$$

Identificamos que

$$P(x) = -\dfrac{x}{1 -x^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda^{2}}{1 -x^{2}}$$

Ambas funciones no están definidas en $x = 1$ ni $x = -1$, pero si en el punto $x_{0} = 0$, entonces dicho punto es un punto ordinario y por tanto la solución es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n} \label{21} \tag{21}$$

La primera y segunda derivada son

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} \label{22} \tag{22}$$

Sustituimos en la ecuación de Chebyshev.

$$(1 -x^{2}) \left[ \sum_{n = 2}^{\infty}n(n-1)c_{n}x^{n-2} \right] -x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda^{2} \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

Expandiendo y simplificando se tiene

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n} -\sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda^{2} \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos $k = n -2$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty}k(k -1)c_{k}x^{k} -\sum_{k = 1}^{\infty}kc_{k}x^{k}+\lambda^{2} \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos los primeros dos términos, por un lado para $k = 0$ se tiene

$$2c_{2} + \lambda^{2}c_{0} = 0$$

de donde,

$$c_{2} = -\dfrac{\lambda^{2}}{2}c_{0}$$

Por otro lado, para $k = 1$ se tiene

\begin{align*}
6c_{3}x -c_{1}x + \lambda^{2}c_{1}x &= 0 \\
[6c_{3} -c_{1} + \lambda^{2}c_{1}]x &= 0 \\
6c_{3} -c_{1} + \lambda^{2}c_{1} &= 0
\end{align*}

de donde,

$$c_{3} = \dfrac{1 -\lambda^{2}}{6}c_{1}$$

Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty}k(k -1)c_{k}x^{k} -\sum_{k = 2}^{\infty}kc_{k}x^{k} + \lambda^{2} \sum_{k = 2}^{\infty}c_{k}x^{k} = 0 \label{23} \tag{23}$$

Si juntamos todo en una serie, se obtiene

$$\sum_{k = 2}^{\infty} \left[ (k + 2)(k + 1)c_{k + 2} -k(k -1)c_{k} -kc_{k} + \lambda^{2}c_{k} \right]x^{k} = 0$$

De donde,

$$(k + 2)(k + 1)c_{k + 2} -[k(k -1) + k -\lambda^{2}]c_{k} = 0 \label{24} \tag{24}$$

Si despejamos a $c_{k + 2}$ obtenemos la relación de recurrencia.

$$c_{k + 2} = \dfrac{k^{2} -\lambda^{2}}{(k + 1)(k + 2)}c_{k}, \hspace{1cm} k = 0, 1, 2, 3, \cdots \label{25} \tag{25}$$

Ya vimos que para $k = 0$ se tiene

$$c_{2} = -\dfrac{\lambda^{2}}{2!}c_{0}$$

Y para $k = 1$ se obtuvo

$$c_{3} = \dfrac{1 -\lambda^{2}}{3!}c_{1}$$

Para $k = 2$, se tiene

$$c_{4} = \dfrac{2^{2} -\lambda^{2}}{(4)(3)}c_{2} = \dfrac{2^{2} -\lambda^{2}}{(4)(3)} \left( -\dfrac{\lambda^{2}}{2}c_{0} \right) = \dfrac{(2^{2} -\lambda^{2})(-\lambda^{2})}{4!}c_{0}$$

$k = 3$.

$$c_{5} = \dfrac{3^{2} -\lambda^{2}}{(5)(4)}c_{3} = \dfrac{3^{2} -\lambda^{2}}{(5)(4)} \left( \dfrac{1 -\lambda^{2}}{3!}c_{1} \right) = \dfrac{(3^{2} -\lambda^{2})(1 -\lambda^{2})}{5!}c_{1}$$

$k = 4$.

$$c_{6} = \dfrac{4^{2} -\lambda^{2}}{(6)(5)}c_{4} = \dfrac{4^{2} -\lambda^{2}}{(6)(5)} \left( \dfrac{(2^{2} -\lambda^{2})(-\lambda^{2})}{4!}c_{0} \right) = \dfrac{(4^{2} -\lambda^{2})(2^{2} -\lambda^{2})(-\lambda^{2})}{6!}c_{0}$$

Etcétera, con estos resultado podemos observar el patrón

$$c_{2k} = \dfrac{[(2k -2)^{2} -\lambda^{2}][(2k -4)^{2} -\lambda^{2}] \cdots (2^{2} -\lambda^{2})(-\lambda^{2})}{(2k)!}c_{0} \label{26} \tag{26}$$

y

$$c_{2k + 1} = \dfrac{[(2k -1)^{2} -\lambda^{2}][(2k -3)^{2}-\lambda^{2}] \cdots (3^{2} -\lambda^{2})(1 -\lambda^{2})}{(2k + 1)!}c_{1} \label{27} \tag{27}$$

Si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces la solución general de la ecuación de Chebyshev es

$$y_{1} = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{928} \tag{28}$$

Con

\begin{align*}
y_{1}(x) &= 1 -\dfrac{\lambda^{2}}{2!}x^{2} + \dfrac{(2^{2} -\lambda^{2})(-\lambda^{2})}{4!}x^{4} + \dfrac{(4^{2} -\lambda^{2})(2^{2} -\lambda^{2})(-\lambda^{2})}{6!}x^{6} + \cdots\\
&\cdots + \dfrac{[(2k -2)^{2} -\lambda^{2}][(2k -4)^{2} -\lambda^{2}] \cdots (2^{2} -\lambda^{2})(-\lambda^{2})}{(2k)!} + \cdots \label{29} \tag{29}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x + \dfrac{1 -\lambda^{2}}{3!}x^{3} + \dfrac{(3^{2} -\lambda^{2})(1 -\lambda^{2})}{5!}x^{5} + \cdots \\
&\cdots + \dfrac{[(2k -1)^{2} -\lambda^{2}][(2k -3)^{2}-\lambda^{2}] \cdots (3^{2} -\lambda^{2})(1 -\lambda^{2})}{(2k + 1)!} + \cdots \label{30} \tag{30}
\end{align*}

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $C_{1}$ y de $C_{2}$ se obtienen los conocidos polinomios de Chebyshev.

\begin{align*}
T_{0}(x) &= 1 \\
T_{1}(x) &= x \\
T_{2}(x) &= 2x^{2} -1 \\
T_{3}(x) &= 4x^{3} -3x \\
T_{4}(x) &= 8x^{4} -8x^{2} + 1 \\
T_{5}(x) &= 16x^{5} -20x^{3} + 5x \\
\vdots
\end{align*}

En general, el $n$-ésimo polinomio de Chebyshev será solución particular de la ecuación de Chebyshev cuando $\lambda = n$.

Ecuación Hipergeométrica de Gauss

La ecuación Hipergeométrica es

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0 \label{31} \tag{31}$$

Con $\alpha$, $\beta$ y $\gamma$ constantes.

La ecuación hipergeométrica en su forma estándar es

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{\gamma -(\alpha + \beta +1)x}{x(1 -x)} \dfrac{dy}{dx} -\dfrac{\alpha \beta}{x(1 -x)}y = 0 \label{32} \tag{32}$$

Identificamos que

$$P(x) = \dfrac{\gamma -(\alpha + \beta +1)x}{x(1 -x)} \hspace{1cm} y \hspace{1cm} Q(x) = -\dfrac{\alpha \beta}{x(1 -x)}$$

Ambas funciones no están definidas es $x = 1$ ni $x = 0$ eso significa que ambos puntos son singulares, sin embargo nosotros estamos interesados en resolver la ecuación con respecto al punto $x_{0} = 0$, definamos las funciones $p(x)$ y $q(x)$ con respecto a dicho punto.

$$p(x) = \dfrac{\gamma -(\alpha +\beta +1)x}{1 -x} \hspace{1cm} y \hspace{1cm} q(x) = -\dfrac{\alpha \beta x}{1 -x}$$

Ambas funciones son analíticas en $x = 0$ y los límites existen.

$$\lim_{x \to 0}p(x) = \gamma \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = 0$$

Por lo tanto, $x_{0} = 0$ es un punto singular regular y la solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Sustituimos en la ecuación hipergeométrica.

$$x(1 -x) \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + [\gamma -(\alpha + \beta + 1)x] \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] -\alpha \beta \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo la expresión se tiene

\begin{align*}
&x \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} -x^{2} \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} + \gamma \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \\
&-(\alpha + \beta + 1)x \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} -\alpha \beta \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0
\end{align*}

Simplificamos

\begin{align*}
&\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \gamma \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \\
&-(\alpha + \beta + 1) \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} -\alpha \beta \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0
\end{align*}

En la primera y tercera serie hacemos $k = n$ y en el resto hacemos $n = k -1$.

\begin{align*}
&\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k + r -1)(k + r -2)c_{k -1}x^{k + r -1} + \gamma \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} \\
&-(\alpha + \beta + 1) \sum_{k = 1}^{\infty}(k + r -1)c_{k -1}x^{k + r -1} -\alpha \beta \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0
\end{align*}

Para $k = 0$ obtenemos la ecuación indicial.

\begin{align*}
r(r -1)c_{0}x^{r -1} + \gamma r c_{0}x^{r-1} &= 0 \\
[r(r -1) + \gamma r]c_{0}x^{r -1} &= 0 \\
r(r -1) + \gamma r &= 0
\end{align*}

La ecuación indicial es

$$r(r + \gamma -1) = 0 \label{33} \tag{33}$$

Las raíces son $r_{1} = 0$ y $r_{2} = 1 -\gamma$. Ahora tenemos la ecuación

\begin{align*}
&\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k + r -1)(k + r -2)c_{k -1}x^{k + r -1} + \gamma \sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r -1} \\
&-(\alpha + \beta + 1) \sum_{k = 1}^{\infty}(k + r -1)c_{k -1}x^{k + r -1} -\alpha \beta \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0
\end{align*}

Juntemos todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + r)(k + r -1)c_{k} -(k + r -1)(k + r -2)c_{k -1} + \gamma (k + r)c_{k} -(\alpha + \beta + 1)(k + r -1)c_{k -1} -\alpha \beta c_{k -1}]x^{k + r -1} = 0$$

De donde,

$$(k + r)(k + r -1)c_{k} -(k + r -1)(k + r -2)c_{k -1} + \gamma (k + r)c_{k} -(\alpha + \beta + 1)(k + r -1)c_{k -1} -\alpha \beta c_{k -1} = 0$$

Despejando a $c_{k}$ se obtiene la relación de recurrencia.

$$c_{k} = \dfrac{(k + r -1)(k + r -2) + (\alpha + \beta + 1)(k + r -1) + \alpha \beta}{(k + r)(k + r -1) + \gamma(k + r)}c_{k -1} \label{34} \tag{34}$$

De tarea moral demuestra que la relación de recurrencia se puede reescribir como

$$c_{k} = \dfrac{(k + r + \alpha -1)(k + r -1 + \beta)}{(k + r)(k + r + \gamma -1)}c_{k -1}, \hspace{1cm} k = 1, 2, 3, \cdots \label{35} \tag{35}$$

Para $k = 1$, tenemos

$$c_{1} = \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0}$$

$k = 2$.

\begin{align*}
c_{2} &= \dfrac{(r + \alpha + 1)(r + \beta + 1)}{(2 + r)(r + \gamma + 1)}c_{1} \\
&= \dfrac{(r + \alpha + 1)(r + \beta + 1)}{(2 + r)(r + \gamma +1)} \left ( \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0} \right)
\end{align*}

$k = 3$.

\begin{align*}
c_{3} &= \dfrac{(r + \alpha + 2)(r + \beta + 2)}{(3 + r)(r + \gamma + 2)}c_{2} \\
&= \left( \dfrac{(r + \alpha + 2)(r + \beta + 2)}{(3 + r)(r + \gamma + 2)} \right) \dfrac{(r + \alpha + 1)(r + \beta + 1)}{(2 + r)(r + \gamma + 1)} \left( \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0} \right)
\end{align*}

Etcétera. Una forma de escribir las expresiones anteriores es usando el símbolo de Pochhammer que se define de la siguiente manera.

Una relación interesante entre el símbolo de Pochhammer y la función Gamma es

$$(x)_n = \dfrac{\Gamma(x + n)}{\Gamma(x)} \label{37} \tag{37}$$

Siempre que $x$ y $x + n$ no son enteros positivos.

Usando el símbolo de Pochhammer podemos escribir a los coeficientes como

$$c_{1} = \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0}$$

$$c_{2} = \dfrac{(r + \alpha)_{2}(r + \beta )_{2}}{(1 + r)_{2}(r + \gamma)_{2}}c_{0}$$

$$c_{3} = \dfrac{(r + \alpha )_{3}(r + \beta)_{3}}{(1 + r)_{3}(r + \gamma)_{3}}c_{0}$$

Y en general,

$$c_{k} = \dfrac{(r + \alpha)_{k}(r + \beta)_{k}}{(1 + r)_{k}(r + \gamma)_{k}}c_{0} \label{38} \tag{38}$$

Por lo tanto, la solución de la ecuación hipergeométrica es

$$y(x) = c_{0}\hat{y}(x) \label{39} \tag{39}$$

Donde

\begin{align*}
\hat{y}(x) &= 1 + \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}x + \dfrac{(r + \alpha)_{2}(r + \beta )_{2}}{(1 + r)_{2}(r + \gamma)_{2}}x^{2} + \dfrac{(r + \alpha )_{3}(r + \beta)_{3}}{(1 + r)_{3}(r + \gamma)_{3}}x^{3} + \cdots \\
&\cdots + \dfrac{(r + \alpha)_{k}(r + \beta)_{k}}{(1 + r)_{k}(r + \gamma)_{k}}x^{k} + \cdots \label{40} \tag{40}
\end{align*}

Hemos resuelto la ecuación hipergeométrica de manera general, pero recordemos que las raíces indiciales son $r_{1} = 0$ y $r_{2} = 1 -\gamma$, lo que significa que existen dos soluciones linealmente independientes $y_{1}(x)$ y $y_{2}(x)$, tal que la solución general es

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{41} \tag{41}$$

Para el caso en el que $r = 0$ basta sustituir en (\ref{40}), a esta solución se le conoce como función hipergeométrica, se denota por $_{2}F_{1}(\alpha, \beta; \gamma; x)$ y está dada por

$$_{2}F_{1}(\alpha, \beta; \gamma; x) = \sum_{n = 0}^{\infty}\dfrac{(\alpha)_{n}(\beta)_{n}}{n!(\gamma)_{n}}x^{n} \label{42} \tag{42}$$

Donde se ha hecho uso del símbolo de Pochhammer y se requiere que $\gamma \neq 0, -1, -2, \cdots$. La serie (\ref{42}) converge en el intervalo $|x| < 1$.

De tarea moral demuestra que para el caso en el que $r = 1 -\gamma$, $\gamma \neq 2, 3, 4, \cdots$ y $|x| < 1$, la solución denotada por $_{2}F_{1}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x)$, es

$$_{2}F_{1}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x) = \sum_{n = 0}^{\infty}\dfrac{(1 -\gamma + \alpha)_{n}(1 -\gamma + \beta)_{n}}{n!(2 -\gamma)_{n}}x^{n} \label{43} \tag{43}$$

Considerando estos resultados, la solución general de la ecuación hipergeométrica para $|x| < 1$, es

$$y(x) = C_{1}[{_{2}F_{1}}(\alpha, \beta; \gamma; x)] + C_{2} x^{1 -\gamma} {_{2}F_{1}}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x) \label{44} \tag{44}$$

Ecuación de Airy

Recordemos que cuando estudiamos el método de resolución con respecto a puntos ordinarios resolvimos como ejemplo la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + xy = 0 \label{45} \tag{45}$$

Mencionamos que dicha ecuación era una forma de lo que se conoce como ecuación de Airy. Por su puesto, la ecuación

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0 \label{46} \tag{46}$$

es otra forma de lo que se conoce como ecuación de Airy y dado que ya resolvimos la forma (\ref{45}) de tarea moral resuelve la forma (\ref{46}). ¿Qué diferencias notas?.

Estas ecuaciones llevan el nombre de Airy en honor al astrónomo británico George Biddell Airy (1801 – 1892).

La solución general de la ecuación de Airy (\ref{46}), es

$$y(x) = C_{1} \sum_{n = 0}^{\infty}\dfrac{1 \cdot 4 \cdots (3n -2)}{(3n)!}x^{3n} + C_{2} \sum_{n = 0}^{\infty}\dfrac{2 \cdot 5 \cdots (3n -1)}{(3n + 1)!}x^{3n + 1} \label{47} \tag{47}$$

Hemos concluido, es importante recordar que cada una de estas ecuaciones y sus soluciones tienen propiedades matemáticas muy importantes que no se revisaron debido a que quedan fuera de lo que nos corresponde en este curso, sin embargo en semestres posteriores seguramente aparecerán de nuevo y lo visto en estas dos últimas entradas será de valiosa utilidad.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Demostrar que la segunda solución de la ecuación de Bessel para $r = -\lambda$ es
    $$J_{-\lambda}(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{n!\Gamma(1 -\lambda + n)} \left( \dfrac{x}{2} \right)^{2n -\lambda}$$ Es decir, encontrar la relación de recurrencia para $r = -\lambda$, determinar la forma de los coeficientes de la solución y determina el valor correcto que debe tener $c_{0}$ usando la función Gamma para finalmente dar con la solución que se desea.
  1. Investigar qué son las funciones de Bessel de segunda clase y mencionar la relación que tienen con las funciones de Bessel de primera clase.
  1. Los primeros 6 polinomios de Chebyshev son solución de la ecuación de Chebyshev para $\lambda = 0, 1, 2, 3, 4, 5$ respectivamente. Determinar el valor correspondiente de $C_{1}$ y $C_{2}$, tal que se obtengan los primeros 6 polinomios de Chebyshev.
  1. Demostrar que si $|x| < 1$, $\lambda \neq 2, 3, 4, \cdots$ y $r = 1 -\lambda$, la segunda solución de la ecuación hipergeométrica es
    \begin{align*}
    y_{2}(x) &= x^{r}\sum_{n = 0}^{\infty}\hat{c}_{n}x^{n} \\
    &= x^{1 -\lambda}{_{2}F_{1}}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x) \\
    &= x^{1 -\lambda} \sum_{n = 0}^{\infty}\dfrac{(1 -\gamma + \alpha)_{n}(1 -\gamma + \beta)_{n}}{n!(2 -\gamma)_{n}}x^{n}
    \end{align*}
    Se puede hacer uso del resultado general (\ref{40}).
  1. Demostrar que la ecuación de Legendre es un caso especial de la ecuación hipergeométrica.
  1. Resolver la ecuación de Airy con respecto al punto ordinario $x_{0} = 0$.
    $$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Más adelante…

¡Hemos concluido con la unidad 2 del curso!.

En la siguiente unidad estudiaremos los sistemas de ecuaciones diferenciales lineales de primer orden.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Sistemas de ecuaciones lineales no homogéneas. Solución por variación de parámetros

Por Eduardo Vera Rosales

Introducción

En las últimas entradas del curso analizamos a detalle el método de valores y vectores propios para resolver sistemas lineales homogéneos con coeficientes constantes de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}$. Revisamos los distintos casos que se pueden presentar, según las raíces del polinomio característico asociado a la matriz $\textbf{A}$. También resolvimos ejemplos para cada caso.

Es turno de enfocarnos en resolver sistemas lineales no homogéneos con coeficientes constantes de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}+\textbf{Q}(t)$, donde $\textbf{Q}(t)$ es un vector de funciones que dependen de $t$. Para esto, utilizaremos el método de variación de parámetros para sistemas lineales, que es una generalización del método que lleva el mismo nombre, y que estudiamos para resolver ecuaciones lineales no homogéneas de orden uno y dos.

Sabemos que la solución general a tales sistemas es de la forma $$\textbf{X}(t)=\textbf{X}_{H}(t)+\textbf{X}_{P}(t)$$ donde $\textbf{X}_{H}(t)$ es la solución general al sistema homogéneo asociado, y $\textbf{X}_{P}(t)$ es una solución particular al sistema no homogéneo. Con ayuda de la función solución $\textbf{X}_{H}(t)$, el método de variación de parámetros nos ayudará a encontrar a $\textbf{X}_{P}(t)$. En efecto, si $$\textbf{X}_{H}(t)=c_{1}\textbf{X}_{1}(t)+c_{2}\textbf{X}_{2}(t)+…+c_{n}\textbf{X}_{n}(t)$$ donde las funciones $\textbf{X}_{i}(t)$ forman un conjunto fundamental de soluciones al sistema homogéneo, entonces supondremos que $$\textbf{X}_{P}(t)= u_{1}(t)\textbf{X}_{1}(t)+u_{2}(t)\textbf{X}_{2}(t)+…+u_{n}(t)\textbf{X}_{n}(t).$$ Si sustituimos $\textbf{X}_{P}(t)$ y su derivada en el sistema no homogéneo, después de realizar el álgebra correspondiente obtendremos un sistema de ecuaciones que tiene a las derivadas de las funciones $u_{i}(t)$ como incógnitas. Si resolvemos tal sistema, podremos encontrar a las funciones $u_{i}(t)$, y por tanto a la solución particular $\textbf{X}_{P}(t)$.

¡Vamos a comenzar!

Método de variación de parámetros para sistemas de ecuaciones lineales no homogéneas

En el primer video desarrollamos el método de variación de parámetros para sistemas lineales con coeficientes constantes. En el segundo video resolvemos un par de sistemas no homogéneos por variación de parámetros.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0\\ 2 & -3 \end{pmatrix}\textbf{X}+\begin{pmatrix} \sin{t}\\ \cos{t}\end{pmatrix}.$$
  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 2 & 1\\ 3 & -2 \end{pmatrix}\textbf{X}+\begin{pmatrix} e^{3t}\\ e^{3t}\end{pmatrix}.$$
  • Resuelve el problema de condición inicial $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 3 & 2\\ -1 & 2 & 1\\ 4 & -1 & 1\end{pmatrix}\textbf{X}+\begin{pmatrix} \sin{t}\\ 0\\ 0\end{pmatrix} \, \, \, \, \, ; \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1\\ 0\\ 0\end{pmatrix}.$$
  • Encuentra la solución general a la ecuación de segundo orden $$\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=3e^{-x}.$$ (Recuerda que podemos transformar una ecuación de orden $n$ en un sistema de $n$ ecuaciones de primer orden).
  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 1\\ -3 & 5 \end{pmatrix}\textbf{X}+\begin{pmatrix} 0\\ S_{0}(1-\cos{t})\end{pmatrix}.$$ donde $S_{0}$ es una constante.

Más adelante

Con esta entrada terminamos de revisar los métodos más importantes para resolver sistemas de ecuaciones lineales con coeficientes constantes. Estamos a punto de finalizar la tercera unidad, pero aún nos falta demostrar el teorema de existencia y unicidad para sistemas lineales de primer orden con coeficientes continuos. Aunque no hemos vamos a resolver tales sistemas es importante dicho teorema, y es lo que haremos en la siguiente entrada del curso.

¡Hasta la próxima!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Derivadas de las funciones exponencial y logarítmica

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada revisaremos la derivada de dos funciones populares dentro de las matemáticas: las funciones exponencial y logarítmica. Para ello, será de gran utilidad tener presente lo que se revisó previamente respecto a estas funciones debido a que usaremos varias de sus propiedades.

Función logarítmica

Iniciaremos probando dos teoremas que nos serán útiles para estudiar la derivada de la función logarítmica. Básicamente los teoremas nos indican que es posible realizar cambios de variable al momento de calcular el límite de una función siempre que ésta sea continua en el punto donde se calcula el límite.

Teorema. Sean $f: A \to \mathbb{R}$ y $g: B \to \mathbb{R}$ tales que $g(B) \subset A$. Si $f$ es continua en $L$, y $\lim\limits_{x \to x_0} g(x) = L$, entonces $$\lim_{x \to x_0} f(g(x)) = \lim_{t \to L} f(t).$$

Demostración.

Sea $\varepsilon > 0$. Como $f$ es continua en $L$, existe $\delta_1 > 0$ tal que si $0 < |t-L| < \delta_1$, se tiene que

$$|f(t)-f(L)| < \varepsilon.$$

Como $\lim\limits_{x \to x_0} g(x) = L$, entonces para todo $\varepsilon’ > 0$, existe $\delta > 0$ tal que si $0 < |x-x_0| < \delta$ se tiene que
$$|g(x) – L| < \varepsilon’.$$

En particular, consideremos $\varepsilon’ = \delta_1$. Entonces $f(g(x))$ está definido y si $0 < |x-x_0| < \delta$, se tiene que

$$|f(g(x)) – f(L)| < \varepsilon.$$

$$\therefore \lim_{x \to x_0}f(g(x)) = f(L) .$$

Como $f$ es continua en $L$, se concluye que

$$\lim_{x \to x_0} f(g(x)) = \lim_{t \to L} f(t).$$

$\square$

Teorema. Sean $f: A \to \mathbb{R}$ y $g: B \to \mathbb{R}$ tales que $g(B) \subset A$. Si $f$ es continua en $L$, y $\lim\limits_{x \to \infty} g(x) = L$, entonces $$\lim_{x \to \infty} f(g(x)) = \lim_{t \to L} f(t).$$

La demostración del teorema anterior sigue la misma lógica que el primero.

Ahora probaremos que la función logaritmo es continua en todo su dominio, una vez que lo hayamos probado, demostraremos que también es derivable en todo su dominio.

Proposición. Sea $f: (0, \infty) \to \RR$ definida como $f(x) = ln(x)$. La función $f$ es continua en $x_0 = 1$.

Demostración.

Para demostrar $f$ es continua en $x_0 = 1$, debemos probar que $\lim\limits_{x \to 1} ln(x) = ln(1) = 0$.

Procederemos a calcular los límites laterales.

Primero veremos el límite por la derecha. Sean $\varepsilon > 0$ y $x>1.$

Notemos que
\begin{align*}
|f(x)-f(x_0)| & = |ln(x)-ln(1)| \\
& = |ln(x)| \\
& = ln(x).
\end{align*}

$$\therefore |f(x)-f(x_0)| = ln(x). \tag{1}$$

Consideremos $\delta = e^{\varepsilon}-1$.

Si $ 0<x-1 < e^{\varepsilon}-1$, entonces $x < e^{\varepsilon}$, es decir, $ln(x) < \varepsilon$. Por $(1)$ se concluye que $|f(x)-f(x_0)| < \varepsilon$.

$$\therefore \lim_{x\to 1^+} ln(x) = ln(1).$$

Ahora revisemos el límite por la izquierda. Sean $\varepsilon > 0$ y $x < 1.$

Notemos que
\begin{align*}
|f(x)-f(x_0)| & = |ln(x)-ln(1)| \\
& = |ln(x)| \\
& = -ln(x).
\end{align*}

$$\therefore |f(x)-f(x_0)| = – ln(x). \tag{2}$$

Consideremos $\delta = 1-e^{- \varepsilon}$.

Si $ 0<1-x < 1-e^{-\varepsilon}$, entonces $x > e^{-\varepsilon}$, es decir, $ln(x) > -\varepsilon$. Por $(2)$ se concluye que $|f(x)-f(x_0)| < \varepsilon$.

$$\therefore \lim_{x\to 1^-} ln(x) = ln(1).$$

Como ambos límites laterales coinciden, se concluye que la función $f(x) = ln(x)$ es continua en $x_0 = 1$.

$\square$

Teorema. Sea $f: (0, \infty) \to \RR$ definida como $f(x) = ln(x)$. La función $f$ es continua en todo su dominio.

Demostración.

Procederemos a calcular el límite directamente.

\begin{align*}
\lim_{x \to x_0} f(x) & = \lim_{x \to x_0} ln(x) \\ \\
& = \lim_{h \to 0} ln(x_0+h) \\ \\
& = \lim_{h \to 0} ln \left( x_0 \left( 1+\frac{h}{x_0} \right) \right) \\ \\
& = \lim_{h \to 0} \left[ ln(x_0) + ln \left( 1+\frac{h}{x_0} \right) \right] \\ \\
& = \lim_{h \to 0} ln(x_0) + \lim_{h \to 0} ln \left(1+\frac{h}{x_0} \right) \\ \\
& = ln(x_0) + 0 \text{, pues $ln(x)$ es continua en $1$}\\ \\
& = ln(x_0).
\end{align*}

$$\therefore \lim_{x \to x_0} ln(x) = ln(x_0).$$

Se concluye que $f$ es continua en todo su dominio.

$\square$

Teorema. Sea $f: (0, \infty) \to \RR$ definida como $f(x) = ln(x)$. Para todo $x > 0$ se tiene que $f'(x) = \frac{1}{x}.$

Demostración.

Veamos el siguiente límite

\begin{align*}
\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} & = \lim_{h \to 0} \frac{ln(x_0+h)-ln(x_0)}{h} \\ \\
& = \lim_{h \to 0} \frac{ln \left( \frac{x_0+h}{x_0} \right) }{h} \\ \\
& = \lim_{h \to 0} \frac{1}{h} \cdot ln \left( 1+\frac{h}{x_0} \right) \\ \\
& = \lim_{h \to 0} ln \left( 1+\frac{h}{x_0} \right)^{\frac{1}{h}}.
\end{align*}

Consideremos $t = \frac{h}{x_0}$. Notemos que cuando $h \to 0,$ se tiene que $t \to 0$. Además, se sigue que $\frac{1}{h} = \frac{1}{x_0} \cdot \frac{1}{t}$. Como $f(x) = ln(x)$ es continua en todo su dominio y por el primer teorema de esta entrada, se sigue que

\begin{align*}
\lim_{h \to 0} ln \left( 1+\frac{h}{x_0} \right)^{\frac{1}{h}} & = \lim_{t \to 0} ln \left( 1+t \right)^{\frac{1}{x_0} \cdot \frac{1}{t}} \\ \\
& = \lim_{t \to 0} ln \left( \left( 1+t \right)^{\frac{1}{t}} \right)^{\frac{1}{x_0}} \\ \\ 
& = \lim_{t \to 0} \frac{1}{x_0} \cdot ln \left( 1+t \right)^{\frac{1}{t}}. \\ \\
\end{align*}

Tomemos $n = \frac{1}{t}$. Cuando $t \to 0$, se tiene que $n \to \infty$. Además, $t = \frac{1}{n}$. Como $f(x) = ln(x)$ es continua en todo su dominio y por el segundo teorema de esta entrada, se sigue que

\begin{align*}
\lim_{t \to 0} \frac{1}{x_0} \cdot ln \left( 1+t \right)^{\frac{1}{t}} & = \lim_{n \to \infty} \frac{1}{x_0} \cdot ln \left( 1+\frac{1}{n} \right)^{n} \\ \\
& = \frac{1}{x_0} \cdot \lim_{n \to \infty} ln \left( 1+\frac{1}{n} \right)^{n} \\ \\ 
& = \frac{1}{x_0} \cdot ln(e) \text{, pues $ln(x)$ es continua en todo su dominio} \\ \\
& = \frac{1}{x_0}.
\end{align*}

$$\therefore ln'(x_0) = \frac{1}{x_0}.$$

$\square$

Función exponencial

Ahora probaremos que la función exponencial es derivable en todo su dominio y, por la relación entre derivabilidad y continuidad, también es continua.

Teorema. La función $f: \RR \to \RR$ definida como $f(x) = e^x$ es derivable para todo $x \in \RR$, y su derivada es $f'(x) = e^{x}.$

Demostración.

Veamos el siguiente límite

\begin{align*}
\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} & = \lim_{h \to 0} \frac{e^{x_0+h}-e^{x_0}}{h} \\ \\
& = \lim_{h \to 0} \frac{e^{x_0}e^{h}-e^{x_0}}{h} \\ \\
& = \lim_{h \to 0} e^{x_0} \cdot \frac{e^{h}-1}{h}. \\ \\
\end{align*}

Consideremos $t = e^{h}-1$, se sigue que $h = ln(t+1)$, además cuando $h \to 0$, se tiene que $t \to 0$. Así, de la expresión anterior tenemos

\begin{align*}
\lim_{h \to 0} e^{x_0} \cdot \frac{e^{h}-1}{h} & = \lim_{t \to 0} e^{x_0} \cdot \frac{t}{ln(t+1)} \\ \\
& = e^{x_0} \cdot \lim_{t \to 0} \frac{\frac{1}{t}}{\frac{1}{t}} \cdot \frac{t}{ln(t+1)} \\ \\
& = e^{x_0} \cdot \lim_{t \to 0} \frac{1}{\frac{1}{t} ln(t+1)} \\ \\
& = e^{x_0} \cdot \lim_{t \to 0} \frac{1}{ln(t+1)^{\frac{1}{t}}} \\ \\
& = e^{x_0} \cdot \lim_{n \to \infty} \frac{1}{ln(1+\frac{1}{n})^n}, \text{ considerando } n =\frac{1}{t} \\ \\
& = e^{x_0} \cdot \frac{1}{ln(e)} \\ \\
& = e^{x_0}.
\end{align*}

$$\therefore f'(x_0) = e^{x_0}.$$

$\square$

Corolario. La función $f(x) = e^x$ es continua.

Algunos ejemplos

Para los siguientes ejemplos haremos uso de las reglas de la derivada que conocemos hasta ahora, incluyendo la derivada de las funciones revisadas en esta entrada.

Ejemplo 1. Encuentra la derivada de $f(x) = ln \left( x+\sqrt{x^2+1} \right)$.

\begin{align*}
f'(x) & = \left( ln \left( x+\sqrt{x^2+1} \right) \right)’ \\ \\
& = ln’\left( x+\sqrt{x^2+1} \right) \cdot \left( x+\sqrt{x^2+1} \right)’ \text{, por la regla de la cadena} \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( (x)’+(\sqrt{x^2+1})’ \right) \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( 1+ \frac{1}{2\sqrt{x^2+1}} \cdot (x^2+1)’ \right) \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( 1+ \frac{1}{2\sqrt{x^2+1}} \cdot 2x \right) \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( 1+ \frac{x}{\sqrt{x^2+1}} \right) \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( \frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}} \right) \\ \\
& = \frac{1}{\sqrt{x^2+1}}.
\end{align*}

$$\therefore f'(x) = \frac{1}{\sqrt{x^2+1}}.$$

Ejemplo 2. Encuentra la derivada de la función $f(x) = x^6e^{\sqrt{x}}.$

\begin{align*}
f'(x) & = x^6 (e^{\sqrt{x}})’+e^{\sqrt{x}} (x^6)’ \\ 
& = x^6 ( e^{\sqrt{x}} \cdot (\sqrt{x})’)+6x^5e^{\sqrt{x}} \\
& = x^6 (e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}})+6x^5e^{\sqrt{x}} \\
& = \frac{x^6e^{\sqrt{x}}}{2\sqrt{x}}+6x^5e^{\sqrt{x}}.
\end{align*}

$$\therefore f'(x) = \frac{x^6e^{\sqrt{x}}}{2\sqrt{x}}+6x^5e^{\sqrt{x}}.$$

Más adelante…

Antes de continuar con el estudio de la derivada de funciones trigonométricas, deberemos desarrollar otra herramienta que nos será muy útil: la derivada de las funciones inversas. En la siguiente entrada veremos cómo derivar la inversa de una función, así como las restricciones existentes para que esto sea posible.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Prueba que la derivada de $f(x)=a^x$ con $a>0$, es $f'(x) = ln(a) a^x$. Sugerencia: Considera que $f(x) = a^x =e^{xln(a)}$ y emplea la regla de la cadena.
  • Sea $c \in \RR$ un real fijo y consideremos $f: A \subset (0, \infty) \to \RR$, tal que $f(x) = x^c$. Prueba que $f$ es derivable en todo su dominio y su derivada es $f'(x) = cx^{c-1}$. Sugerencia: Considera que $f(x) = x^c = e^{cln(x)}$ y emplea la regla de la cadena.
  • Encuentra la derivada de la función $f(x) = e^{x^2}+ln(x^2)$.
  • Encuentra la derivada de la función $f(x) = ln(x+\sqrt{x^2+x})$.
  • Encuentra la derivada de la función $f(x) = \frac{1}{\sqrt{x}}e^{x^2}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»