Cálculo Diferencial e Integral I: Funciones exponenciales y logarítmicas

Introducción

En esta entrada veremos un par de tipos de funciones muy particular: las exponenciales y las logarítmicas. Probablemente en alguno de tus cursos anteriores te encontraste con funciones del tipo:
\begin{align*}
f(x)&= 3^{x} & g(x)&= ln(x)\\
\end{align*}

Aquí veremos su representación gráfica, ejercicios relacionados y algunos resultados importantes cómo las leyes de los exponentes y de los logaritmos. Se verá un desarrollo más detallado sobre este conjunto de funciones en el curso de Cálculo Diferencial e Integral II.

Funciones exponenciales

Definición (función exponencial): Sea $f$ una función. Decimos que $f$ es una función exponencial si está definida como:
$$f: \r \rightarrow (0, \infty)$$
$$f(x)=a^{x}$$
con $a \in {\r}$ y $a>0$.
En este tipo de funciones tenemos que la variable $x$ está como exponente.
Observemos que tenemos los siguientes casos:

Veamos que al tomar $a=1$ tenemos que su gráfica se vería:
$$f(x)=1^{x}$$

Leyes de los exponentes

Teorema (Leyes de los exponentes): Consideremos a $a, m, n \in \r$ y $a>0$. Vemos que se cumplen las siguientes propiedades:

  1. $a^{m}a^{n}=a^{m+n}$
  2. $(a^{n})^{m}=a^{(n\cdot m)}$
  3. $a^{0}=1$
  4. $a^{-1}=\frac{1}{a}$
  5. $a^{-n}=\frac{1}{a^{n}}$
  6. $a^{n-m}=\frac{a^{n}}{a^{m}}$
  7. $a^{\frac{1}{q}}=\sqrt[q]{x}$
  8. $a^{\frac{p}{q}}=\sqrt[q]{x^{p}}$

Por el momento no daremos las pruebas pertinentes, ya que las herramientas necesarias se verán durante el próximo curso de cálculo. Así pasaremos a revisar otros resultados relacionados a las funciones exponenciales.

Otros resultados sobre funciones exponenciales

Proposición: Consideremos $a>0$ y $r=\frac{p}{q} \in \mathbb{Q}$.

  1. Si $a>1$ y $r>0$ entonces $a^{r}>1$
  2. Si $0<a<1$ y $r>0$ entonces $a^{r}<1$
  3. Si $a>1$ y $r<0$ entonces $a^{r}<1$
  4. Si $0<a<1$ y $r<0$ entonces $a^{r}>1$

Demostración:

  1. Cómo $a>1$ se sigue que:
    \begin{align*}
    a>1 &\Rightarrow \sqrt[q]{a}>\sqrt[q]{1}\\
    &\Rightarrow (\sqrt[q]{a})^{p}>(\sqrt[q]{1})^{p}\\
    &\Rightarrow a^{\frac{p}{q}}>1\\
    &\Rightarrow a^{r}>1
    \end{align*}
  2. Ahora tenemos que $0<a<1$:
    \begin{align*}
    &\Rightarrow \sqrt[q]{a}< \sqrt[q]{1}\\
    &\Rightarrow (\sqrt[q]{a})^{p}<(\sqrt[q]{1})^{p}\\
    &\Rightarrow a^{r}<1
    \end{align*}
  3. Tarea moral
  4. Ya que $0<a<1$ observamos que:
    $$1< \frac{1}{a}$$
    Adicionalmente como $r<0$ se sigue:
    \begin{align*}
    &\Rightarrow (\frac{1}{a})^{r}<1\\
    &\Rightarrow (a^{-1})^{r}<1\\
    &\Rightarrow a^{-r}<1\\
    &\Rightarrow \frac{1}{a^{r}}<1\\
    &\Rightarrow 1<a^{r}
    \end{align*}

$\square$

Teorema: Sea $f: A \subseteq \r \rightarrow \r$.

  1. Si $f$ es una función creciente $\Rightarrow f$ es inyectiva.
  2. Si $f$ es una función decreciente $\Rightarrow f$ es inyectiva.

Demostración de 1:
Tomemos $x_{1},x_{2} \in A$ tales que $x_{1} \neq x_{2}$ por lo que tenemos los siguientes casos:
Caso 1: Si $x_{1}>x_{2}$ entonces al aplicar la función $f$ tenemos
$$f(x_{1})>f(x_{2})$$
Por lo que:
$$f(x_{1}) \neq f(x_{2})$$

Caso 2: Ahora si $x_{1}<x_{2}$ y aplicamos la función $f$
$$f(x_{1})< f(x_{2})$$
Así:
$$f(x_{1}) \neq f(x_{2})$$
De los casos anteriores concluimos que:
$f$ es inyectiva

$\square$

Afirmación: Si tenemos $a>0$ y $f: \r \rightarrow \r^{+}$
$$f(x)=a^{x}$$

  1. Si $a>1$ entonces $f$ es creciente.
  2. Si $0<a<1$ entonces $f$ es decreciente.

Demostración:

  1. Si $a>1$ y tomamos $x<y$ entonces $y-x>0$
    \begin{align*}
    &\Rightarrow a^{y-x}>1\\
    &\Rightarrow \frac{a^{y}}{a^{x}}>1\\
    &\Rightarrow a^{y}>a^{x}
    \end{align*}
  2. En cambio si $0<a<1$ y ahora consideramos $x<y$. Queremos probar que:
    $f(x)>f(y)$
    \begin{align*}
    x<y &\Rightarrow y-x>0\\
    &\Rightarrow a^{y-x}<1\\
    &\Rightarrow \frac{a^{y}}{a^{x}}<1\\
    &\Rightarrow a^{y}< a^{x}\\
    &\Rightarrow f(y)<f(x)
    \end{align*}

$\square$

Observación: Si $a>0$ y $a \neq 1$ entonces $f(x)=a^{x}$ es inyectiva.
Observación: $f(x)=a^{x}$ es sobreyectiva.

Ahora hablemos del número $e$

Si consideramos $a= e$ donde:
$$e=2.718282 \ldots$$
que es llamado el número de Euler.
Obtenemos la función:
$$f(x)=e^{x}$$
llamada función exponencial, ésta es quizá las más conocida de este tipo de funciones.

Su gráfica se ve del siguiente modo:

¿Y su función inversa?

Si tomas la función $f(x)=a^{x}$, la función identidad y reflejamos su gráfica, obtenemos que $f^{-1}$ se ve cómo:

Observamos que $f^{1}$ esta definida como:
$$f^{-1}: (0, \infty) \rightarrow \r$$
que vemos también cumple ser inyectiva.
A $f^{-1}(x)$ la denotaremos por:
$$f^{-1}(x)= log_{a}(x)$$

Funciones logarítmicas

Definición (función logarítmica): Sea $g$ una función en los reales. Decimos que $g$ es una función logarítmica si:
$$g: (0, \infty) \rightarrow \r$$
$$g(x)=log_{a}(x)$$
donde $log_{a}(x)$ se lee como logaritmo base $a$ de $x$.
Notación:

  • Si tomamos $a=e$:
    $$log_{e}(x):= ln(x)$$
    llamado logaritmo natural de $x$.
  • Si tomamos $a=10$ escribiremos:
    $$log_{10}(x):= log(x)$$

Leyes de los logaritmos

Teorema (Leyes de los logaritmos): Sean $a \in (0, \infty)$ con $a\neq 1$, $x,y \in (0, \infty)$ y $r \in \r$. Tenemos que se cumplen las siguientes igualdades:

  1. $log_{a}(x \cdot y)=log_{a}(x)+log_{b}(y)$
  2. $r log_{a}(x)= log_{a}(x^{r})$
  3. $log_{a}(\frac{x}{y})= log_{a}(x)- log_{a}(y)$

Demostración:
Tomemos $log_{a}(x)=z$ y $log_{a}(y)=w$ y notemos que:
\begin{align*}
a^{z}&= x & a^{w}&=y
\end{align*}

  1. Para este punto consideremos el producto de $x$ con $y$:
    \begin{align*}
    x \cdot y &= a^{z}\cdot a^{w}\\
    &= a^{z+w}
    \end{align*}
    Así sustituyendo al logaritmo del producto tenemos:
    \begin{align*}
    log_{a}(x \cdot y)&= log_{a}(a^{z+w})\\
    &= z+w\\
    &=log_{a}(x)+ log_{a}(y)
    \end{align*}
  2. Ahora si elevamos $a^{z}=x$ a la $r$ obtenemos:
    $$(a^{z})^{r}= x^{r} \Rightarrow a^{rz}=x^{r}$$
    Tomando el $log_{a}(x^{r})$ se sigue:
    \begin{align*}
    log_{a}(x^{r})&= log_{a}(a^{rz})\\
    &= rz\\
    &=r log_{a}(x)
    \end{align*}
  3. Por último veamos que:
    $$x=\frac{x}{y}\cdot y$$
    Tomando lo anterior y aplicando logaritmo:
    \begin{align*}
    log_{a}(x)&= log_{a}\left(\frac{x}{y}\cdot y \right)\\
    &= log_{a}\left(\frac{x}{y }\right)+ log_{a}(y)
    \end{align*}
    Reacomodando obtenemos:
    $$log_{a} \left(\frac{x}{y}\right)= log_{a}(x)- log_{a}(y)$$

$\square$

Cambio de base de logaritmos

Proposición (Cambio de base): Consideremos $a,b \in (0, \infty)$ donde $a\neq 1, b \neq 1$, $x \in \r$ y $y>0$. Se cumplen las siguientes propiedades:

  1. $a^{x}=b^{x log_{b}(a)}$
  2. $log_{a}(y)=\frac{log_{b}(y)}{log_{b}(a)}$

Demostración:

  1. Si aplicamos la segunda ley de los logaritmos en la siguiente igualdad y simplificamos tenemos:
    \begin{align*}
    b^{x log_{b}(a)}&= b^{log_{b}(a^{x})}\\
    &= a^{x}
    \end{align*}
  2. Cómo $y>0$ entonces podemos considerar $x=log_{a}(y)$. Así sustituyendo en el punto 1:
    \begin{align*}
    a^{log_{a}(y)}&= b^{log_{a}(y)log_{b}(a)}
    \end{align*}
    De lo anterior tenemos:
    $$y=b^{log_{a}(y)log_{b}(a)}$$
    Tomando el logaritmo base $b$ en ambos lados de la igualdad:
    \begin{align*}
    log_{b}(y)&= log_{b}(b^{log_{a}(y)log_{b}(a)})\\
    &= log_{a}(y)\cdot log_{b}(a)
    \end{align*}
    $$\therefore log_{a}(y)=\frac{log_{b}(y)}{log_{b}(a)}$$

$\square$

Ejercicio

Resuelve la ecuación:
\begin{equation*}
log_{4}(log_{3}(log_{2}(x)))=0
\end{equation*}
Solución:
Comenzaremos realizando un cambio de variable considerando:
$$\beta =log_{3}(log_{2}(x))$$
Por lo que tendríamos:
\begin{equation*}
log_{4}(\beta)=0
\end{equation*}
Lo anterior ocurre implica que:
\begin{equation*}
4^{log_{4}(\beta)}=4^{0}=1
\end{equation*}
$$\therefore \beta = 1$$
$$\therefore log_{3}(log_{2}(x))=1$$
Procedemos con un razonamiento similar para $log_{3}(log_{2}(x))=1$:
\begin{equation*}
3^{log_{3}(log_{2}(x))}=3^{1}=3
\end{equation*}
Por lo que concluimos:
$$log_{2}(x)=3$$
Finalmente de $log_{2}(x)=3$ obtenemos:
\begin{equation*}
2^{log_{2}(x)}=2^{3}=8
\end{equation*}
Así tenemos que el valor para $x$ sería:
$$x=8$$

Realizando la comprobación vemos que se cumple:
\begin{align*}
log_{4}(log_{3}(log_{2}(x)))&=log_{4}(log_{3}(log_{2}(8)))\\
&=log_{4}(log_{3}(3))\\
&=log_{4}(1)\\
&=0
\end{align*}

Tarea moral

  • Demuestra el punto 3 de la Proposición.
  • Gráfica las siguientes funciones:
    • $f(x)=ln(x-2)$
    • $f(x)=1-e^{x}$
  • Demuestra que dado $a \in (0, \infty)- \left\{1 \right\}$:
    \begin{equation*}
    log_{\frac{1}{a}}(x)=-log_{a}(x)
    \end{equation*}
  • Resuelve los siguientes ejercicios:
    • $log_{2}(log_{3}(log_{2}(x)))=1$
    • $log_{16}(x)+log_{4}(x)+log_{2}(x)=7$

Más adelante

Ahora que hemos terminado la unidad de funciones, en la próxima entrada comenzaremos con la unidad dedicada al estudio de un tipo especial de funciones: las sucesiones de números reales. Encontrarás una introducción intuitiva sobre el concepto de sucesión para pasar a su definición formal y una serie de ejemplos.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.