Archivo de la etiqueta: Sistemas no homogéneos

Ecuaciones Diferenciales I – Videos: Sistemas de ecuaciones lineales no homogéneas: solución por variación de parámetros

Introducción

En las últimas entradas del curso analizamos a detalle el método de valores y vectores propios para resolver sistemas lineales homogéneos con coeficientes constantes de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}$. Revisamos los distintos casos que se pueden presentar, según las raíces del polinomio característico asociado a la matriz $\textbf{A}$. También resolvimos ejemplos para cada caso.

Es turno de enfocarnos en resolver sistemas lineales no homogéneos con coeficientes constantes de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}+\textbf{Q}(t)$, donde $\textbf{Q}(t)$ es un vector de funciones que dependen de $t$. Para esto, utilizaremos el método de variación de parámetros para sistemas lineales, que es una generalización del método que lleva el mismo nombre, y que estudiamos para resolver ecuaciones lineales no homogéneas de orden uno y dos.

Sabemos que la solución general a tales sistemas es de la forma $$\textbf{X}(t)=\textbf{X}_{H}(t)+\textbf{X}_{P}(t)$$ donde $\textbf{X}_{H}(t)$ es la solución general al sistema homogéneo asociado, y $\textbf{X}_{P}(t)$ es una solución particular al sistema no homogéneo. Con ayuda de la función solución $\textbf{X}_{H}(t)$, el método de variación de parámetros nos ayudará a encontrar a $\textbf{X}_{P}(t)$. En efecto, si $$\textbf{X}_{H}(t)=c_{1}\textbf{X}_{1}(t)+c_{2}\textbf{X}_{2}(t)+…+c_{n}\textbf{X}_{n}(t)$$ donde las funciones $\textbf{X}_{i}(t)$ forman un conjunto fundamental de soluciones al sistema homogéneo, entonces supondremos que $$\textbf{X}_{P}(t)= u_{1}(t)\textbf{X}_{1}(t)+u_{2}(t)\textbf{X}_{2}(t)+…+u_{n}(t)\textbf{X}_{n}(t).$$ Si sustituimos $\textbf{X}_{P}(t)$ y su derivada en el sistema no homogéneo, después de realizar el álgebra correspondiente obtendremos un sistema de ecuaciones que tiene a las derivadas de las funciones $u_{i}(t)$ como incógnitas. Si resolvemos tal sistema, podremos encontrar a las funciones $u_{i}(t)$, y por tanto a la solución particular $\textbf{X}_{P}(t)$.

¡Vamos a comenzar!

Método de variación de parámetros para sistemas de ecuaciones lineales no homogéneas

En el primer video desarrollamos el método de variación de parámetros para sistemas lineales con coeficientes constantes. En el segundo video resolvemos un par de sistemas no homogéneos por variación de parámetros.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0\\ 2 & -3 \end{pmatrix}\textbf{X}+\begin{pmatrix} \sin{t}\\ \cos{t}\end{pmatrix}.$$
  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 2 & 1\\ 3 & -2 \end{pmatrix}\textbf{X}+\begin{pmatrix} e^{3t}\\ e^{3t}\end{pmatrix}.$$
  • Resuelve el problema de condición inicial $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 3 & 2\\ -1 & 2 & 1\\ 4 & -1 & 1\end{pmatrix}\textbf{X}+\begin{pmatrix} \sin{t}\\ 0\\ 0\end{pmatrix} \, \, \, \, \, ; \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1\\ 0\\ 0\end{pmatrix}.$$
  • Encuentra la solución general a la ecuación de segundo orden $$\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=3e^{-x}.$$ (Recuerda que podemos transformar una ecuación de orden $n$ en un sistema de $n$ ecuaciones de primer orden).
  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 1\\ -3 & 5 \end{pmatrix}\textbf{X}+\begin{pmatrix} 0\\ S_{0}(1-\cos{t})\end{pmatrix}.$$ donde $S_{0}$ es una constante.

Más adelante

Con esta entrada terminamos de revisar los métodos más importantes para resolver sistemas de ecuaciones lineales con coeficientes constantes. Estamos a punto de finalizar la tercera unidad, pero aún nos falta demostrar el teorema de existencia y unicidad para sistemas lineales de primer orden con coeficientes continuos. Aunque no hemos vamos a resolver tales sistemas es importante dicho teorema, y es lo que haremos en la siguiente entrada del curso.

¡Hasta la próxima!

Entradas relacionadas