Archivo de la etiqueta: Producto directo interno

Álgebra Moderna I: Lemas previos al teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como dijimos en la primera entrada de esta unidad, uno de los temas a los que queremos llegar es el Teorema fundamental de los grupos abelianos finitos, para poder demostrar el teorema necesitamos los siguientes lemas. Los enumeramos para que sea más sencillo identificarlos.

El primer lema nos dice que si tomamos un elemento de orden máximo $g$ en $G$ y un $p$-subgrupo, tal que $\left< g\right>$ no es un subgrupo de $G$ y luego tomamos un elemento de orden mínimo $h$ en $G\setminus\left< g\right>$ el orden de $h$ es $p$.

El segundo lema nos dice que si tenemos un elemento de orden máximo $g$ en $G$, podemos ver a $G$ como el producto directo interno del generado de $g$ y un $H$ subgrupo de $G$.

El tercer lema nos dice que cualquier $p$-subgrupo abeliano es producto directo interno de grupos cíclicos.

En esta entrada enunciamos y probamos los primeros dos lemas importantes, el tercero está en la siguiente entrada.

El orden de un elemento mínimo

Lema 1. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Sea $g\in G$ un elemento de orden máximo. Si $\left<g\right> \lneq G$ y $h$ es un elemento de orden mínimo en $G\setminus \left<g\right>$, entonces $o(h)=p$ y $\left< g\right> \cap \left< h\right> = \{e\}$.

Demostración.
Sean $p\in \z^+$ primo, $G$ un $p$-grupo abeliano.

Por la definición de $p$-grupo $|G| = p^n$ para algún $n\in \n$.

Sea $g\in G$ de orden máximo. Como $|G|=p^n$, sabemos que $o(g)\Big| |G| = p^n$ y así $o(g) = p^m$ con $m\leq n$.

Observemos que
\begin{align}\label{eq:uno}
a^{pm} = e \text{ para toda } a\in G,
\end{align}
ya que para toda $a\in G$, $o(a)=p^l$ con $l\leq m$ (debido a que $o(g)=p^m$ es máximo).

Supongamos que $\left< g \right> \lneq G$. Consideremos un elemento $h$ de orden mínimo en $G\setminus \left< g \right>$.

Veamos primero que $o(h)=p$.

Sabemos que $o(h) = p^t$ para alguna $t\leq n$.

Sabemos que $o(h^p) = p^{t-1} < p^t = o(h)$. Así, por la elección de $h$, $h^p\in\left< g \right>$. Tenemos que
\begin{align}\label{eq:dos}
h^{p} = g^s \text{ para algún } s\in N.
\end{align}

Entonces $(g^s)^{p^{m-1}} = (h^p)^{p^{m-1}} = h^{p^m} = e$ por (\ref{eq:uno}). Así
\begin{align}\label{eq:tres}
o(g^s) < p^m \text{ y } g^s \text{ no genera a } \left< g \right>.
\end{align}

Sabemos que $\displaystyle o(g^s) = \frac{o(g)}{(s,o(g))}$. Si $p$ no divide a $s$, como $o(g)$ es una potencia de $p$ tendríamos que $(s, o(g)) = 1$ y así $o(g^s) = o(g) = p^m$ contradiciendo (\ref{eq:tres}). Así $p|s.$

Concluimos que $s = pq$ para algún $q\in\z$.

Consideremos $a = g^{-q}h$. Tenemos que
\begin{align*}\label{eq:cuatro}
a^p = g^{-pq} h^p = g^{-s} h^p &= g^{-s}g^s &\text{ por (\ref{eq:dos})} \\
& = e.
\end{align*}

Además, si $a\in \left< g \right>$ tendríamos que $h = ag^q \in\left< g\right>$ lo cual contradice la elección de $h$.

Hemos encontrado entonces un elemento $a\not\in \left< g \right>$ con $a^p = e$, y por lo tanto $a\not\in \left< g \right>$ con $o(a) = p$. Así, $h$ debe ser también de orden $p$.

Veamos ahora que $\left< g \right> \cap \left< h\right> = \{e\}$.

Sabemos que $\left<g\right>\cap\left<h\right>$ es un subgrupo de $\left<h\right>$ y $\left<h\right>$ es de orden $p$, entonces $\left<g\right>\cap \left<h\right>$ es de orden $1$ o $p$. Si $|\left<g\right>\cap \left<h\right>|= p$ tendríamos que $\left<h\right>\subseteq \left<g\right>$, de donde $h \in \left<g\right>$, lo que contradice la elección de $h$.

Concluimos que $\left<g\right>\cap \left<h\right> = \{e\}$.

$\blacksquare$

$G$ como producto de $\left< g\right>$ y un subgrupo cualquiera

Lema 2. Sean $p\in \z^+$ un primo y $G$ un $p$-grupo abeliano. Supongamos que $g\in G$ es un elemento de orden máximo. Entonces $G$ es el producto directo interno de $\left< g\right>$ y un subgrupo $H$ de $G$.

Demostración.
Sean $p\in\z^+$ primo, $G$ un $p$-grupo abeliano. Por la definición de $p$-grupo $|G| = p^n$ para algún $n\in\n$.

Demostraremos por el segundo principio de inducción.

H.I. Supongamos que para todo grupo abeliano $\tilde{G}$ con $|\tilde{G}| = p^k$ y $0\leq k < n$ se tiene que si $\tilde{g}\in \tilde{G}$ es de orden máximo, entonces $\tilde{G}$ es el producto directo interno de $\left< \tilde{g}\right>$ y un subgrupo $\tilde{H}$ de $\tilde{G}$.

Sea $g\in G$ de orden máximo. Como $|G| = p^n$, sabemos que $o(g)\Big||G| = p^n$ y así $o(g) = p^m$ con $m\leq n$.

Si $G = \left<g\right>$ no hay nada que probar.

Si $\left< g \right> \lneq G$ consideremos un elemento $h$ de orden mínimo en $G\setminus \left<g\right>.$

Por el lema 1, sabemos que $o(h) = p$ y que $\left<g\right> \cap \left<h\right> = \{e\}$. Sea $H = \left< h \right>.$

Observemos que $gH$ es un elemento de orden máximo en $G/H$ ya que por (\ref{eq:uno}), $(aH)^{p^m} = a^{p^m}H = H$ para todo $a\in G$. Además $(gH)^{o(g)} =g^{o(g)}H = H $ por lo que $o(gH) \leq o(g) = p^m$, y si $o(gH)< p^m$ tendríamos que
\begin{align*}
H = (gH)^{p^{m-1}} = g^{p^{m-1}} H
\end{align*}
y así $g^{p^{m-1}} \in \left< g \right> \cap H = \{e\}$ contradiciendo que $o(g) = p^m$.

Concluimos así que $gH$ es un elemento de orden máximo en $G/H$, con $G/H$ un $p$-grupo abeliano de orden menor que el de $G$.

Por H.I. sabemos que $G/H$ es el producto directo interno de $\left<gH \right>$ y un subgrupo $\tilde{H}$ de $G/H$.

Por el teorema de la correspondencia $\tilde{H} = K/H$ para algún $H\leq K \leq G$.

Veamos que $G$ es el producto directo interno de $\left< g\right>$ y $K$.

Si $x\in \left<g\right> \cap K$, entonces $xH\in \left<gH\right>\cap K/H = \left<gH\right> \cap \tilde{H}$ y como $G/H$ es el producto directo de $\left<gH\right>$ y $\tilde{H}$, entonces $\left<gH\right>\cap \tilde{H} = \{H\}$. Así $xH \in \{H\}$ y entonces $x\in H$.

Tenemos que $x\in \left<g\right>\cap H = \{e\}$ probando que $x = e$.

Así $\left<g\right> \cap K = \{e\}$. Por otro lado, si $y\in G$, sabemos que $yH\in G/H = \left<gH\right>\tilde{H} = \left<gH\right>K/H$. Tenemos que
\begin{align*}
yH &= (gH)^tkH \text{ para algunos } t\in\z, k\in K\\
&= g^tkH.
\end{align*}

Entonces $(g^tk)^{-1}y = \tilde{h}$ con $\tilde{h}\in H$. Así $y = g^t k \tilde{h}$. Como $H\leq K$ tenemos que $k\tilde{h} \in K$, entonces $y\in\left<g\right>K$.

Concluimos que $\left<g\right> \cap K = \{e\}$ y $\left<g\right> K = G$ por lo que $G$ es el producto directo interno de $\left<g\right>$ y $K$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera los siguientes grupos:
    • $S_4.$
    • $\z_{11}.$
    • $A_5.$
    • $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}.$
  2. De ser $p$-subgrupos abelianos, aplica el lema 1. De no serlo, considera un $p$-subgrupo de ellos. Busca un elemento de orden máximo tal que $\left< g\right>$ no es un subgrupo de $G$ y encuentra $h$ elemento de orden mínimo tal que su orden sea $p$.
  3. De ser $p$-subgrupos abelianos, aplica el lema 2. De no serlo, considera un $p$-subgrupo de ellos. Busca un elemento de orden máximo $g$ en $G$, y describe a $G$ como el producto directo interno $\left<g\right>$ y un $H$ subgrupo de $G$.

Más adelante…

No hay mucho más que decir sobre estos lemas, su función es clara y se verá en la siguiente entrada. Como estos lemas ya están demostrados, la demostración del Teorema Fundamental de los Grupos abelianos es más directa. En la siguiente entrada enunciaremos y demostraremos el Lema 3 y por fin podremos enfrentarnos al Teorema fundamental de los grupos abelianos finitos.

Entradas relacionadas

Álgebra Moderna I: Producto directo interno

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Continuamos con el estudio del producto de grupos. En la entrada anterior definimos el producto directo externo de grupos, luego vimos unas funciones naturales y definimos los subgrupos $G^*_i$. Demostramos que para un grupo $G = G_1 \times \dots \times G_n$ se cumple que:

  1. $G_i^* \unlhd G \quad \forall i\in\{1,\dots,n\}$.
  2. $\displaystyle G_i^* \cap \left( \prod_{j\neq i} G_j^*\right) = \{e_G\} \text{ para toda }i\in\{1,\dots,n\}$.
  3. $\displaystyle G = \prod_{i = 1}^n G_i^*$.

En resumen, esta proposición nos dice que si $G$ es el producto directo externo de varios grupos, también lo podemos ver como producto de subgrupos normales que cumplen el inciso 2.

En esta entrada queremos generalizar esta idea: ahora $G$ será un grupo cualquiera, tomaremos subgrupos normales $H_i$, con $i\in \{1,\dots,n\}$ de $G$ que cumplan estas propiedades y probaremos que $G$ se puede ver como el producto directo externo de estos subgrupos.

En el producto directo externo, construíamos $G$ a partir de otros grupos que pudieran incluso no estar relacionados entre sí. Ahora intentaremos describir a un grupo $G$ como producto de algunos de sus subgrupos normales, por eso llamaremos a este concepto el producto directo interno.

Producto directo interno de subgrupos

Comencemos definiendo nuestro nuevo producto entre subgrupos normales de $G$.

Definición. Sean $G$ un grupo, $H_1,\dots, H_n$ subgrupos de $G$. Decimos que $G$ es el producto directo interno de $H_1,\dots, H_n$ si

  1. $H_i \unlhd G$ para toda $i\in\{1,\dots, n\}$.
  2. $\displaystyle H_i\cap \left(\prod_{j\neq i} H_j\right) = \{e\}$ para toda $i\in\{1,\dots, n\}$.
  3. $\displaystyle G = \prod_{i=1}^n H_i$.

Observación 5. $G_1\times\cdots\times G_n$ es el producto directo interno de los $G_i^*$.

Observación 6. Si $G$ es el producto directo interno de $H_1,\cdots,H_n$, entonces $xy=yx$ para toda $x\in H_i, y\in H_j$ con $i\neq j$.

Demostración.
Sea $G$ producto directo de $H_1,\dots, H_n$, sean $x\in H_i, y\in H_j$, con $j\neq i$, entonces
\begin{align*}
xyx^{-1}y^{-1} = x(yx^{-1}y^{-1}) \in H_i,
\end{align*}
porque $x \in H_i$ y $yx^{-1}y^{-1}\in H_i$ pues $H_i \unlhd G$.

Por otro lado,
\begin{align*}
xyx^{-1}y^{-1} = (xyx^{-1})y^{-1} \in H_j,
\end{align*}
ya que, análogamente, $xyx^{-1} \in H_j$ debido a que $H_j\unlhd G$ y $y^{-1} \in H_j.$

Así, $\displaystyle xyx^{-1}y^{-1} \in H_i \cap H_j \subseteq H_i\cap \prod_{k\neq i} H_k = \{e\}$. Entonces $xyx^{-1}y^{-1} = e$.

Por lo tanto $xy = yx$.

$\blacksquare$

Ejemplo. Sea $G = \left< a \right>$ con $o(a) = 12$. Busquemos subgrupos $H_1, \dots, H_n$ para alguna $n\in \n$ tales que $G$ sea el producto directo interno de estos subgrupos.

Sean $H_1 = \left< a^3\right>, H_2 = \left< a^4\right>$. Como $G$ es abeliano, $H_1\unlhd G, H_2 \unlhd G$. Además
\begin{align*}
H_1\cap H_2 = \{e,a^3,a^6, a^9\} \cap \{e, a^4, a^8\} = \{e\}.
\end{align*}

Como
\begin{align*}
a = ae = a a^{12} = a^{13} = a^9a^4 \in H_1H_2
\end{align*}
tenemos que $G = \left< a \right> \subseteq H_1H_2$. Por la cerradura del producto en $G$ se tiene además que $H_1H_2 \subseteq G$, entonces $G=H_1H_2$.

Por lo tanto $G$ es el producto directo interno de $H_1$ y $H_2$.

Observación 7. Sean $G$ un grupo, $H_1,\dots, H_n$ subgrupos de $G$. Si $G$ es el producto directo interno de $H_1,\dots, H_n$, entonces
\begin{align*}
\varphi : H_1\times \cdots \times H_n \to G
\end{align*}
con $\varphi(h_1,\dots,h_n) = h_1\cdots h_n$ para toda $(h_1,\dots,h_n) \in H_1\times\cdots\times H_n$ es un isomorfismo.

Es consecuencia, si $G$ es finito tenemos que $|G| = |H_1|\cdots|H_n|$.

Descomposición de $G$ en $p$-subgrupos

Algunos subgrupos importantes que vimos son los $p$-subgrupos de Sylow, para $p$ primo. Ahora los usaremos junto con el producto directo interno para describir a $G$ como el producto de sus $p$-subgrupos de Sylow, esto nos recuerda mucho al Teorema Fundamental de la Aritmética.

Teorema. Sea $G$ un grupo finito con $p_1,\dots, p_t$ los distintos factores primos del orden de $G$ y $P_1, \dots, P_t$ subgrupos de Sylow de $G$ asociados a $p_1,\dots,p_t$ respectivamente. Si $P_i\unlhd G$ para toda $i\in\{1,\dots, t\}$, entonces $G$ es el producto directo interno de $P_1,\dots, P_t$.

Demostración.
Sea $G$ un grupo finito de orden $n$. Sean $p_1,\dots, p_t$ los distintos factores primos de $n$ con $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_t^{\alpha_t}$. Sean $P_1,\dots, P_t$ subgrupos de $G$ con $P_i$ un $p_i$-subgrupo de Sylow de $G$ y $P_i \unlhd G$ para toda $i\in \{1,\dots, t\}$.

Veamos que para todo $S\subseteq \{1,\dots, t\}$, $\displaystyle \prod_{j\in S} P_j$ es un producto directo interno por inducción sobre $\# S$.

Caso Base. Supongamos que $\# S = 1$,
$S = \{i\} \subseteq \{1,\dots, t\}$ y $P_i$ es el producto directo interno de $P_i$.

H.I. Supongamos que si $T\subseteq \{1,\dots, t\}$ con $\# T < \# S$, entonces $\displaystyle \prod_{j\in T} P_j$ es un producto directo interno.

Sea $\displaystyle H = \prod_{j\in S}P_j$. Veamos que $H$ es el producto directo interno de los $P_j$ con $j\in S$.

Por hipótesis se cumplen las condiciones $1$ y $3$ de la definición de producto directo interno. Veamos que se cumple $2$.

Sean $i\in S$, $\displaystyle x\in P_i\cap \prod_{\substack{j\in S\\ j\neq i}} P_j$.

Como $x\in P_i$, entonces $o(x) $ divide a $ |P_i|$.

Como $\displaystyle x\in \prod_{\substack{j\in S\\ j\neq i}} P_j$, entonces el orden de $x$ divide al orden del producto: $\displaystyle o(x) \Big| \left|\prod_{\substack{j\in S\\ j\neq i}} P_j\right| = \prod_{\substack{j\in S\\ j\neq i}} |P_j|$ donde la última igualdad se debe a que $\displaystyle \prod_{\substack{j\in S\\ j\neq i}} P_j$ es un producto directo interno por H.I. y por la observación 7.

Pero $|P_i| = p_i^{\alpha_i}$ y $\displaystyle \prod_{\substack{j\in S\\ j\neq i}} |P_j| = \prod_{\substack{j\in S\\ j\neq i}} p_j^{\alpha_j}$ con $\alpha_j\in \n^+$ para toda $j\in S$, entonces $|P_i|$ y $\displaystyle \prod_{\substack{j\in S\\ j\neq i}} |P_j|$ son primos relativos. Así, $o(x) = 1$. Por lo que $\displaystyle P_i \cap \prod_{\substack{j\in S\\ j\neq i}} P_j = \{e\}$.

Hemos probado entonces que $\displaystyle \prod_{\substack{j\in S}} P_j$ es un producto directo interno para toda $S\subseteq \{1,\dots,t\}$. En particular para $S = \{1,\dots, t\}$ tenemos que $\displaystyle \prod_{j = 1}^t P_j$ es un producto directo interno. Por la observación 7,
\begin{align*}
\left| \prod_{j = 1}^t P_j \right| = \prod_{j=1}^t |P_j| = n = |G|
\end{align*}
ya que $P_1,\dots,P_t$ son subgrupos de Sylow asociados a los distintos factores primos de $G$.

Como $\displaystyle \prod_{j=1}^t P_j$ es un subgrupo de $G$ de orden $|G|$ tenemos que $\displaystyle G = \prod_{j=1}^t P_j$.

Por lo tanto $G$ es el producto directo interno de $P_1,\dots, P_t$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra las observaciones 5 y 7.
    • $G_1\times\cdots\times G_n$ es el producto directo interno de los $G_i^*$.
    • Sean $G$ un grupo, $H_1,\dots, H_n$ subgrupos de $G$. Si $G$ es el producto directo interno de $H_1,\dots, H_n$, entonces
      \begin{align*}
      \varphi : H_1\times \cdots \times H_n \to G
      \end{align*}
      con $\varphi(h_1,\dots,h_n) = h_1\cdots h_n$ para toda $(h_1,\dots,h_n) \in H_1\times\cdots\times H_n$ es un isomorfismo.
  2. Regresa a la entrada de Ejemplo de Sylow y considera $S_4$.
    • De existir, busca $H_1, \dots, H_n$ tal que $S_4$ sea producto directo de $H_1,\dots , H_n.$
    • Usando los $p$-subgrupos de Sylow que encontramos, describe a $S_4$ como producto directo interno de ellos. Aplica el último teorema visto.
  3. Aplica el último teorema visto a los grupos $\z_6$ y $T = S_3 \times \z_4$. Para cada uno encuentra los primos $p_1, \dots , p_n$ que conforman al orden del grupo y los $P_1, \dots , P_n$ subgrupos de Sylow que corresponden a estos primos. Al final, representa a cada grupo como producto directo interno de estos $p$-subgrupos de Sylow.

Más adelante…

La descomposición de un grupo en $p$-subgrupos que vimos es una probada de lo que veremos en el Teorema fundamental de grupos abelianos finitos, la relación de los primos que componen al orden del grupo con los $p$-subgrupos del mismo grupo. Pero antes de poder enunciarlo, necesitamos enunciar algunos teoremas que nos ayudarán y que se sirven de los productos directos interno y externo que hemos estado viendo.

Entradas relacionadas