Archivo del Autor: Eduardo García Caballero

Álgebra Superior I: Cálculo de determinantes

Por Eduardo García Caballero

Introducción

En la entrada anterior introdujimos el concepto de determinante de matrices cuadradas. Dimos la definición para matrices de $2\times 2$. Aunque no dimos la definición en general (pues corresponde a un curso de Álgebra Lineal I), dijimos cómo se pueden calcular los determinantes de manera recursiva. Pero, ¿hay otras herramientas para hacer el cálculo de determinantes más sencillo?

En esta entrada hablaremos de más propiedades de los determinantes. Comenzaremos viendo que si en una matriz tenemos dos filas o columnas iguales, el determinante se hace igual a cero. Luego, veremos que los determinantes son lineales (por renglón o columna), que están muy contectados con las operaciones elementales y platicaremos de algunos determinantes especiales.

Linealidad por filas o columnas

El determinante «abre sumas y saca escalares», pero hay que ser muy cuidadosos, pues no lo hace para toda una matriz, sino sólo renglón a renglón, o columna a columna. Enunciemos esto en las siguientes proposiciones.

Proposición. El determinante saca escalares renglón por renglón o columna por columna. Por ejemplo, pensemos en sacar escalares por renglón. Si $k$ es un número real y tenemos una matriz de la forma
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & & \vdots \\
ka_{i1} & ka_{i2} & \cdots & ka_{in} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix},
\]
entonces
\[
\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & & \vdots \\
ka_{i1} & ka_{i2} & \cdots & ka_{in} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
=
k\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}.
\]

No podemos dar la demostración muy formalmente, pues necesitamos de más herramientas. Pero puedes convencerte de que esta proposición es cierta pensando en lo que sucede cuando se calcula el determinante recursivamente en la fila $i$. En la matriz de la izquierda, usamos los coeficientes $ka_{i1},\ldots,ka_{in}$ para acompañar a los determinantes de las matrices de $(n-1)\times (n-1)$ que van saliendo. Pero entonces en cada término aparece $k$ y se puede factorizar. Lo que queda es $k$ veces el desarrollo recursivo de la matriz sin las $k$’s en el renglón $i$.

Ejemplo. Calculemos el determinante de la matriz $A=\begin{pmatrix} 2 & 2 & -1 \\ 0 & 2 & 3 \\ -3 & 2 & 1\end{pmatrix}$. En la primera columna hay un $0$, así que nos conviene usar esta columna para encontrar el determinante. Aplicando la regla recursiva, obtenemos que:

\begin{align*}
\det(A)=\begin{vmatrix} 2 & 2 & -1 \\ 0 & 2 & 3 \\ -3 & 2 & 1\end{vmatrix} &= (2) \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} – (0) \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} + (-3) \begin{vmatrix} 2 & -1 \\ 2 & 3 \end{vmatrix}\\
&=2(2\cdot 1 – 3 \cdot 2) – 0 (2 \cdot 1 – (-1)\cdot 2) – 3 (2\cdot 3 – (-1)\cdot 2)\\
&=2(-4)-0(4)-3(8)\\
&=-32.
\end{align*}

¿Qué sucedería si quisiéramos ahora el determinante de la matriz $B=\begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 3 \\ -3 & 1 & 1\end{pmatrix}$? Podríamos hacer algo similar para desarrollar en la primera fila. Pero esta matriz está muy relacionada con la primera. La segunda columna de $B$ es $1/2$ veces la segunda columna de $A$. Por la propiedad que dijimos arriba, tendríamos entonces que $$\det(B)=\frac{1}{2}\det(A)=\frac{-32}{2}=-16.$$

$\triangle$

Ejemplo. Hay que tener mucho cuidado, pues el determinante no saca escalares con el producto escalar de matrices. Observa que si $A=\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, entonces $\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 2\cdot 1 – 1\cdot 1 = 1$. Sin embargo, $$\det(2A)=\begin{vmatrix} 4 & 2 \\ 2 & 2 \end{vmatrix}=4\cdot 2 – 2 \cdot 2 = 4\neq 2\det(A).$$

En vez de salir dos veces el determinante, salió cuatro veces el determinante. Esto tiene sentido de acuerdo a la propiedad anterior: sale un factor $2$ pues la primera fila es el doble, y sale otro factor $2$ porque la segunda fila también es el doble.

$\square$

Proposición. El determinante abre sumas renglón por renglón, o columa por columna. Por ejemplo, veamos el caso para columnas. Si tenemos una matriz de la forma
\[
\begin{pmatrix}
a_{11} & \cdots & a_{1i} + b_{1i} & \cdots & a_{1n} \\
a_{21} & \cdots & a_{2i} + b_{2i} & \cdots & a_{2n} \\
\vdots & & \vdots & & \vdots \\
a_{n1} & \cdots & a_{ni} + b_{ni} & \cdots & a_{nn}
\end{pmatrix},
\]
entonces este determinante es igual a
\begin{align*}
\operatorname{det}
\begin{pmatrix}
a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\
a_{21} & \cdots & a_{2i} & \cdots & a_{2n} \\
\vdots & & \vdots & & \vdots \\
a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
\end{pmatrix}
+
\operatorname{det}
\begin{pmatrix}
a_{11} & \cdots & b_{1i} & \cdots & a_{1n} \\
a_{21} & \cdots & b_{2i} & \cdots & a_{2n} \\
\vdots & & \vdots & & \vdots \\
a_{n1} & \cdots & b_{ni} & \cdots & a_{nn}
\end{pmatrix}.
\end{align*}

Una vez más, no podemos dar una demostración muy formal a estas alturas. Pero como en el caso de sacar escalares, también podemos argumentar un poco informalmente qué sucede. Si realizamos el cálculo de determinantes en la columna $i$, entonces cada término de la forma $a_{ji}+b_{ji}$ acompaña a un determinante $D_{ji}$ de una matriz de $(n-1)\times (n-1)$ que ya no incluye a esa columna. Por ley distributiva, cada sumando es entonces $(a_{ji}+b_{ji})D_{ji}=a_{ji}D_{ji}+b_{ji}D_{ji}$ (acompañado por un $+$ o un $-$). Agrupando en un lado los sumandos con $a_{ji}$’s y por otro los sumandos con $b_{ji}$’s obtenemos la identidad deseada.

Ejemplo. Las matrices $\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$ y $\begin{pmatrix} 2 & 5 \\ 2 & 1 \end{pmatrix}$ tienen determinantes $1$ y $-8$ respectivamente (verifícalo). De acuerdo a la propiedad anterior, el determinante de la matriz $$\begin{pmatrix} 5 + 2 & 2 + 5 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 7 \\ 2 & 1 \end{pmatrix}$$

debería ser $1 + (-8) = -7$. Y sí, en efecto $7\cdot 1 – 2 \times 7 = -7$.

$\triangle$

Hay que tener mucho cuidado, pues en esta propiedad de la suma las dos matrices tienen que ser iguales en casi todas las filas (o columnas), excepto en una. En esa fila (o columna) es donde se da la suma. En general, no sucede que $\det(A+B)=\det(A)+\det(B)$.

Ejemplo. Puedes verificar que las matrices $A=\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{pmatrix}$ y $B=\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{pmatrix}$ tienen ambas determinante $1$. Sin embargo, su suma es la matriz de puros ceros, que tiene determinante $0$. Así, $$\det(A)+\det(B)=2\neq 0 = \det(A+B).$$

$\triangle$

El determinante y operaciones elementales

El siguiente resultado nos dice qué sucede al determinante de una matriz cuando le aplicamos operaciones elementales.

Teorema. Sea $A$ una matriz cuadrada.

  • Si $B$ es una matriz que se obtiene de $A$ al reescalar un renglón con el escalar $\alpha$, entonces $\det(B)=\alpha\det(A)$.
  • Si $B$ es una matriz que se obtiene de $A$ al intercambiar dos renglones, entonces $\det(B)=-\det(A)$.
  • Si $B$ es una matriz que se obtiene de $A$ al hacer una transvección, entonces $\det(B)=\det(A)$.

No nos enfocaremos mucho en demostrar estas propiedades, pues se demuestran con más generalidad en el curso de Álgebra Lineal I. Sin embargo, a partir de ellas podemos encontrar un método de cálculo de determinantes haciendo reducción gaussiana.

Teorema. Sea $A$ una matriz cuadrada. Supongamos que para llevar $A$ a su forma escalonada reducida $A_{red}$ se aplicaron algunas transvecciones, $m$ intercambios de renglones y $k$ reescalamientos por escalares no cero $\alpha_1,\ldots,\alpha_k$ (en el orden apropiado). Entonces $$\det(A)=\frac{(-1)^m\det(A_{red})}{\alpha_1\alpha_2\cdots\alpha_k}.$$ En particular:

  • Si $A_{red}$ no es la identidad, entonces $\det(A_{red})=0$ y entonces $\det(A)=0$.
  • Si $A_{red}$ es la identidad, entonces $\det(A_{red})=1$ y entonces $$\det(A)=\frac{(-1)^m}{\alpha_1\alpha_2\cdots\alpha_k}.$$

Veamos un ejemplo.

Ejemplo. Calculemos el determinante de la matriz $A=\begin{pmatrix} 2 & 2 & -2 \\ 0 & 2 & 3 \\ -3 & 2 & 1\end{pmatrix}$ usando reducción gaussiana. Multiplicamos la primera fila por $\alpha_1=1/2$ y la sumamos tres veces a la última (transvección no cambia el determinante):

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \\ 0 & 5 & -2\end{pmatrix}$$

Multiplicamos por $\alpha_2=1/5$ la segunda fila y la intercambiamos con la tercera (va $m=1$).

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{2}{5} \\ 0 & 2 & 3\end{pmatrix}.$$

Restamos dos veces la segunda fila a la tercera (transvección no cambia el determinante)

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{2}{5} \\ 0 & 0 & \frac{19}{5}\end{pmatrix},$$

y multiplicamos la tercera fila por $\alpha_3=5/19$:

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{2}{5}\\ 0 & 0 & 1\end{pmatrix}.$$

Hacemos transvecciones para hacer cero las entradas arriba de la diagonal principal (transvecciones no cambian el determinante): $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}.$$

Ya llegamos a la identidad. Los reescalamientos fueron por $1/2$, $1/5$ y $5/19$ y usamos en total $1$ intercambio. Así, $$\det(A)=\frac{(-1)^1}{(1/2)(1/5)(5/19)}=-38.$$

$\triangle$

Es recomendable que calcules el determinante del ejemplo anterior con la regla recursiva de expansión por menores para que verifiques que da lo mismo.

Algunos determinantes especiales

A continuación enunciamos otras propiedades que cumplen los determinantes. Todas estas puedes demostrarlas suponiendo propiedades que ya hemos enunciado.

Proposición. Para cualquier entero positivo $n$ se cumple que la matriz identidad $\mathcal{I}_n$ tiene como determinante $\operatorname{det}(\mathcal{I}_n) = 1$.

Este resultado es un caso particular de una proposición más general.

Proposición. El determinante de una matriz diagonal es igual al producto de los elementos de su diagonal; es decir,
\[
\operatorname{det}
\begin{pmatrix}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{pmatrix}
=
a_{11} a_{12} \cdots a_{nn}.
\]

Para probar esta proposición, puedes usar la regla recursiva para hacer la expansión por la última fila (o columna) y usar inducción.

Proposición. $\operatorname{det}(A^T) = \operatorname{det}(A)$.

Este resultado también sale inductivamente. Como los determinantes se pueden expandir por renglones o columnas, entonces puedes hacer una expansión en alguna fila de $A$ y será equivalente a hacer la expansión por columnas en $A^T$.

Proposición. Si $A$ es una matriz invertible, entonces $\operatorname{det}(A^{-1}) = \dfrac{1}{\operatorname{det}(A)}$.

Para demostrar este resultado, se puede usar la proposición del determinante de la identidad, y lo que vimos la entrada pasada sobre que $\det(AB)=\det(A)\det(B)$.

Los argumentos que hemos dado son un poco informales, pero quedará en los ejercicios de esta entrada que pienses en cómo justificarlos con más formalidad.

Ejemplos interesantes de cálculo de determinantes

Las propiedades anteriores nos permiten hacer el cálculo de determinantes de varias maneras (no sólo expansión por menores). A continuación presentamos dos ejemplos que usan varias de las técnicas discutidas arriba.

Ejemplo. Calculemos el siguiente determinante:

$$\begin{vmatrix} 1 & 5 & 3 \\ 2 & 9 & 1 \\ 5 & 4 & 3 \end{vmatrix}.$$

Como aplicar transvecciones no cambia el determinante, podemos restar la primera fila a la segunda, y luego cinco veces la primera fila a la tercera y el determinante no cambia. Así, este determinante es el mismo que

$$\begin{vmatrix} 1 & 5 & 3 \\ 0 & -1 & -5 \\ 0 & -21 & -12 \end{vmatrix}.$$

Multiplicar la segunda fila por $-1$ cambia el determinante en $-1$. Y luego multiplicar la tercera por $-1$ lo vuelve a cambiar en $-1$. Entonces haciendo ambas operaciones el determinante no cambia y obtenemos que el determinante es igual a

$$\begin{vmatrix} 1 & 5 & 3 \\ 0 & 1 & 5 \\ 0 & 21 & 12 \end{vmatrix}.$$

En esta matriz podemos expandir por la primera columna en donde hay dos ceros. Por ello, el determinante es

$$\begin{vmatrix} 1 & 5 \\ 21 & 12 \end{vmatrix}= (1\cdot 12) – (5 \cdot 21) = -93.$$

$\triangle$

Ejemplo. Calculemos el siguiente determinante:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}.$$

Hacer transvecciones no cambia el determinante, entonces podemos sumar todas las filas a la última sin alterar el determinante. Como $1+2+3+4=10$, obtenemos:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 10 & 10 & 10 & 10 \end{vmatrix}.$$

Ahora, la última fila tiene un factor $10$ que podemos factorizar:

$$10\cdot \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{vmatrix}.$$

Ahora, podemos restar la primera columna a todas las demás, sin cambiar el determinante:

$$10\cdot \begin{vmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & -1 \\ 3 & 1 & -2 & 1 \\ 1 & 0 & 0 & 0 \end{vmatrix}.$$

Luego, podemos sumar la segunda fila a la tercera sin cambiar el determinante:

$$10\cdot \begin{vmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & -1 \\ 5 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix}.$$

Expandiendo por la última fila:

$$-10\cdot \begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & -1 \\ 2 & 0 & 0 \end{vmatrix}.$$

Expandiendo nuevamente por la última fila:

$$-10 \cdot 2 \cdot \begin{vmatrix} 2 & 3 \\ 2 & -1 \end{vmatrix}.$$

El determinante de $2\times 2$ que queda ya sale directo de la fórmula como $2\cdot (-1)-3\cdot 2 = -8$. Así, el determinante buscado es $(-10)\cdot 2 \cdot (-8)=160$.

$\triangle$

Más adelante…

Los determinantes son una propiedad fundamental de las matrices. En estas entradas apenas comenzamos a platicar un poco de ellos. Por un lado, son muy importantes algebraicamente pues ayudan a decidir cuándo una matriz es invertible. Se pueden utilizar para resolver sistemas de $n$ ecuaciones lineales en $n$ incógnitas con algo conocido como la regla de Cramer. Por otro lado, los determinantes también tienen una interpretación geométrica que es sumamente importante en geometría analítica y en cálculo integral de varias variables. En cursos posteriores en tu formación matemática te los seguirás encontrando.

Tarea moral

  1. Calcula el siguiente determinante: $$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 4 & 0 \end{vmatrix}.$$ Intenta hacerlo de varias formas, aprovechando todas las herramientas que hemos discutido en esta entrada.
  2. También se pueden obtener determinantes en matrices en donde hay variables en vez de escalares. Encuentra el determinante de la matriz $$\begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}.$$
  3. Encuentra todas las matrices $A$ de $2\times 2$ que existen tales que $$\det(A+I_2)=\det(A)+1.$$
  4. Demuestra todas las propiedades de la sección de «Algunos determinantes especiales». Ahí mismo hay sugerencias de cómo puedes proceder.
  5. Revisa las entradas Álgebra Lineal I: Técnicas básicas de cálculo de determinantes y Seminario de Resolución de Problemas: Cálculo de determinantes para conocer todavía más estrategias y ejemplos de cálculo de determinantes.

Entradas relacionadas

Álgebra Superior I: Operaciones de suma y producto escalar con vectores y matrices

Por Eduardo García Caballero

Introducción

Anteriormente definimos qué son los vectores y las matrices con entradas reales. Así mismo, mencionamos que existen distintas operaciones que los involucran. En esta entrada conocerás dos de estas operaciones: la suma de vectores/matrices y el producto escalar.

Suma de vectores

Una de las operaciones más sencillas que involucra a los vectores es su suma. Para sumar dos vectores con entradas reales, debemos asegurarnos de que ambos tengan la misma cantidad de entradas. De este modo, podemos ver que los vectores $(1,0,3)$ y $(-2,\sqrt{5})$ no pueden ser sumados, pero los vectores $(7,\frac{1}{2},-5)$ y $(\pi,4,3)$ sí.

Para denotar la suma de dos vectores utilizaremos el símbolo $+$ en medio de ellos. Por ejemplo, la suma de $(7,\frac{1}{2},-5)$ y $(\pi,4,3)$ la escribimos como
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3).
\]

El resultado de esta operación lo obtendremos sumando entrada a entrada los dos vectores originales. Es decir, la primera entrada del nuevo vector será igual a la suma de las primeras entradas de los vectores originales; su segunda entrada será igual a la suma de las segundas entradas de los vectores originales; y así sucesivamente (observemos que, de este modo, el vector resultante tiene el mismo tamaño que los vectores originales). Así, el resultado de sumar $(7,\tfrac{1}{2},-5)$ y $(\pi,4,3)$ es
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3) = (7+\pi, \tfrac{1}{2}+4,-5+3).
\]

Además, ya te habrás dado cuenta de que podemos reducir algunas operaciones de cada entrada del vector (esto por la definición de igualdad de vectores que vimos en la entrada anterior). Así, obtenemos que
\[
(7+\pi,\tfrac{1}{2}+4,-5+3) = (7+\pi, \tfrac{9}{2},-2),
\]
y, al ser la igualdad transitiva, llegamos a que
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3) = (7+\pi, \tfrac{9}{2},-2).
\]

El ejemplo que discutimos aquí es para vectores con tres entradas, pero pudimos hacer exactamente lo mismo con vectores de dos entradas, de cuatro o de más.

Producto escalar de vectores

Otra operación que realizaremos de manera frecuente es el producto escalar. Para efectuar esta operación, requeriremos un número real y un vector, y los denotamos escribiendo primero el número y de manera seguida al vector. De este modo, el producto escalar del número real $4$ y el vector $(3,\sqrt{2},5)$ lo denotaremos por
\[
4(3,\sqrt{2},5).
\]

El resultado es esta operación consiste consiste en multiplicar cada una de las entradas de nuestro vector por el número real escogido. Así, podemos ver que
\[
4(3,\sqrt{2},5) = (4(3), 4(\sqrt{2}), 4(5)),
\]
y, al igual que pasa con la suma, en cada entrada tenemos ahora operaciones en los números reales que podemos simplificar, de modo que
\[
(4(3), 4(\sqrt{2}), 4(5)) = (12,4\sqrt{2},20),
\]
y, por lo tanto,
\[
4(3,\sqrt{2},5) = (12,4\sqrt{2},20).
\]

Al número real por el cual multiplicamos el vector lo denominaremos escalar.

Repaso de propiedades de la suma y producto de números reales

Antes de pasar a ver algunas de las propiedades que cumplen las operaciones vistas anteriormente, será conveniente que repasemos algunas de las propiedades que cumplen los números reales (seguramente estas propiedades las recuerdas de tu curso de Cálculo Diferencial e Integral I). Recordemos que si $a$, $b$ y $c$ son números reales, entonces se cumplen las siguientes propiedades:

Suma:

  • Es asociativa: $(a+b)+c = a+(b+c)$.
  • Es conmutativa: $a+b = b+a$.
  • Tiene neutro: el $0$ es un número real y cumple que $a+0 = 0+a = a$.
  • Tiene inversos: para cada $a$ existe un número real, denotado $-a$, es cual cumple que $a+(-a) = (-a)+a = 0$.

Producto:

  • Es asociativo: $(ab)c = a(bc)$.
  • Es conmutativo: $ab = ba$.
  • Tiene neutro: el $1$ es un número real y cumple que $a(1) = (1)a = a$.
  • Tiene inversos: si $a$ es distinto a $0$, entonces existe un número real, denotado $a^{-1}$, el cual cumple que $a(a^{-1}) = (a^{-1})a = 1$.

Suma y producto:

  • El producto se distribuye sobre la suma: $a(b+c) = ab + ac$ y también $(a+b)c = ac + bc$.

Propiedades de suma y el producto escalar de vectores

En esta sección trabajaremos con vectores en $\mathbb{R}^3$, pero las deducciones son muy parecidas para vectores de cualquier otro tamaño (¿podrías intentarlas para vectores de $\mathbb{R}^4?$).

Primeramente, veamos un ejemplo. Observemos que si $u = (4,6,-2)$ y $v = (1,\tfrac{1}{3},2)$, entonces
\begin{align*}
(4,6,-2) + (1,\tfrac{1}{3}, 2)
&= (4+1,6+\tfrac{1}{3}, -2+2) \\
&= (1+4, \tfrac{1}{3}+6, 2+(-2)) \\
&= (1,\tfrac{1}{3}, 2) + (4,6,-2),
\end{align*}
es decir, $u + v = v+u$. La razón por la cual podemos intercambiar los sumandos en la segunda igualdad es porque las sumas en cada una de las entradas ya son sumas de números reales. Así, la conmutatividad de la suma de reales nos ayudó a ver la conmutatividad de una suma de vectores.

Como puedes ver, para llegar al resultado anterior no nos basamos en ningún valor de $u$ o $v$ en particular. ¡De hecho ni siquiera fue necesario hacer las operaciones! Nos basamos únicamente en las definiciones de igualdad y suma, y en las propiedades de los números reales. Por esta razón, este argumento lo podemos hacer general.

Observemos que cualesquiera vectores $u = (u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ cumplen que
\begin{align*}
u+v
&= (u_1,u_2,u_3)+(v_1,v_2,v_3) \\
&= (u_1+v_1,u_2+v_2,u_3+v_3) \\
&= (v_1+u_1,v_2+u_2,v_3+u_3) \\
&= (v_1,v_2,v_3)+(u_1,u_2,u_3) \\
&= v+u.
\end{align*}

Otra propiedad bastante interesante tiene que ver con un vector especial que conocimos anteriormente. Recordarás que en la entrada anterior definimos al vector cero. Como su nombre lo sugiere, este vector juega el papel de elemento neutro de la suma. Recordemos que el vector cero en $\mathbb{R}^3$ es $0=(0,0,0)$. Observemos que si $u = (8,\pi,-10)$, entonces
\[
u+0 = (8,\pi,-10) + (0,0,0) = (8+0,\pi+0,-10+0) = (8,\pi,-10) = u.
\]
Aunque pudiera parecer que en este caso sí simplificamos el resultado de la operación, en realidad otra vez hicimos únicamente uso de las definiciones de igualdad y suma de vectores, y esta vez la propiedad de que el $0$ (número real) es neutro para la suma de números reales.

Entonces, podemos ver que para cualquier vector $u = (u_1,u_2,u_3)$ se cumple que
\[
u+0 = (u_1,u_2,u_3) + (0,0,0) = (u_1+0,u_2+0,u_3+0) = (u_1,u_2,u_3) = u.
\]

Otras dos propiedades que cumple la suma de vectores, y que cuya deducción se deja como ejercicio al lector, son las siguientes:

  • Para cualesquiera vectores $u = (u_1,u_2,u_3)$, $v=(v_1,v_2,v_3)$ y $w=(w_1,w_2,w_3)$ se cumple que $(u+v)+w = u+(v+w)$.
  • Para cualquier vector $u = (u_1,u_2,u_3)$ existe un vector $v$ que cumple $u+v = 0$ (Recuerda que aquí $0$ denota al vector $(0,0,0)$. Basta con decir cuál es el vector $v$ que cumple esa propiedad). Más aún, podemos demostrar que $v$ es único para cada $u$. Por esta razón, al único vector $v$ que cumple esta propiedad lo denotaremos $-u$.

Por otra parte, revisemos algunas de las propiedades que cumplen en conjunto la suma de vectores y el producto escalar de vectores.

Veamos que para el escalar (número real) $r$ y para los vectores $u = (u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ se cumple que
\begin{align*}
r(u+v)
&= r((u_1,u_2,u_3) + (v_1,v_2,v_3)) \\
&= r(u_1+v_1, u_2+v_2, u_3+v_3) \\
&= (r(u_1+v_1), r(u_2+v_2), r(u_3+v_3)) \\
&= (ru_1+rv_1, ru_2+rv_2, ru_3+rv_3) \\
&= (ru_1,ru_2+ru_3) + (rv_1,rv_2,rv_3) \\
&= r(u_1,u_2,u_3) + r(v_1,v_2,v_3) \\
&= ru + rv.
\end{align*}

(¿Qué se está usando en cada igualdad? ¿Una definición? ¿Una propiedad de los números reales?)

Asimismo, para cuales quiera $r$ y $s$ escalares, y para cualquier vector $u = (u_1,u_2,u_3)$ se cumple que $(r+s)u = ru + su$. ¿Puedes ver cómo se deduce esta propiedad?

Aunque estas dos propiedades son muy parecidas, realmente dicen cosas distintas: $r(u+v)$ indica que el producto escalar se distribuye sobre la suma de vectores, mientras que $(r+s)u$ indica que el producto escalar se distribuye sobre la suma de escalares (números reales).

Una última propiedad de la suma de vectores y producto de vectores es la siguiente: si $r$ y $s$ son escalares, y $u=(u_1,u_2,u_3)$ es un vector, entonces
\begin{align*}
r(s(u))
&= r(s(u_1,u_2,u_3)) \\
&= r(su_1, su_2, su_3) \\
&= (r(su_1), r(su_2), r(su_3)) \\
&= ((rs)u_1, (rs)u_2, (rs)u_3) \\
&= (rs)(u_1,u_2,u_3) \\
&= (rs)u.
\end{align*}
Aún cuando pudiera parecer trivial, esta última propiedad es muy interesante, pues observemos que $r(su)$ involucra únicamente productos escalares, mientras que en $(rs)u$ aparecen tanto el producto de números reales como el producto escalar.

Conocer estas propiedades nos permitirá manipular con facilidad las operaciones entre vectores. Así, por ejemplo, para saber cuál es el resultado de $((1,4,-1) + 5(0,3,4)) + 5(1,1,-5)$, no tendremos que recurrir a efectuar cada operación por definición: podemos optar por manipular la expresión para obtener
\begin{align*}
((1,4,-1) + 5(0,3,4)) + 5(1,1,-5)
&= (1,4,-1) + (5(0,3,4) + 5(1,1,-5)) \\
&= (1,4,-1) + 5((0,3,4) + (1,1,-5)) \\
&= (1,4,-1) + 5(1,4,-1) \\
&= 1(1,4,-1) + 5(1,4,-1) \\
&= (1+5)(1,4,-1) \\
&= 6(1,4,-1) \\
&= (6,24,-6).
\end{align*}

¿Puedes ver qué propiedad(es) usamos en cada paso?

Suma de matrices

La suma de matrices con entradas reales es muy parecida a la suma de vectores. Al igual que con los vectores, tenemos que asegurarnos que las dos matrices que deseamos sumar tengan el mismo tamaño, es decir, que tengan el mismo número de filas y el mismo de columnas. La suma de matrices también la denotaremos utilizando el símbolo $+$ y de igual manera la realizaremos entrada a entrada, según la fila y columna que estemos calculando.

Así, por ejemplo, la suma de
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
\]
es
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
+
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
=
\begin{pmatrix}
8+(-3) & 0+1 & \sqrt{5}+\sqrt{5} \\
-2+4 & 10+\pi & 0+(-2)
\end{pmatrix},
\]
lo cual queda simplificado como,
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
+
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
=
\begin{pmatrix}
5 & 1 & 2\sqrt{5} \\
2 & 10+\pi & -2
\end{pmatrix}.
\]

Producto escalar de matrices

A igual que pasa con la suma, también podemos definir el producto escalar de matrices. Como seguramente ya lo habrás imaginado, esta operación se parece mucho al producto escalar de vectores.

Esta operación involucra a un número real y a una matriz. La denotamos colocando al número real seguido de la matriz, y consiste en multiplicar cada entrada de la matriz por dicho número real.

Por ejemplo, el producto escalar de $-3$ y la matriz
\[
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
\]
es
\[
(-3)
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
=
\begin{pmatrix}
(-3)(8) & (-3)3 \\
(-3)(\frac{1}{2}) & (-3)(\pi) \\
(-3)(\frac{1}{3}) & (-3)4
\end{pmatrix},
\]
es decir,
\[
(-3)
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
=
\begin{pmatrix}
-24 & -9 \\
-\tfrac{3}{2} & -3\pi \\
-1 & -12
\end{pmatrix}.
\]

Propiedades de suma y producto escalar de matrices

Veamos algunas propiedades que cumplen la suma y el producto escalar de matrices. Para esto, trabajaremos con matrices con tamaño $2 \times 3$, pero verás que las deducciones para matrices de cualquier otro tamaño son muy parecidas.

Recordemos que la matriz cero de tamaño $2 \times 3$ es
\[
\mathcal{O} = \mathcal{O}_{2 \times 3} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
\]

Observemos que para cualquier matriz
\[
A =
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\]
se cumple que
\begin{align*}
A + \mathcal{O}
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+0 & a_{12}+0 & a_{13}+0 \\
a_{21}+0 & a_{22}+0 & a_{23}+0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&= A.
\end{align*}

Por otra parte, dada una matriz $A$, como cada entrada $a_{ij}$ de la matriz es un número real, entonces tienen un respectivo inverso aditivo, es decir, un número $(-a_{ij})$ que cumple que $a_{ij}+(-a_{ij}) = 0$. Así, si definimos
\[
B=
\begin{pmatrix}
(-a_{11}) & (-a_{12}) & (-a_{13}) \\
(-a_{21}) & (-a_{22}) & (-a_{23})
\end{pmatrix}.
\]
Entonces, observemos que
\begin{align*}
A + B
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{2_3}
\end{pmatrix}
+
\begin{pmatrix}
(-a_{11}) & (-a_{12}) & (-a_{13}) \\
(-a_{21}) & (-a_{22}) & (-a_{23})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+(-a_{11}) & a_{12}+(-a_{12}) & a_{13}+(-a_{13}) \\
a_{21}+(-a_{21}) & a_{22}+(-a_{22}) & a_{23}+(-a_{23})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\\[5pt]
&=
\mathcal{O}.
\end{align*}

La matriz $B$ la definimos basándonos en la matriz $A$. Entonces, para cada matriz existe una matriz $B$ que cumple que $A + B = \mathcal{O}$. Como te podrás dar cuenta, la matriz $B$ que cumple esta propiedad es única (¿por qué se cumple esto?); por esta razón, a la $B$ que cumple esta propiedad la denotamos como $-A$.

Seguramente notarás que estas dos propiedades se parecen mucho a las que cumple la suma de vectores. ¿Podrías también probar las siguientes propiedades?

Para cuales quiera matrices $A$, $B$ y $C$ de tamaño $2\times 3$ se cumple que

  • $(A+B)+C = A+(B+C)$.
  • $A+B = B+A$.

Por otra parte, el producto escalar de matrices también se comporta de manera similar al producto escalar de vectores.

Si $r$ y $s$ son escalares y
\[
A =
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix},
\]
entonces
\begin{align*}
(r+s)A
&=
(r+s)
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(r+s)a_{11} & (r+s)a_{12} & (r+s)a_{13} \\
(r+s)a_{21} & (r+s)a_{22} & (r+s)a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
ra_{11}+sa_{11} & ra_{12}+sa_{12} & ra_{13}+sa_{13} \\
ra_{21}+sa_{21} & ra_{22}+sa_{12} & ra_{23}+sa_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
ra_{11} & ra_{12} & ra_{13} \\
ra_{21} & ra_{22} & ra_{23}
\end{pmatrix}
+
\begin{pmatrix}
sa_{11} & sa_{12} & sa_{13} \\
sa_{21} & sa_{22} & sa_{23}
\end{pmatrix}
\\[5pt]
&=
r
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
s
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&=
rA + sA.

\end{align*}

Dejamos como ejercicio para el lector probar también las siguientes propiedades:

Para cualquiesquiera escalares $r$ y $s$, y cualesquiera matrices $A$ y $B$ de tamaño $2\times 3$, se cumple que

  • $r(A+B) = rA + rB$.
  • $r(sA) = (rs)A$.

Más adelante…

En esta entrada conocimos las suma y el producto escalar de vectores/matrices, y revisamos algunas propiedades que estas operaciones cumple. Emplear sus propiedades nos permitirá calcular de manera más sencilla sus resultados, además de que se integrarán con operaciones que definiremos en entradas futuras.

En la siguiente entrada conoceremos una nueva operación, la cual involucra al mismo tiempo matrices y vectores.

Tarea moral

  1. Sea $A=\begin{pmatrix} 1 & 2 \\ 3 & 4\end{pmatrix}$. Encuentra explícitamente el resultado de la operación $A+2A+3A+4A+5A+6A+7A$. Como sugerencia, si usas apropiadamente las propiedades que hemos discutido, sólo tendrás que hacer un producto escalar.
  2. ¿Podrías desarrollar las pruebas de las propiedades de suma y producto escalar para vectores en $\mathbb{R}^4$? ¿Podrías hacerlo para suma y producto escalar de matrices de $3 \times 2$?
  3. Como vimos en esta entrada, para cada vector $u$ existe un vector $v$ que cumple que $u+v = 0$. ¿Puedes ver por qué $v$ es único?
  4. En los reales está el escalar $-1$. Demuestra que el producto escalar $(-1)v$ es precisamente el inverso aditivo $-v$ de $v$. Enuncia y demuestra un resultado similar para matrices.
  5. Podemos definir la resta de vectores (o de matrices) de la siguiente manera: $u-v=u+(-v)$. Determina si esta operación es asociativa, conmutativa, si tiene neutro y/o inversos.

Entradas relacionadas

Álgebra Superior I: Introducción a vectores y matrices con entradas reales

Por Eduardo García Caballero

Introducción

Los vectores y las matrices son algunos de los objetos matemáticos que nos encontraremos con mayor frecuencia durante nuestra formación matemática. Esto se debe a que nos permiten abordar con sencillez varios problemas de distintas áreas de las matemáticas, como lo son la geometría analítica y la teoría de gráficas. Además, nos ayudan a modelar con gran precisión fenómenos de otras disciplinas, como de la mecánica clásica, gráficos por computadora, circuitos eléctricos, robótica, entre otras.

A pesar de que el estudio a profundidad de los vectores y matrices lo realizaremos en los cursos de Álgebra Lineal I y Álgebra Lineal II, esto no es un impedimento para que nos familiaricemos con varios de los conceptos, técnicas y algoritmos que nos permitirán sacar provecho a esta maravillosa área de las matemáticas.

¿Qué son los vectores?

Dependiendo del área que estudiemos, nos podríamos encontrar con distintas definiciones de vectores. Por ejemplo, en la mecánica clásica se visualiza a los vectores como flechas en el plano o en el espacio, ancladas en un «origen» o en cualquier otro punto del plano. En ciencias de la computación, entenderemos que un vector consiste en un arreglo en el que todas sus entradas son datos del mismo tipo. Como veremos más adelante, las distintas formas de visualizar los vectores son equivalentes.

En este curso trabajaremos con un tipo específico de vectores: los vectores cuyas entradas son números reales. ¿Números reales? Sí. Aquí el temario de la asignatura de un brinco un poco grande. Hasta ahora, hemos intentado construir las matemáticas desde sus fundamentos: lógica, conjuntos, funciones, números naturales, etc. Sin embargo, ahora trabajaremos con el conjunto $\mathbb{R}$ de números reales.

Ya platicamos de que el conjunto de naturales $\mathbb{N}$ se puede pensar desde un sistema axiomático y que de hecho podemos «construir» a los naturales a partir de nociones de teoría de conjuntos. En el curso de Álgebra Superior 2 se platica de cómo construir al conjunto $\mathbb{Z}$ de enteros a partir de $\mathbb{N}$, al conjunto $\mathbb{Q}$ de racionales a partir de $\mathbb{Z}$ y finalmente de cómo construir a $\mathbb{R}$ desde $\mathbb{Q}$. Pero por ahora supondremos la existencia de $\mathbb{R}$ y que cumple todos los axiomas que se tratan por ejemplo en un curso de Cálculo Diferencial e Integral I.

Vectores con entradas reales

Un vector con entradas reales lo podemos entender como una lista ordenada de uno o más números (también conocida como tupla) en la que todos sus valores son números reales. Aquí «lista ordenada» lo pensamos no en el sentido de que sus entradas «van creciendo o decreciendo en orden», sino en el sentido «ordenado» como de parejas ordenadas de la segunda unidad de estas notas. Es decir, no nos importan no sólo los números usados, sino también en qué lugar quedaron.

Un ejemplo que seguramente ya has visto en tus clases de geometría analítica son los vectores en el plano o en el espacio. Recordemos que el vector $(5, \pi)$ determina una única posición en el plano, mientras que $\left(8, \sqrt{2}, \tfrac{4}{3}\right)$ determina una única posición en el espacio. Como ambas tuplas están formadas únicamente por números reales, podemos decir que son vectores con entradas reales. A cada uno de los números que aparecen en la lista le llamaremos entrada, y nos podemos referir a la posición de la entrada para decir cuál es su valor; por ejemplo, la primera entrada de $(5, \pi)$ es $5$, mientras que la tercera entrada de $\left(8, \sqrt{2}, \tfrac{4}{3}\right)$ es $\tfrac{4}{3}$.

Como recordarás, decimos que estos vectores se encuentran en $\mathbb{R}^2$ y $\mathbb{R}^3$, respectivamente. Analizando los ejemplos, te darás cuenta de que el número que acompaña a $\mathbb{R}$ se refiere a la cantidad de números reales que están enlistados en cada vector. Entonces, probablemente te preguntarás qué pasa con listas de más números. Aunque quizá sean más difíciles de visualizar (¡aunque no imposibles!), también existen vectores con cuatro, cinco o incluso más entradas. Esto nos lleva a la siguiente definición.

Definición. Para un número entero positivo $n$, un vector con $n$ entradas reales es una lista ordenada de $n$ elementos, el cual escribiremos $(x_1,x_2,\ldots,x_n)$. El conjunto $\mathbb{R}^n$ consiste de todos los vectores con $n$ entradas reales.

Así, podemos ver que tenemos que $(1,-3.5,e,1)$ es un vector en $\mathbb{R}^4$, mientras que $(1,1,2,3,5,7,13)$ es un vector en $\mathbb{R}^7$. En notación de conjuntos, $(1,-3.5,e,1)\in\mathbb{R}^4$ y $(1,1,2,3,5,7,13)\in\mathbb{R}^7$.

Una forma de empezar a ver cómo los vectores se relacionan entre ellos es preguntándonos cuándo estos son iguales. La primera condición que seguramente se nos vendrá a la mente es que los dos vectores deben tener la misma longitud; de este modo, podemos inmediatamente descartar que $(5, \pi)$ y $(8, \sqrt{2}, \tfrac{4}{3})$ sean iguales.

Otra condición que seguramente consideraremos es que todas sus entradas deben ser iguales. Así, podemos también descartar que $(5, \pi)$ y $(4, 8)$ sean iguales. Sin embargo, ¿son $(5,\pi)$ y $(\pi, 5)$ iguales? Como recordarás, los vectores son listas ordenadas, por lo que no sólo es importante que tengan las mismas entradas, sino que también aparezcan en el mismo orden. Así, podemos también descartar que $(5,\pi)$ y $(\pi, 5)$ sean iguales: basta ver con que la primera entrada del $(5,\pi)$ es $5$, mientras que la primera entrada de $(\pi,5)$ es $\pi$, y claramente $5\ne\pi$. Así mismo, $(1,5,8,1,3)$ es distinto de $(1,5,8,1,4)$ pues aunque compartan muchos elementos en varias de sus posiciones, en el primer vector la última entrada es $3$ y el el segundo la última entrada es $4$.

Definición. Diremos que dos vectores $(x_1,\ldots,x_n)$ y $(y_1,\ldots,y_n)$ de $\mathbb{R}^n$ son iguales si para toda $i=1,\ldots,n$ se tiene que $x_i=y_i$

Por otra parte, antes dijimos que los vectores tienen varias formas de ser representados. Como ejemplo de esto, podemos ver que el vector $(1,-3.5,e,1)$ puede ser representado como

\[
\begin{pmatrix}
1 \\
-3.5 \\
e \\
1
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
1 & -3.5 & e & 1
\end{pmatrix}.
\]

Al formato de la izquierda se le conoce como vector vertical o vector columna, mientras que al formato de la derecha se le conoce como vector horizontal o vector fila. Dependiendo del contexto, en ocasiones nos encontraremos con estas representaciones en vez de la que mostramos inicialmente, aunque es importante recordar que siguen siendo vectores con entradas reales, pues son listas ordenadas de números reales.

Matrices con entradas reales

Otro objeto matemático en el que también se enlistan varios números reales se conoce como matriz, con la diferencia de que esta lista tiene forma de arreglo rectangular.

Definición. Una matriz con entradas reales es un arreglo rectangular en donde en cada una de sus posiciones se coloca un número real.

Por ejemplo, las siguientes son matrices con entradas reales:

\[
\begin{pmatrix}
0 & 8 & -4.5 \\
2 & 9 & 0 \\
1 & \pi & 5
\end{pmatrix},
\qquad
\begin{pmatrix}
0 & -3 & 9 & 4.25 \\
100 & 0.1 & -2 & \sqrt{2}
\end{pmatrix}.
\]
Como podrás ver, para poder identificar a una entrada de una matriz debemos de hacer referencia a dos propiedades: el número de fila y el número de columna en el que se encuentra. Las filas se cuentan de arriba hacia abajo, y las columnas de izquierda a derecha. Así, vemos que la entrada que se encuentra en la fila 3 y columna 2 de la primera matriz es $\pi$. A cada entrada le asignamos una coordenada $(i,j)$, donde $i$ es el número de fila y $j$ es el número de columna. Así, $\pi$ se encuentra en la posición $(3,2)$ de la primera matriz.

Por convención, cuando mencionamos el tamaño de una matriz, primero se especifica el número de filas y posteriormente el número de columnas. Así, la primera matriz es de tamaño $3\times 3$, mientras que la segunda es de tamaño $2 \times 4$. Ya que elegimos el tamaño de una matriz, podemos considerar a todas las matrices de ese tamaño.

Definición. El conjunto $M_{m,n}(\mathbb{R})$ consiste de todas las matrices de $m$ filas, $n$ columnas y en donde cada entrada es un número real.

En el caso de que la cantidad de filas y de columnas de la matriz sean el mismo, diremos que se trata de una matriz cuadrada. De nuestros ejemplos anteriores, la primera sí es una matriz cuadrada, pero la segunda no. Para simplificar un poco la notación, introducimos lo siguiente.

Definición. El conjunto $M_n(\mathbb{R})$ consiste de todas las matrices de $n$ filas, $n$ columnas y en donde cada entrada es un número real.

Es decir, simplemente $M_n(\mathbb{R})=M_{n,n}(\mathbb{R})$.

Al igual que pasa con los vectores, podemos comparar dos matrices para saber si estas son iguales. Como te podrás imaginar, hay algunas condiciones que dos matrices deben cumplir para ser iguales: en primera, ambas deben de tener el mismo tamaño; es decir, sus números de filas deben de ser iguales y sus números de columnas deben de ser iguales. Por lo tanto, vemos que las matrices mostradas anteriormente son diferentes. Además, sus correspondientes entradas deben de ser iguales. Podemos escribir esto en una definición como sigue.

Definición. Sean $A$ y $B$ matrices en $M_{m,n}(\mathbb{R})$. Diremos que estas matrices son iguales si para cada $i\in \{1,\ldots,m\}$ y cada $j\in \{1,\ldots,n\}$ se cumple que la entrada $(i,j)$ de $A$ es la misma que la entrada $(i,j)$ de $B$.

¿Puedes decir por qué las siguientes matrices son diferentes?
\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}
\ne
\begin{pmatrix}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{pmatrix}.
\]

Notación y algunos vectores y matrices especiales

En matemáticas, es usual que denotemos los vectores con letras minúsculas (siendo las más comunes la $u$, $v$ y $w$) aunque muchas veces te podrás encontrar con notaciones especiales que los hacen más fáciles de distinguir, por ejemplo, $\overrightarrow{a}$ o $\mathbf{a}$. Nosotros no haremos esta distinción y usaremos simplemente letras minúsculas. Por ejemplo podríamos tomar al vector $u=(1,2,3)$ de $\mathbb{R}^3$.

Por su parte, las matrices las solemos representar con letras mayúsculas (generalmente las primeras del abecedario: $A$, $B$, $C$). Si la entrada que se encuentra en la fila $i$ y colmuna $j$ de la matriz se le denota como con la correspondiente letra minúscula y con subíndices la posición de su entrada: $a_{ij}$. Así, tendríamos que en
\[
A=
\begin{pmatrix}
0 & 8 & -4.5 \\
2 & 9 & 0 \\
1 & \pi & 5
\end{pmatrix}
\]
la entrada $a_{13} = -4.5$ y la entrada $a_{31} = 1$. ¿Cuál es la entrada $a_{23}$?

Además, existen algunos vectores y matrices con entradas reales que nos encontraremos con bastante frecuencia, y por esta razón reciben nombres especiales:

  • El vector en el que todas sus entradas son el número cero se conoce como vector cero o vector nulo. Por ejemplo, el vector nulo en $\mathbb{R}^2$ es $ (0,0)$ mientras que el nulo en $\mathbb{R}^3$ es $(0,0,0)$. Generalmente, denotamos este vector como $0$ (o, en ocasiones, como $\overrightarrow{0}$ o $\mathbf{0}$) .Es importante observar que se usa el mismo símbolo para representar a los vectores nulos con números distintos de entradas (de modo que podremos encontrar que $0=(0,0)$, en el caso de $\mathbb{R}^2$, o que $0=(0,0,0)$, en el caso de $\mathbb{R}^3$). Esto es algo que debemos tener en cuenta, aunque no suele representar mayores complicaciones, pues el contexto nos dirá 1) Si el símbolo $0$ se usa para el real cero o el vector cero y 2) Con cuántas entradas estamos trabajando.
  • La matriz en el que todas sus entradas son cero se conoce como matriz cero o matriz nula. Ejemplos de matrices nulas son
    \[
    \begin{pmatrix}
    0 & 0 & 0 & 0 \\
    0 & 0 & 0 & 0 \\
    0 & 0 & 0 & 0
    \end{pmatrix}
    \qquad
    \text{y}
    \qquad
    \begin{pmatrix}
    0 & 0 \\
    0 & 0
    \end{pmatrix}.
    \]
    Estas matrices se suelen denotar con el símbolo $\mathcal{O}$, aunque en el caso de las matrices sí es común especificar las dimensiones de la matriz, de modo que la primera matriz escrita en este inciso se denota como $\mathcal{O}_{3\times 4}$ mientras que una matriz cuadrada, como la segunda de este inciso, se denota como $\mathcal{O}_2$.
  • El vector en $\mathbb{R}^n$ cuya $i$-ésima entrada es $1$ y el resto de sus entradas es $0$ se conoce como vector canónico, y se denota $\mathrm{e}_i$. Por ejemplo, el vector canónico $\mathrm{e}_3$ en $\mathbb{R}^4$ es $(0,0,1,0)$.
  • Además, al conjunto de todos los posibles vectores canónicos en $\mathbb{R}^n$ se conoce como la base canónica de $\mathbb{R}^n$; así, la base canónica de $\mathbb{R}^4$ es
    \[
    \{(1,0,0,0), \ (0,1,0,0), \ (0,0,1,0), (0,0,0,1)\} = \{\mathrm{e}_1, \mathrm{e}_2, \mathrm{e}_3, \mathrm{e}_4\}.
    \]
  • Llamamos diagonal de una matriz cuadrada a las componentes cuyos número de fila y número de columna coinciden. Además, diremos que una matriz es una matriz diagonal si es una matriz cuadrada en la que todas sus entradas que no están en la diagonal (es decir, que su número de fila es distinto a su número de columna) son cero. Ejemplos de matrices diagonales son
    \[
    \begin{pmatrix}
    5 & 0 & 0 \\
    0 & 8 & 0 \\
    0 & 0 & \pi
    \end{pmatrix}
    \qquad
    \text{y}
    \qquad
    \begin{pmatrix}
    6 & 0 & 0 & 0 \\
    0 & 7 & 0 & 0 \\
    0 & 0 & 0 & 0 \\
    0 & 0 & 0 & 9
    \end{pmatrix}
    \]
    (Observemos que aquellas entradas que se encuentran sobre su diagonal también pueden ser cero, aquí no tenemos ninguna restricción).
  • La matriz diagonal en la que todas sus entradas sobre la diagonal son 1 se conoce como matriz identidad. Ejemplos de matrices identidad son
    \[
    \begin{pmatrix}
    1 & 0 & 0\\
    0 & 1 & 0 \\
    0 & 0 & 1
    \end{pmatrix}
    \qquad
    \text{y} \\
    \qquad
    \begin{pmatrix}
    1
    \end{pmatrix}.
    \]
    A esta matriz la denotamos por $\mathcal{I}$ y especificamos su tamaño como subíndice. Así, las matrices anteriores son ${I}_3$ e $\mathcal{I}_1$.

Más adelante…

En esta entrada vimos las definiciones de vectores y matrices con entradas reales que usaremos para trabajar en este curso. También revisamos cuándo dos vectores (o matrices) son iguales. Además, vimos algunos ejemplos de vectores y matrices que nos encontraremos con bastante frecuencia en las matemáticas.

En las siguientes entradas veremos que también se pueden hacer operaciones entre vectores y matrices, aunque necesitaremos que se cumplan algunas condiciones especiales.

Tarea moral

  1. Basándonos en la definiciones, verifica las siguientes igualdades:
    • El vector $(4-4,1,3)$ es igual al vector $(0,2-1,2+1)$.
    • La matriz $A=\begin{pmatrix} 1 & 2 \\ 2 & 4\end{pmatrix}$ es igual a la matriz $B$ de $2\times 2$ cuyas entradas están dadas por $b_{ij}=i\cdot j$.
  2. Encuentra todos los posibles vectores que hay en $\mathbb{R}^3$ cuyas entradas sean únicamente los números $1$ y $2$. ¿Cuántos deben de ser?
  3. Seguramente algunos los nombres de los vectores y matrices especiales te recuerdan a algún tipo de operación. ¿Qué operaciones crees que podamos hacer con los vectores y/o matrices, y qué comportamiento tendrían aquellos que reciben un nombre especial?
  4. ¿Por qué podemos decir que una matriz nula cuadrada cumple con ser una matriz diagonal?
  5. Escribe todos los elementos de la base canónica de $\mathbb{R}^6$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»