Archivo del Autor: Ayax Calderón

Álgebra Lineal I: Conjuntos generadores e independencia lineal

Por Ayax Calderón

Introducción

En esta entrada explicaremos cómo podemos estudiar espacios y subespacios vectoriales a partir de conjuntos más pequeños que guardan la información más relevante de ellos. A estos conjuntos les llamaremos generadores. Además estudiaremos el concepto de independencia lineal. A grandes rasgos podemos decir que un conjunto es linealmente independiente cuando no tiene «elementos redundantes» que se pueden obtener a partir de otros en el conjunto. En ambos casos, nos basaremos fuertemente en el concepto de combinaciones lineales que ya discutimos anteriormente.

Conjuntos generadores

El inciso (1) de la siguiente definición ya lo mencionamos parcialmente en una entrada anterior, para un conjunto finito de vectores. Aquí lo enunciamos de modo que también aplique para conjuntos posiblemente infinitos.

Definición. Sea $V$ un espacio vectorial sobre $F$ y $S$ un subconjunto de $V$.

  1. El subespacio generado por $S$ es el subconjunto de $V$ que consiste de todas las combinaciones lineales $c_1v_1+c_2v_2+\dots + c_nv_n$, donde $v_1,v_2,\dots,v_n$ es un subconjunto finito de $S$ y $c_1,c_2, \dots , c_n$ son escalares en $F$. Al subespacio generado de $S$ lo denotamos por $\text{span}(S)$. A menudo nos referiremos al subespacio generado de $S$ simplemente como «el generado de $S$».
  2. b) Decimos que $S$ es un conjunto generador de $V$ si $\text{span}(S)=V$.

En otras palabras, un subconjunto $S$ de $V$ es generador cuando cualquier elemento de $V$ se puede escribir como una combinación lineal de elementos de $S$.

Ejemplos.

  1. Considera el espacio vectorial $\mathbb{R}^3$ y el conjunto
    \begin{align*}
    e_1=\begin{pmatrix}
    1\\
    0\\
    0\end{pmatrix}, \hspace{2mm} e_2=\begin{pmatrix}
    0\\
    1\\
    0\end{pmatrix}, \hspace{2mm} e_3=\begin{pmatrix}
    0\\
    0\\
    1\end{pmatrix}.
    \end{align*}
    Entonces $e_1,e_2,e_3$ forma un conjunto generador de $\mathbb{R}^3$, pues cada vector $X=\begin{pmatrix}
    x\\
    y\\
    z\end{pmatrix}$ se puede escribir como $X=xe_1+ye_2+ze_3$. Sin embargo, el conjunto conformado por únicamente $e_2$ y $e_3$ no es generador pues, por ejemplo, el vector $(1,1,1)$ no puede ser escrito como combinación lineal de ellos.
  2. Sea $\mathbb{R}_n[x]$ el espacio de los polinomios con coeficientes reales y de grado a los más $n$. La familia $1,x,\dots, x^n$ es un conjunto generador.
  3. Considera el espacio $M_{m,n}(F)$. Sea $E_{ij}$ la matriz cuya entrada $(i,j)$ es $1$ y todas sus demás entradas son $0$. Entonces la familia $(E_{ij})_{1\leq i\leq m, 1\leq j \leq n}$ es un conjunto generador de $V$, pues cada matriz $A=[a_{ij}]$ puede ser escrita como
    \begin{align*}
    A=\displaystyle\sum_{i=1}^m \displaystyle\sum_{j=1}^n a_{ij}E_{ij}.
    \end{align*}
    Este ejemplo lo discutimos anteriormente, cuando hablamos de matrices y sus operaciones.
  4. Para dar un ejemplo donde un conjunto generador consiste de una cantidad infinita de elementos, considera el espacio $\mathbb{R}[x]$ de polinomios. En este caso, el conjunto $\{x^i: i \geq 0\}$ de todas las potencias de $x$ es un conjunto generador. Seria imposible tener un conjunto generador finito para $\mathbb{R}[x]$ pues si ese conjunto es $S$ y el grado máximo de un polinomio en $S$ es $M$, entonces no podremos obtener al polinomio $x^{M+1}$ como combinación lineal de elementos de $S$.

$\triangle$

Reducción gaussiana y conjuntos generadores

Cuando estamos en el espacio vectorial $F^n$, la reducción gaussiana también resulta muy útil a la hora de estudiar el subespacio generado por los ciertos vectores $v_1,v_2,\dots, v_k$. Considera la matriz $A\in M_{k,n}(F)$ obtenida por poner como vectores fila a $v_1,v_2,\dots, v_k$ en la base canónica de $F^n$ . Hacer operaciones elementales sobre los renglones de $A$ no altera el subespacio generado por sus renglones, de manera que $\text{span}(v_1,\dots, v_k)$ es precisamente el subespacio generado los renglones de $A_{red}$. Esto nos da una manera más sencilla de entender a $\text{span}(v_1, \dots, v_k)$.

Ejemplo. Considera los vectores $v_1=(1,2,6),\hspace{2mm} v_2=(-1,3,2), \hspace{2mm}v_3=(0,5,8)$ en $\mathbb{R}^3$. Queremos encontrar una manera sencilla de expresar $V=\text{span}(v_1,v_2,v_3)$.
Considera la matriz
\begin{align*}
A=\begin{pmatrix}
1 & 2 & 6\\
-1 & 3 & 2\\
0 & 5 & 8\end{pmatrix}.
\end{align*}
Aplicando el algortimo de reducción gaussiana (manualmente o con una calculadora online) llegamos a que
\begin{align*}
A_{red}=\begin{pmatrix}
1 & 0 & \frac{14}{5}\\
0 & 1 & \frac{8}{5}\\
0 & 0 & 0\end{pmatrix}.
\end{align*}
De manera que
\begin{align*}
V=\text{span}\left(\left(1,0,\frac{14}{5}\right),\left(0,1,\frac{8}{5}\right)\right).
\end{align*}

Siendo más explícitos todavía, $V$ es entonces el conjunto de vectores de $\mathbb{R}^3$ de la forma $$a\left(1,0,\frac{14}{5}\right)+b\left(0,1,\frac{8}{5}\right)=\left(a,b,\frac{14a+8b}{5}\right).$$

$\triangle$

Independencia lineal

Sean $V$ un espacio vectorial sobre un campo $F$, $v_1, \dots ,v_n\in V$ y $v\in \text{span}(v_1, \dots, v_n)$. Por definición, existen escalares $c_1,c_2, \dots , c_n$ en $F$ tales que
\begin{align*}
v=c_1v_1+c_2v_2+\dots + c_nv_n.
\end{align*}

No hay algo en la definición de subespacio generado que nos indique que los escalares deben ser únicos, y en muchas ocasiones no lo son.

Problema. Sean $v_1,v_2,v_3$ tres vectores en $\mathbb{R}^n$ tales que $3v_1+v_2+v_3=0$ y sea $v=v_1+v_2-2v_3$. Encuentra una infinidad de maneras de expresar a $v$ como combinación lineal de $v_1,v_2,v_3$.

Solución. Sea $\alpha \in \mathbb{R}$. Multiplicando por $\alpha$ la igualdad $3v_1+v_2+v_3=0$ y sumando la igualdad $v_1+v_2+v_3=v$ se sigue que
\begin{align*}
v=(3\alpha + 1)v_1 + (\alpha +1)v_2 + (\alpha – 2)v_3.
\end{align*}
Así, para cada $\alpha \in \mathbb{R}$ hay una manera diferente de expresar a $v$ como combinación lineal de $v_1,v_2,v_3$.

$\triangle$

Supongamos ahora que el vector $v$ puede ser escrito como $v=a_1v_1+a_2v_2+ \dots + a_nv_n$. Si $b_1,b_2, \dots, b_n$ son otros escalares tales que $v=b_1v_1+b_2v_2+ \dots + b_nv_n$, entonces al restar la segunda relación de la primera obtenemos
\begin{align*}
0=(a_1-b_1)v_1+ (a_2-b_2)v_2+ \dots + (a_n-b_n)v_n.
\end{align*}
De manera que podríamos concluir que los escalares $a_1,a_2,\dots,a_n$ son únicos si la ecuación
\begin{align*}
z_1v_1+z_2v_2+ \dots + z_nv_n=0
\end{align*}
implica $z_1=z_2=\dots=z_n=0$ (con $z_1,\dots ,z_n\in F$), pero este no siempre es el caso (ejemplo de ello es el problema anterior).

Los vectores $v_1, v_2, \dots, v_n$ que tienen la propiedad de generar a los vectores en $\text{span}(v_1,\ldots,v_n)$ de manera única de suma importancia en el álgebra lineal y merecen un nombre formal.

Definición. Sea $V$ un espacio vectorial sobre el campo $F$.
a) Decimos que los vectores $v_1,v_2, \dots, v_n\in V$ son linealmente dependientes si existe una relación
\begin{align*}
c_1v_1+c_2v_2+\dots+c_nv_n=0
\end{align*}
para la cual $c_1,c_2, \dots,c_n$ son escalares de $F$ y alguno es distinto de cero.
b) Decimos que los vectores $v_1,v_2, \dots, v_n\in V$ son linealmente independientes si no son linealmente dependientes, es decir, si la relación
\begin{align*}
a_1v_1+a_2v_2+\dots+a_nv_n=0
\end{align*}
implica que $a_1=a_2=\dots=a_n=0.$

La discusión previa a la definición muestra que un vector en $\text{span}(v_1,\ldots,v_n)$ puede ser escrito de manera única como combinación lineal de los vectores $v_1,\ldots,v_n$ si y sólo si estos vectores son linealmente independientes.

Ejemplos de dependencia e independencia lineal

Ejemplo 1. Las matrices $A=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $B=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ y $C=\begin{pmatrix} 0 & 0 & 0 \\0 & 1 & 1 \end{pmatrix}$ son linealmente independientes en $M_{2,3}(\mathbb{R})$. Verifiquemos esto. Supongamos que hay una combinación lineal de ellas igual a cero, es decir, que existen reales $a,b,c$ tales que $aA+bB+cC=O_{2,3}$. Obtenemos entonces que $$\begin{pmatrix} a+b & 0 & 0 \\ a+b & b+c & c \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

De la entrada $(2,3)$ obtenemos que $c=0$. Así, de la entrada $(2,2)$ obtenemos que $b=0$ y consecuentemente, de la entrada $(1,1)$ obtenemos que $a=0$. De esta forma, la única combinación lineal de las matrices $A$, $B$ y $C$ que da $0$ es cuando los coeficientes son iguales a cero. Concluimos que $A$, $B$ y $C$ son linealmente independientes.

$\triangle$

Ejemplo 2. Considera el espacio vectorial $V$ de funciones de $[0,1]$ a $\mathbb{R}$. Demuestra que las funciones $f(x)=\sin^2 (x)$, $g(x) = 3\cos^2(x)$, $m(x)=x^2$ y $h(x)=-5$. Veremos que estas funciones son linealmente dependientes. Para ello, debemos encontrar reales $a,b,c,d$ no todos ellos iguales a cero tales que $$af+bg+cm+dh=0,$$ es decir, tales que para todo $x$ en el intervalo $[0,1]$ se cumpla que $$a\sin^2(x) + 3b\cos^2(x) + cx^2 -5d = 0.$$

Proponemos $a=1$, $b=\frac{1}{3}$, $c=0$ y $d=\frac{1}{5}$. Notemos que con esta elección de coeficientes tenemos por la identidad pitagórica que
\begin{align*}
\sin^2(x)+\cos^2(x) – 1 = 0.
\end{align*}

Hemos encontrado coeficientes, no todos ellos iguales a cero, tales que una combinación lineal de las funciones es igual a la función cero. Concluimos que las funciones son linealmente dependientes.

$\square$

Reducción gaussiana e independencia lineal

Ahora estudiaremos una técnica para estudiar la independencia lineal. Esta nos permitirá determinar si dados algunos vectores $v_1,v_2\dots,v_k\in F^n$, estos son linealmente independientes. Veamos que este problema puede ser resuelto de manera sencilla por medio de un algoritmo. En efecto, necesitamos saber si podemos encontrar $x_1, \dots, x_k\in F$ no todos iguales a $0$ y tales que
\begin{align*}
x_1v_1+\dots+x_nv_n=0.
\end{align*}

Sea $A$ de $n\times k$ la matriz cuyas columnas están dadas por los vectores $v_1, \dots, v_k$. Entonces la relación anterior es equivalente al sistema $AX=0$, donde $X$ es el vector columna con coordenadas $x_1, \dots, x_k$.Por lo tanto los vectores $v_1, \dots, v_k$ son linealmente independientes si y sólo si el sistema homogéneo $AX=0$ únicamente tiene a la solución trivial.

Como ya vimos anteriormente, este problema se puede resolver mediante el algoritmo de reducción gaussiana: Sea $A_{red}$ la forma escalonada reducida de $A$. Si existe un pivote en cada columna de $A_{red}$, entonces no hay variables libres y la solución al sistema únicamente es el vector cero. Así, $v_1,\dots, v_k$ son linealmente independientes. De lo contrario son linealmente dependientes. Siguiendo este procedimiento, es posible resolver el problema original de manera algorítimica.

Otra cosa importante que podemos deducir a partir de este análisis es que como un sistema lineal homogéneo con más variables que ecuaciones siempre tiene una solución no trivial, entonces si tenemos más de $n$ vectores en $F^n$, estos nunca serán linealmente independientes.

Problema 1. Considera los vectores
\begin{align*}
v_1&=(1,2,3,4,5)\\
v_2&=(2,3,4,5,1)\\
v_3&=(1,3,5,7,9)\\
v_4&=(3,5,7,9,1)
\end{align*} en $\mathbb{R}^5$. ¿Son linealmente independientes? Si la respuesta es negativa, da una relación no trivial de dependencia lineal entre estos vectores.

Solución. Consideremos la matriz cuyas columnas son los vectores $v_1, \dots, v_4$
\begin{align*}
A=\begin{pmatrix}
1 & 2 & 1 & 3\\
2 & 3 & 3 & 5\\
3 & 4 & 5 & 7\\
4 & 5 & 7 & 9\\
5 & 1 & 9 & 1
\end{pmatrix}.
\end{align*}
Aplicando reducción gaussiana obtenemos
\begin{align*}
A_{red}=\begin{pmatrix}
1 & 0 & 0 & -2\\
0& 1 & 0 & 2\\
0&0 & 1 & 1\\
0 &0 & 0 & 0\\
0& 0 & 0 & 0
\end{pmatrix}.
\end{align*}

Como no hay pivote en la última columna, ésta corresponde a una variable libre. Así, habrá por lo menos una solución no trivial y entonces los vectores $v_1,v_2,v_3,v_4$ son linealmente dependientes.

Para encontrar la relación no trivial de dependencia lineal resolvemos el sistema $AX=0$, el cual es equivalente al sistema $A_{red}X=0$. De la matriz anterior obtenemos las siguientes igualdades
\begin{align*}
x_1=2x_4, \hspace{3mm}, x_2=-2x_4, \hspace{3mm} x_3=-x_4.
\end{align*}
Tomando $x_4=1$ (de hecho podemos asignarle cualquier valor distinto de cero), obtenemos la relación de dependencia lineal
\begin{align*}
2v_1-2v_2-v_3+v_4=0.
\end{align*}

$\triangle$

Hagamos otro problema en el que la técnica anterior nos ayuda a estudiar la independencia lineal.

Problema 2. Demuestra que los vectores
\begin{align*}
v_1=(2,1,3,1), \hspace{2mm} v_2=(-1,0,1,2), \hspace{2mm} v_3=(3,2,7,4), \hspace{2mm} v_4=(1,2,0,-1), \hspace{2mm}
\end{align*}
son linealmente dependientes y encuentra tres de ellos que sean linealmente independientes.

Solución. Sea $A$ la matriz cuyas columnas son los vectores $v_1, \dots , v_4$
\begin{align*}
A=\begin{pmatrix}
2 & -1 & 3 & 1\\
1 & 0 & 2 & 2\\
3 & 1 & 7 & 0\\
1 & 2 & 4 & -1
\end{pmatrix}.
\end{align*}

Aplicando reducción gaussiana obtenemos
\begin{align*}
A_{red}=\begin{pmatrix}
1 & 0 & 2 & 0\\
0& 1 & 1 & 0\\
0&0 & 0 & 1\\
0 &0 & 0 & 0
\end{pmatrix}.
\end{align*}
Como la tercera columna de $A_{red}$ no tiene al pivote de ninguna fila, deducimos que los cuatro vectores son linealmente dependientes.

Si eliminamos la tercera columna, entonces la matriz que queda es la forma escalonada reducida correspondiente al conjunto $\{v_1,v_2,v_4\}$. Como esta matriz sí tiene pivotes de filas en cada columna, concluimos que este es un conjunto de vectores linealmente independientes.

$\square$

Independencia lineal de conjuntos infinitos

Hasta este momento hemos trabajado únicamente con familias finitas de vectores, así que es natural preguntarse qué procede con las familias infinitas. Con la definición que tenemos, si tomamos una familia infinita de vectores $(v_i)_{i\in I}$ no podríamos darle algún significado a la suma infinita $\displaystyle\sum_{i\in I}c_iv_i$ para cualquier toda elección de escalares $c_i$, pues en espacios vectoriales no está en general definido cómo hacer una suma infinita. Sin embargo, si todos salvo una cantidad finita de escalares son $0$, entonces la suma anterior sería una suma finita y ya tendría sentido.

De esta manera, podemos extender la definición como sigue.

Definición. La familia $(v_i)_{i\in I}$ es linealmente dependiente si existe una familia de escalares $(c_i)_{i\in I}$ tales que todos salvo una cantidad finita de ellos son cero, pero al menos uno no es cero y que $\displaystyle\sum_{i\in I}c_iv_i=0$.

De manera equivalente y para simplificar el razonamiento anterior podemos decir que una familia arbitraria de vectores es linealmente dependiente si tiene una subfamilia finita linealmente dependiente. Una familia de vectores es linealmente independiente si toda subfamilia finita es linealmente independiente. Por lo tanto, un conjunto $L$ (posiblemente infinito) es linealmente independiente si dados elementos distintos $l_1,\dots, l_n\in L$ y escalares $a_1,a_2,\dots, a_n$ con $a_1l_1+a_2l_2+\dots+ a_nl_n=0$, entonces $a_1=a_2=\dots=a_n=0.$

Observación. a) Una subfamilia de una familia linealmente independiente es linealmente independiente. En efecto, sea $(v_i)_{i\in I}$ una familia linealmente independiente y sea $J\subset I$. Supongamos que $(v_i)_{i\in J}$ es linealmente dependiente. Entonces existe una subfamilia finita linealmente dependiente $v_{i_1}, \dots, v_{i_n}$ con $i_1, \dots,i_n\in J $, pero $i_1, \dots,i_n\in I $, entonces $v_{i_1}, \dots, v_{i_n}$ es una subfamilia finita y linealmente dependiente de una familia linealmente independiente lo cual es una contradicción.
b) Si dos vectores de una familia son iguales, entonces automáticamente la familia es linealmente dependiente.

$\square$

Más adelante veremos ejemplos de generadores y de independencia lineal con familias infinitas de vectores.

Una relación entre independencia lineal y generados

Podemos relacionar las nociones de subespacio generado y de independencia lineal con la siguiente proposición. Básicamente nos dice que un conjunto $\{v_1, \dots, v_n\}$ es linealmente dependiente si y sólo si alguno sus elementos se puede expresar como combinación lineal de los demás.

Es importante mencionar que usamos la palabra «conjunto» y no «familia», puesto que con la primera nos referimos a que los vectores son distintos dos a dos, mientras que con la segunda sí pueden haber repeticiones.

Proposición. Sea $S$ un conjunto de vectores en algún espacio vectorial $V$. Entonces $S$ es linealmente dependiente si y sólo si existe $v\in S$ tal que $v\in \text{span}(S\backslash \{v\})$.

Demostración. Supongamos que $S$ es linealmente dependiente. Entonces existe una cantidad finita de vectores $v_1,v_2, \dots , v_n\in S$ y algunos escalares $a_1,a_2, \dots, a_n$ no todos iguales a $0$, tales que
\begin{align*}
a_1v_1+a_2v_2+ \dots + a_nv_n=0.
\end{align*}
Notemos que $v_1,\dots , v_n$ son distintos dos a dos, pues estamos suponiendo que los elementos de $S$ también lo son.

Como no todos los escalares son $0$, existe $i\in \{1,2,\dots, n\}$ tal que $a_i\neq 0$. Dividiendo la igualdad anterior entre $a_i$, obtenemos
\begin{align*}
\frac{a_1}{a_i}v_1+ \dots + \frac{a_{i-1}}{a_i}v_{i-1}+ v_i+ \frac{a_{i+1}}{a_i}v_{i+1}+ \dots + \frac{a_n}{a_i}v_n=0,
\end{align*}
por consiguiente
\begin{align*}
v_i=-\frac{a_1}{a_i}v_1- \dots – \frac{a_{i-1}}{a_i}v_{i-1}-\frac{a_{i+1}}{a_i}v_{i+1}-\dots – \frac{a_n}{a_i}v_n.
\end{align*}

De lo anterior se sigue que $v_i$ pertenece al generado de $v_1, \dots , v_{i-1}, v_{i+1}, \dots , v_n$, el cual está contenido en $\text{span}(S \backslash \{v_i\})$, pues $\{v_1, \dots , v_{i-1}, v_{i+1}, \dots , v_n\}\subset S\backslash \{v_i\}$. Esto prueba una implicación.

Para la otra implicación, supongamos que existe $v\in S$ tal que $v\in \text{span}(S\backslash \{v\})$. Esto significa que existen $v_1,v_2, \dots, v_n\in S\backslash \{v\}$ y escalares $a_1,a_2,\dots ,a_n$ tales que
\begin{align*}
v=a_1v_1+a_2v_2+\dots+a_nv_n.
\end{align*}
Pero entonces
\begin{align*}
1\cdot v + (-a_1)v_1+ \dots + (-a_n)v_n=0
\end{align*}
y los vectores $v,v_1,\dots , v_n$ son linealmente dependientes pues por lo menos el primer coeficiente es distinto de cero. Como $v$ no está en $\{v_1, \ldots, v_n\}$, se sigue que $S$ tiene un subconjunto finito que es linealmente dependiente y por lo tanto $S$ también lo es.

$\square$

Más adelante…

Aquí ya hablamos de conjuntos generadores y de linealmente independientes. La entrada teórica que sigue es crucial y en ella se verá y formalizará la intuición de que los conjuntos generadores deben ser «grandes», mientras que los independientes deben ser «chicos». El resultado clave es el lema de intercambio de Steinitz.

Cuando un conjunto de vectores es tanto generador, como linealmente independiente, está en un equilibrio que ayuda a describir una propiedad muy importante de un espacio vectorial: la de dimensión.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Decide si el conjunto con las matrices $\begin{pmatrix} 0 & 1 \\ 0 & 0\end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 1\end{pmatrix}$ y $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ es un conjunto generador de $M_2(\mathbb{R})$.
  • Sean $S_1$ y $S_2$ subconjuntos de un subespacio vectorial $V$ tales que $S_1\subset S_2$. Demuestra que $\text{span}(S_1)\subset \text{span}(S_2)$. Concluye que si $S_1$ es generador, entonces $S_2$ también lo es
  • Demuestra la observación b).
  • Da un conjunto de $3$ vectores de $\mathbb{R}^3$ linealmente independientes y tales que ninguna de sus entradas es $0$. Haz lo mismo para linealmente dependientes.
  • Sean $f,g:\mathbb{R}\longrightarrow \mathbb{R}$ funciones definidas por
    \begin{align*}
    f(t)=e^{rt}, \hspace{4mm} g(t)=e^{st}
    \end{align*}
    con $r\neq s$. Demuestra que $f$ y $g$ son linealmente independientes en $\mathcal{F}(\mathbb{R},\mathbb{R})$, el espacio de las funciones de los reales en los reales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Suma y suma directa de subespacios

Por Ayax Calderón

Introducción

En esta entrada nos apoyaremos fuertemente en las nociones de espacios y subespacios vectoriales que estudiamos en entradas anteriores. Lo primero que haremos es hablar de cómo podemos sumar subespacios. Esta es una operación distinta a la suma del espacio vectorial, pues sucede en términos de subconjuntos. Luego, veremos cómo mediante una elección cuidadosa de subespacios, podemos expresar a un espacio vectorial en términos de la suma de subespacios más sencillos. A una descomposición de este tipo le llamamos suma directa. Estudiaremos también algunas de sus propiedades.

Suma de subespacios

En esta sección hablamos de cómo sumar subespacios de un espacio vectorial. Para entender la intuición, pensemos primero en el caso de dos subespacios $W_1$ y $W_2$ de un espacio vectorial. Queremos definir un conjunto $W_1+W_2$. Para hacer esto, lo que haremos es sumar cada elemento de $W_1$ con cada elemento de $W_2$.

Ejemplo. Si estamos en el espacio vectorial $\mathbb{R}^3$, podemos considerar los siguientes dos subespacios:
\begin{align*}
W_1&= \{(a,0,0): a\in \mathbb{R}\}\\
W_2&=\{(0,b,0): b \in \mathbb{R}\}.
\end{align*}

Para encontrar el conjunto $W_1+W_2$, lo que haremos es sumar a cada elemento de $W_1$ con cada elemento de $W_2$, considerando todas las posiblidades. En general, tenemos que una de estas sumas es de la forma $$(a,0,0)+(0,b,0)=(a,b,0).$$ Así, concluimos que $$W_1+W_2=\{(a,b,0): a,b \in \mathbb{R}\}.$$

$\triangle$

Para más subespacios la intuición es similar. A continuación damos la definición formal para la suma de una cantidad finita de subespacios.

Definición. Sea $n$ un entero positivo y $W_1, W_2, \dots , W_n$ subespacios de un espacio vectorial $V$. Su suma $$W_1+ W_2+ \dots + W_n$$ es el subconjunto de $V$ que consiste de todos los vectores de la forma $$w_1+w_2+\dots + w_n$$ con $w_i \in W_i$ para todo $1\leq i \leq n$.

La definición anterior sólo habla de cómo sumar una cantidad finita de subespacios. También se puede dar una definición para una familia arbitraria $(W_i)_{i\in I}$ de subespacios de $V$, pero tenemos que ser más cuidadosos para que la teoría posterior funcione bien. Lo que se hace es considerar todas las sumas «con una cantidad finita de términos». Esto lo decimos de manera formal como sigue. El conjunto $\displaystyle\sum_{i\in I}W_i$ consiste de todas las sumas $\displaystyle\sum_{i\in I}w_i$ con $w_i\in W_i$ para todo $i \in I$ y todos los vectores $w_i$ salvo una cantidad finita son iguales a cero. Esto ayuda a dar una definición incluso si $I$ es finito.

La mayor parte de los resultados que demostraremos para la suma de una cantidad finita de subespacios también se vale para la suma de una cantidad infinita. Por simplicidad, usualmente nos enfocaremos en el caso finito, pero te recomendamos pensar en cómo serían los argumentos para el caso infinito.

La suma de subespacios es subespacio

El siguiente resultado dice que «la suma de subespacios es subespacio».

Proposición. Si $W_1, W_2, \dots , W_n$ son subespacios de un espacio vectorial $V$, entonces $W_1 + W_2 + \dots + W_n$ es un subespacio de $V$.

Demostración. Para facilitar la escritura denotaremos $S=W_1+ W_2 + \dots + W_n$. Sean $s,s’\in S$ y $c$ un escalar. Por una equivalencia de subespacios, basta demostrar que $s+cs’\in S$.

Por definición de $S$, existen $w_1,\dots, w_n, w_1′,\dots , w_n’ $ con $w_i, w_i’\in W_i$ para $1\leq i \leq n$, tales que
\begin{align*}
s&=w_1+ w_2+ \dots + w_n\\ s’&=w_1’+ w_2’+ \dots + w_n’.
\end{align*}
Entonces
\begin{align*}
s+cs’&=w_1+w_2+\dots + w_n + c(w_1’+w_2’+\dots + w_n’)\\
&=w_1+w_2+\dots + w_n + cw_1’+cw_2’+\dots + cw_n’\\
&=(w_1 +cw_1′)+ \dots + (w_n+cw_n’).
\end{align*}
Como $W_i$ es un subespacio de $V$ y $w_i,w_i’$ son elementos de $W_i$, entonces $(w_i+cw_i’)\in W_i$ para cada $1\leq i \leq n$. Así, la expresión que encontramos es la suma de un vector en $W_1$, uno en $W_2$, … , uno en $W_n$ y por lo tant $s+cs’\in S$. Esto muestra lo que queríamos y así $S$ es subespacio de $V$.

$\square$

De hecho la suma de subespacios $W_1+\ldots+W_n$ no sólo es un subespacio de $V$, sino que además es especial, en el sentido de que es el subespacio «más chiquito» de $V$ que contiene a cada subespacio $W_1,\ldots,W_n$. El siguiente problema enuncia esto de manera formal.

Problema. Sean $W_1,\ldots,W_n$ subespacios de un espacio vectorial $V$. Sea $S=W_1+W_2+ \dots + W_n$. Demuestra que:

  • Para cada $i=1,\ldots,n$, se tiene que $W_i\subseteq S$.
  • Si se tiene un subespacio $W$ tal que para cada $i=1,\ldots,n$ se tiene que $W_i\subseteq W$ entonces $S\subseteq W$

Demostración.

  • En vista de que cada vector $w_i\in W_i$ puede ser escrito como $0+0+\dots + 0 + w_i +0+\dots +0$ y $0 \in \displaystyle\bigcap_{i=1}^n W_i$, entonces $W_i \subset W_1+ \dots +W_n$ para todo $1\leq i \leq n$.
  • Sea $W$ un subespacio de $V$ tal que $W$ contiene a los subespacios $W_1, \dots W_n$. Mostremos que $W$ contiene a la suma $S$. Sea $v\in S = W_1 +\dots + W_n$. Por definición, $v=w_1+\dots + w_n$ para algunos $w_i\in W_i$. Como $W$ contiene a los subespacios $W_1, \dots W_n$, entonces $w_1, \dots w_n\in W$. Como $W$ es cerrado bajo sumas (por ser subespacio) entonces $w_1+\dots + w_n\in W$ y así $W_1 + \dots +W_n \subset W$.

$\square$

Subespacios en posición de suma directa

Ya definimos qué es la suma de subespacios. Ahora queremos definir qué es la suma directa. En realidad, la suma directa es simplemente una suma de subespacios en la que los subespacios son especiales en un sentido muy específico. Comenzamos dando esta definición. Es un concepto muy importante que nos será útil varias veces en el curso.

Definición. Sean $W_1, W_2, \dots , W_n$ subespacios de un espacio vectorial $V$. Decimos que $W_1,W_2,\dots, W_n$ están en posición de suma directa si la única forma de obtener la igualdad
\begin{align*}
w_1+w_2+\dots+w_n=0
\end{align*}
con $w_i\in W_i$ para todo $1\leq i \leq n$, es cuando
\begin{align*}
w_1=w_2=\dots =w_n =0.
\end{align*}

Ejemplo. Consideremos el espacio vectorial de polinomios en $\mathbb{R}_2[x]$, es decir, aquellos de la forma $ax^2+bx+c$ con $a,b,c$ reales. Consideremos los siguientes subespacios de $\mathbb{R}_2[x]$:

\begin{align*}
W_1&=\{ax^2: a \in \mathbb{R}\}\\
W_2&=\{bx: b \in \mathbb{R}\}\\
W_3&=\mathbb{R}=\{c: c \in \mathbb{R}\}\\
W_4&=\mathbb{R}_1[x]=\{bx+c: b,c \in \mathbb{R}\}\\
W_5&=\{ax^2+c: a,c \in \mathbb{R}\}\\
W_6&=\{ax^2+bx: a,b \in \mathbb{R}\}\\
\end{align*}

Los tres subespacios $W_1, W_2, W_3$ están en posición de suma directa, pues si tomamos $ax^2$ en $W_1$, $bx$ en $W_2$ y $c$ en $W_3$, la única forma de que su suma $ax^2+bx+c$ sea igual al polinomio cero es si $a=b=c=0$, y por lo tanto en realidad sólo estamos tomando el vector $0$ de cada uno de los subespacios.

Los subespacios $W_4$, $W_5$ y $W_6$ no están en posición de suma directa, pues hay formas de tomar elementos no cero en cada uno de ellos, cuya suma sí es el vector cero. Por ejemplo, el polinomio $x-8$ está en $W_4$, el polinomio $-5x^2+8$ está en $W_5$ y el polinomio $5x^2-x$ está en $W_6$. Ninguno de estos vectores es el polinomio cero, pero la suma de los tres sí es cero.

$\square$

Existen otras manera de expresar la condición anterior, una de ellas es la siguiente.

Proposición. Los subespacios $W_1, \dots W_n$ del espacio vectorial $V$ están en posición de suma directa si y sólo si cada elemento de $$W_1+W_2+\dots +W_n$$ puede ser escirto de manera única como una suma $$w_1+\dots + w_n$$ con $w_i\in W_i$ para todo $1\leq i \leq n$.

Demostración. Primero supongamos que los subespacios $W_1,W_2, \dots, W_n$ están en posición de suma directa y tomemos un elemento $v$ de $$W_1+\dots + W_n.$$ Por definición, dicho elemento puede ser expresado como $v=w_1 + \dots + w_n$ con $w_i \in W_i $ para todo $1\leq i \leq n$. Supongamos también que $v$ puede ser escrito como $v=w_1’+\dots + w_n’$ con $w_i’ \in W_i$. Queremos demostrar que $w_i=w_i’$ para todo $1 \leq i \leq n$. Restando las dos relaciones anteriores se tiene
\begin{align*}
0=v-v=\displaystyle\sum_{i=1}^n (w_i-w_i’).
\end{align*}
Sea $u_i=w_i-w_i’$. Como $W_i$ es subespacio de $V$, entonces es cerrado bajo inversos y bajo suma, por lo tanto $u_i\in W_i$. Así $u_1 + \dots + u_n$ es una suma de elementos igual a cero.Como $W_1, \dots, W_n$ están en posición de suma directa, entonces necesariamente $u_1=\dots =u_n=0$ y así $w_i=w_i’$ para todo $1 \leq i \leq n$.

Ahora supongamos que cada elemento de $W_1+\dots + W_n$ puede ser escrito de manera única como suma de elementos de $W_1, \dots , W_n$. En particular el cero se descompone de manera única como $$0=0+0+\ldots +0.$$ De manera que dados $w_i \in W_i$ con $1 \leq i \leq n$ tales que $w_1+w_2+ \dots + w_n =0$, necesariamente $w_1=w_2=\dots =w_n=0$. Por lo tanto $W_1, W_2, \dots ,W_n$ están en posición de suma directa.

$\square$

Suma directa de subespacios

Estamos listos para dar una definición clave.

Definición. a) Decimos que un espacio vectorial $V$ es suma directa de sus subespacios $W_1, W_2, \dots , W_n$ si $W_1, W_2, \dots , W_n$ están en posición de suma directa y $V=W_1+W_2 + \dots + W_n$. En símbolos, escribimos y escribimos
\begin{align*}
V=W_1 \oplus W_2 \oplus \dots \oplus W_n.
\end{align*}
b) Si $V_1, V_2$ son subespacios de un espacio vectorial $V$, decimos que $V_2$ es complemento de $V_1$ si
\begin{align*}
V=V_1 \oplus V_2.
\end{align*}

Por los resultados anteriores se tiene que $V=W_1 \oplus \dots \oplus W_n$ si y sólo si cada vector $v\in V$ puede ser escrito de manera única como una suma de la forma $w_1+ \dots + w_n$, con $w_i \in W_i$ para todo $i$. Por consiguiente, si $V_1, V_2$ son subespacios de $V$, entonces $V_2$ es complemento de $V_1$ si y sólo si cada vector $v \in V$ puede ser escrito de manera única como $v=v_1+v_2$ con $v_1 \in V_1, \hspace{2mm} v_2 \in V_2$.

El siguiente resultado es extremadamente útil a la hora de resolver problemas con sumas directas con dos subespacios.

Problema. Demuestra que $V_2$ es complemento de $V_1$ si y sólo si $V_1+V_2=V$ y $V_1 \cap V_2 = \{0\}$.

Demostración. Supongamos que $V_2$ es complemento de $V_1$, entonces $V=V_1+V_2$. Falta mostrar que $V_1\cap V_2 = \{0\}$.

Sea $v\in V_1 \cap V_2$, entonces $v=v+0=0+v$, y por la unicidad que ya se demostró en la proposición anterior se tiene que $v=0$, entonces $V_1\cap V_2\subset\{0\}$. Como $V_1, V_2$ son subespacios de $V$, cada uno de ellos tiene al vector $0$. Así, $\{0\}\subset V_1 \cap V_2$. Por lo tanto $V_1\cap V_2=\{0\}$.

Ahora supongamos que $V_1 + V_2 =V$ y $V_1\cap V_2=\{0\}$. Supongamos que existe un vector $v \in V$ tal que
\begin{align*}
v_1+v_2=v=v_1’+v_2′
\end{align*}
con $v_1,v_1’\in V_1$ y $v_2,v_2’\in V_2$.
Entonces
\begin{align*}
v_1-v_1’=v_2′-v_2
\end{align*}
El lado izquierdo de la igualdad anterior pertenece a $V_1$, mientras que el lado derecho pertenece a $V_2$, pero como son iguales, necesariamente ambos pertencen a $V_1 \cap V_2=\{0\}$ y así $v_1=v_1’$ y $v_2=v_2’$, que es lo que queríamos demostrar.

$\square$

Más ejemplos de suma y suma directa de subespacios.

  1. El espacio vectorial $V=\mathbb{R}^2$ es suma directa de los subespacios
    \begin{align*}
    V_1=\{(x,0)|x \in \mathbb{R} \}
    \end{align*}
    y
    \begin{align*}
    V_2=\{(0,y)|y \in \mathbb{R} \}.
    \end{align*}
    En efecto, cada $(x,y)\in \mathbb{R}^2$ puede ser escrito de manera única en la forma
    \begin{align*}
    (a,0)+(0,b)
    \end{align*}
    via $a=x, \hspace{2mm} b=y.$
  2. Sea $V=M_n(\mathbb{R})$ el espacio vectorial de las matrices de $n\times n$ con entradas reales. Si $V_1,V_2$ son los subespacios de las matrices simétricas y de las matrices antisimétricas, respectivamente, entonces $V=V_1 \oplus V_2$.
    En efecto, cada matriz $A\in V$ puede ser escrita de manera única como suma de una matriz simétrica y de una matriz antisimétrica de la siguiente forma:
    $A=B+C$ con
    \begin{align*}
    B&=\frac{1}{2}(A+ \ ^tA)\\C&=\frac{1}{2}(A- \ ^tA).
    \end{align*}
  3. Sea $V=\{f:\mathbb{R}\longrightarrow \mathbb{R} \}$ el espacio vectorial de funciones de $\mathbb{R}$ en $\mathbb{R}$. Sea $V_1$ el subespacio de todas las funciones pares (recuerda que una función es par si satisface $f(x)=f(-x)$ para toda $x$) y $V_2$ el subespacio de todas las funciones impares (las que satisfacen $f(x)=-f(-x)$ para toda $x$).
    Entonces $V=V_1 \oplus V_2$.
    En efecto, dada $f\in V$, la única manera de expresarla como $f=g+h$ con $g$ par y $h$ impar es tomando
    \begin{align*}
    g(x)=\frac{f(x)+f(-x)}{2} \hspace{2mm} y \hspace{2mm} h(x)=\frac{f(x)-f(-x)}{2}.
    \end{align*}

$\square$

Un problema de suma directa de subespacios

Problema. Sea $V=\{f:[-1,1]\to \mathbb{R}: \text{f es continua}\}.$ Sean
\begin{align*}
V_1=\left\{f\in V: \int_{-1}^1 f(t)dt=0\right\}
\end{align*}
y $V_2$ el subconjunto de $V$ de todas las funciones constantes.
a) Demuestra que $V_1, V_2$ son subespacios de $V$.
b) Demuestra que $V=V_1\oplus V_2$.

Demostración. a) Sean $f_1,f_2 \in V_1$ y $c\in \mathbb{R}$, entonces $cf_1+f_2$ es continua y
\begin{align*}
\int_{-1}^1(cf_1+f_2)(t)dt = c\int_{-1}^1f_1(t)dt + \int_{-1}^1 f_2(t) dt =0,
\end{align*}
por lo tanto $cf_1+f_2\in V_1$ y así $V_1$ es un subespacio de $V$.

De manera similar veamos que $V_2$ es subespacio. Sean $f,g\in V_2$ y $c\in \mathbb{R}$, entonces $f(x)=a$ y $g(x)=b$ para toda $x$. Luego
\begin{align*}
(f+c\cdot g)(x)=a+c\cdot b
\end{align*}
para toda $x$. Por lo tanto $V_2$ es subespacio de $V$.

b) Por el problema de la sección anterior, basta con demostrar que $V_1\cap V_2=\{0\}$ y $V=V_1+V_2$. Sea $f$ una función en $V_1 \cap V_2$. Por un lado tenemos que $f$ es constante, y por otro lado que $f$ integra $0$ sobre $[-1,1]$ Digamos que $f(t)=c$ para todo $t\in [-1,1]$, entonces
\begin{align*}
0=\int_{-1}^1f(t)dt=2c.
\end{align*}
De aquí, $c=0$ y así $f=0$ (la función cero). Por lo tanto $V_1\cap V_2=\{0\}$.

Ahora, para probar que $V=V_1 + V_2$ tomamos $f\in V$ y tratemos de escribirla como $f=c+g$ con $c$ constante y $g\in V_1$. Queremos asegurarnos de que
\begin{align*}
\int_{-1}^1 g(t)dt=0,
\end{align*}
esto es
\begin{align*}
\int_{-1}^1 (f(t)-c)dt=0\\
\int_{-1}^1f(t)dt=2c.
\end{align*}
Esto ya nos dice cómo proponer a $c$ y a $g$. Lo hacemos a continuación.
\begin{align*}
c&=\frac{1}{2}\int_{-1}^1f(t)dt \\ g&=f-c.
\end{align*}

$\square$

Más adelante…

Los conceptos de suma y suma de subespacios serán utilizados repetidamente. Por ejemplo, a partir de la suma de subespacios se pueden definir las proyecciones, un tipo de transformaciones lineales particulares.

El concepto de suma directa de subespacios también es muy importante en el sentido de que permite descomponer a un espacio en espacios vectoriales más pequeños. Esta idea será de mucha utilidad cuando hablemos de la teoría de dualidad y de diagonalización de matrices.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Verifica en todos los ejemplos de la entrada que los subespacios que se mencionan en efecto son subespacios.
  • Sea $V$ el conjunto de las matrices triangulares superiores de $n\times n$ y sea $W_1$ el espacio de las matrices diagonales. Demuestra que $V$ es espacio vectorial, $W_1$ es subespacio de $V$ y que $V=W_1\oplus W_2$, donde $W_2=\{A\in V | A_{ij}=0$ cuando $i \geq j \}$.
  • Sea $F$ un campo de característica distinta de $2$,
    \begin{align*}
    W_1=\{A\in M_n(F)|A_{ij}=0, i\leq j\}
    \end{align*}
    y $W_2$ el conjunto de todas las matrices simétricas de $n \times n$ con entradas en $F$. Demuestra que $M_n(F)=W_1\oplus W_2$
  • En el ejemplo 2, verifica que $B$ es una matriz simétrica y $C$ una matriz antisimétrica.
  • En el ejemplo 3 ,verifica $g$ es par y $h$ es impar.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Reducción gaussiana para determinar inversas de matrices

Por Ayax Calderón

Introducción

En entradas anteriores hablamos de las matrices en forma escalonada reducida y de cómo cualquier matriz puede ser llevada a esta forma usando el algoritmo de reducción gaussiana. Usamos esto para resolver sistemas de ecuaciones lineales arbitrarios, es decir, de la forma $AX=b$. en esta ocasión estudiaremos cómo ver si una matriz es invertible y cómo determinar inversas de matrices mediante el algoritmo de reducción gaussiana.

Inversas de matrices elementales

Recordemos que una matriz $A\in M_n(F)$ es invertible si existe una matriz $B$ tal que $AB=BA=I_n$. Dicha matriz $B$ es única, se conoce como la matriz inversa de $A$ y se denota por $A^{-1}$.

Es importante observar que las matrices elementales son invertibles, puesto que las operaciones elementales se pueden revertir (esto también nos dice que la inversa de una matriz elemental también es una matriz elemental). Por ejemplo, si la matriz $E$ se obtiene de $I_n$ intercambiando los renglones $i$ y $j$, entonces $E^{-1}$ se obtiene de $I_n$ haciendo la misma operación, por lo que $E^{-1}=E$. Por otro lado, si $E$ se obtiene de sumar $\lambda$ veces el renglón $j$ al renglón $i$ en $I_n$, entonces E^{-1} se obtiene de sumar $-\lambda$ veces el renglón $j$ al renglón $i$ en $I_n$. El argumento para reescalamientos queda como tarea moral.

Debido a su importancia, enunciaremos este resultado como una proposición.

Proposición. Las matrices elementales son invertibles y sus inversas también son matrices elementales. Como consecuencia, cualquier producto de matrices elementales es invertible.

Algunas equivalencias de matrices invertibles

Hasta el momento sólo tenemos la definición de matrices invertibles para verificar si una matriz es invertible o no. Esto es poco práctico, pues dada una matriz, tendríamos que sacar otra «de la nada».

El siguiente resultado empieza a decirnos cómo saber de manera práctica cuándo una matriz cuadrada es invertible. También habla de una propiedad importante que cumplen las matrices invertibles.

Teorema. Para una matriz $A\in M_n(F)$ las siguientes afirmaciones son equivalentes:
(a) $A$ es invertible.
(b) $A_{red}=I_n$.
(c) $A$ es producto de matrices elementales.

Demostración. Para empezar, notemos que el producto de matrices invertibles es invertible , pues cualquier matriz elemental es invertible y las matrices invertibles son estables bajo productos. Esto prueba que (c) implica (a).

Ahora, supongamos que (a) se satisface. Recordemos que para una matriz $A\in M_{m,n}(F)$ podemos encontrar una matriz $B\in M_m(F)$ que es producto de matrices elementales y tal que $A_{red}=BA$. Como $A$ es invertible (por hipótesis) y $B$ es invertible (por la proposición de la sección anterior), entonces $BA$ es invertible y por consiguiente $A_{red}$ también lo es. En particular, todos los renglones de $A_{red}$ son distintos de cero y por lo tanto $A_{red}$ tiene $n$ pivotes, uno en cada columna. Como $A_{red}$ está en forma escalonada reducida, necesariamente $A_{red}=I_n$. Esto prueba que (a) implica (b).

Finalmente, supongamos que $(b)$ se satisface. Entonces existe una matriz $B$, la cual es producto de matrices elementales y tal que $BA=I_n$. Por la proposición anterior $B$ es invertible y $B^{-1}$ es producto de matrices elementales. Como $BA=I_n$, tenemos que $A=B^{-1}BA=B^{-1}$ y así $A$ es producto de matrices elementales, de manera que (b) implica (c).

$\square$

Ya podemos responder de manera práctica la pregunta «¿$A$ es invertible?». Para ello, basta aplicarle reducción gaussiana a $A$. Por el teorema anterior, $A$ es invertible si y sólo si la forma escalonada reducida obtenida es $I_n$. Por supuesto, esto aún no nos dice exactamente quién es la inversa.

Invertibilidad y sistemas de ecuaciones

La siguiente proposición expresa las soluciones del sistema $AX=b$ cuando $A$ es una matriz cuadrada e invertible. Para facilitar las cosas hay que tener un algoritmo para encontrar la inversa de una matriz. Más adelante veremos uno de estos algoritmos basado en reducción gaussiana.

Proposición. Si $A\in M_n(F)$ es una matriz invertible, entonces para todo $b\in F^n$ el sistema $AX=b$ tiene una única solución, dada por $X=A^{-1}b$.

Demostración. Sea $X$ una solución del sistema. Multiplicando la igualdad $AX=b$ por la izquierda por $A^{-1}$ obtenemos $A^{-1}(AX)=A^{-1}b$. Como
\begin{align*}
A^{-1}(AX)=(A^{-1}A)X
=I_nX=X,
\end{align*}
concluimos que $X=A^{-1}b$, por lo tanto el sistema tiene a lo más una solución. Para ver que esta es en efecto una solución, calculamos
\begin{align*}
A(A^{-1}b)=(AA^{-1})b=I_nb=b.
\end{align*}

$\square$

A continuación presentamos un resultado más, que relaciona matrices invertibles con que sus sistemas lineales correspondientes tengan soluciones únicas.

Teorema. Sea $A\in M_n(F)$ una matriz. Las siguientes afirmaciones son equivalentes:
(a) $A$ es invertible.
(b) Para toda $b\in F^n$ el sistema $AX=b$ tiene una única solución $X\in F^n$.
(c) Para toda $b\in F^n$ el sistema $AX=b$ es consistente.

Demostración. Ya demostramos que (a) implica (b). Es claro que (b) implica (c) pues si el sistema tiene una única solución, en particular tiene una solución.

Así, supongamos que que (c) se satisface. Sea $A_{red}$ la forma escalonada reducida de $A$. Por una proposición ya antes mencionada en esta entrada sabemos que existe una matriz $B$ la cual es producto de matrices elementales (por lo tanto invertible) y tal que $A_{red}=BA$. Deducimos que el sistema $A_{red}X=Bb$ tiene al menos una solución para todo $b\in F^n$ (pues si $AX=b$, entonces $A_{red}X=BAX=Bb$).

Ahora, para cualquier $b’\in F^n$ podemos encontrar $b$ tal que $b’=Bb$, tomando $b=B^{-1}b’$. Aquí estamos usando que $B$ es invertible por ser producto de matrices elementales. Concluimos que el sistema $A_{red}X=b$ es consistente para cada $b\in F^n$, pero entonces cualquier renglón de $A_{red}$ debe ser distinto de cero (si la fila $i$ es cero, entonces escogiendo cada vector $b$ con la $i-$ésima coordenada igual a $1$ se obtiene un sistema inconsistente) y, como en la demostración del teorema anterior, se tiene que $A_{red}=I_n$. Usando el teorema anterior concluimos que $A$ es invertible.

$\square$

Hasta ahora, al tomar un matriz cuadrada $A$ y proponer una inversa $B$, la definición de invertibilidad nos exige mostrar ambas igualdades $AB=I_n$ y $BA=I_n$. Finalmente tenemos las herramientas necesarias para mostrar que basta mostrar una de estas igualdades para que ambas se cumplan.

Corolario. Sean $A,B\in M_n(F)$ matrices.
(a) Si $AB=I_n$, entonces $A$ es invertible y $B=A^{-1}$.
(b) Si $BA=I_n$, entonces $A$ es invertible y $B=A^{-1}$.

Demostración. (a) Para cada $b\in F^n$ el vector $X=Bb$ satisface
\begin{align*}
AX=A(Bb)
=(AB)b=b,
\end{align*}
por lo tanto el sistema $AX=b$ es consistente para cada $b\in M_n(F)$. Por el teorema anterior, $A$ es invertible. Multiplicando la igualdad $AB=I_n$ por la izquierda por $A^{-1}$ obtenemos $B=A^{-1}AB=A^{-1}$, y así $B=A^{-1}$.
(b) Por el inciso (a), sabemos que $B$ es invertible y $A=B^{-1}$, pero entonces $A$ es invertible y $A^{-1}=B$.

$\square$

Determinar inversas usando reducción gaussiana

El corolario anterior nos da una manera práctica de saber si una matriz es invertible y, en esos casos, determinar inversas de matrices. En efecto, $A$ es invertible si y sólo si podemos encontrar una matriz $X$ tal que $AX=I_n$ y de aquí $X=A^{-1}$.

La ecuación $AX=I_n$ es equivalente a los siguientes sistemas lineales:
\begin{align*}
AX_1=e_1, \hspace{2mm}, AX_2=e_2, \hspace{2mm} \dots , \hspace
{2mm} AX_n=e_n.
\end{align*}
donde $e_i$ es la $i-$ésima columna de $I_n$ y $X_i$ denota la $i-$ésima columna de $X$. Ya sabemos cómo resolver sistemas lineales usando reducción gaussiana. Esto nos da una manera práctica de calcular $X$: si al menos uno de estos sistemas es inconsistente, entonces $A$ no es invertible; si todos son consistentes, entonces las soluciones $X_1,\ldots,X_n$ son las columnas de la inversa.

En la práctica, uno puede evitar resolver $n$ sistemas lineales considerando el siguiente truco:

En lugar de tomar $n$ matrices aumentadas $[A| e_i]$ considera sólo la matriz aumentada $[A|I_n]$, en la cual agregamos la matriz $I_n$ a la derecha de $A$ (de manera que $[A|I_n]$ tiene $2n$ columnas). Finalmente sólo hay que encontrar la forma escalonada reducida $[A’|X]$ de la matriz de $n\times 2n \hspace{2mm} [A|I_n]$. Si $A’$ resulta ser distinto de $I_n$, entonces $A$ no es inverible. Si $A’=I_n$, entonces la inversa de $A$ es simplemente la matriz $X$.

Ejemplo de determinar inversas

Para ilustrar lo anterior resolveremos el siguiente ejemplo práctico.

Ejemplo. Calcula la inversa de la matriz
\begin{align*}
A= \begin{pmatrix}
1 & 5 & 1\\
2 & 11 & 5\\
9 & -3 & 0
\end{pmatrix}.
\end{align*}

Solución. Aplicamos reducción gaussiana a la matriz extendida
\begin{align*}
[A|I_3]= \begin{pmatrix}
1 & 5 & 1 & 1 & 0 &0\\
2 & 11 & 5 & 0 & 1 & 0\\
9 & -3 & 0 & 0 & 0 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
R_2 -2R_1\begin{pmatrix}
1 & 5 & 1 & 1 & 0 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
9 & -3 & 0 & 0 & 0 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
R_3 -9R_1\begin{pmatrix}
1 & 5 & 1 & 1 & 0 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & -48 & -9 & -9 & 0 & 1
\end{pmatrix}
\end{align*}

\begin{align*}
R_1 -5R_2\begin{pmatrix}
1 & 0 & -14 & 11 & -5 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & -48 & -9 & -9 & 0 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
R_3 +48R_2\begin{pmatrix}
1 & 0 & -14 & 11 & -5 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & 0 & 135 & -105 & 48 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
\frac{1}{135}R_3\begin{pmatrix}
1 & 0 & -14 & 11 & -5 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & 0 & 1 & -\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}
\end{align*}
\begin{align*}
R_1+14R_3\begin{pmatrix}
1 & 0 & 0 & \frac{1}{9} & -\frac{1}{45} &\frac{14}{135}\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & 0 & 1 & -\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}
\end{align*}
\begin{align*}
R_2-3R_3\begin{pmatrix}
1 & 0 & 0 & \frac{1}{9} & -\frac{1}{45} &\frac{14}{135}\\
0 & 1 & 0 & \frac{1}{3} & -\frac{1}{15} & -\frac{1}{45}\\
0 & 0 & 1 & -\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}
\end{align*}
De donde
\begin{align*}
A^{-1}=\begin{pmatrix}
\frac{1}{9} & -\frac{1}{45} &\frac{14}{135}\\
\frac{1}{3} & -\frac{1}{15} & -\frac{1}{45}\\
-\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}.
\end{align*}

$\triangle$

En el ejemplo anterior hicimos el algoritmo de reducción gaussiana «a mano», pero también pudimos haber usado una herramienta en línea, como la calculadora de forma escalonada reducida de eMathHelp.

Más adelante…

En esta entrada vimos cómo el algoritmo de reducción gaussiana nos permite saber si una matriz es invertible o no. También nos da una forma práctica de determinar inversas. Hay otras formas de hacer esto mediante determinantes. Sin embargo, el método que describimos es bastante rápido y flexible.

Ya que entendemos un poco mejor a las matrices invertibles, el siguiente paso es usarlas para desarrollar nuestra teoría de álgebra lineal. Las matrices invertibles se corresponden con transformaciones lineales que se llaman isomorfismos, las cuales detectan cuándo dos espacios vectoriales son «el mismo».

También más adelante refinaremos el concepto de ser invertible y no. Esta es una clasificación en sólo dos posibilidades. Cuando definamos y estudiamos el rango de matrices y transformaciones lineales tendremos una forma más precisa de decir «qué tanta información guarda una transformación».

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cuál sería la operación elemental inversa a aplicar un reescalamiento por un factor $c\neq 0$ en el renglón de una matriz?
  • Encuentra la inversa de la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 2 & 1\\
    2 & 0 & 2\\
    1 & 2 & 0
    \end{pmatrix}.
    \end{align*}
    mediante reducción gaussiana.
  • Resuelve el sistema de ecuaciones
    \begin{align*}
    \begin{cases}
    x+2y+2z=1\\
    2x+y+2z=4\\
    2x+2y+z=5
    \end{cases}
    \end{align*}
  • Sea $A\in M_n(F)$ una matriz tal que $A_{red}\neq I_n$. Explica por qué $A$ no es invertible.
  • Cuando $A$ no es invertible, la matriz $[A|I_n]$ tiene forma escalonada reducida $[A_{red}|X]$, con $A_{red}\neq I_n$. ¿Qué sucede si en este caso haces la multiplicación $AX$? ¿Y la multiplicación $XA$?
  • Demuestra la primera proposición de esta entrada para operaciones elementales sobre las columnas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Más ejemplos de reducción gaussiana

Por Ayax Calderón

Introducción

En esta entrada veremos varios ejemplos que nos ayudarán a comprender que la reducción gaussiana es una herramienta muy poderosa a la hora de resolver sistemas de ecuaciones lineales.

Problemas resueltos

Problema 1. Implementa el algoritmo de reducción gaussiana en la matriz
\begin{align*}
A=\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}
\end{align*}

Solución. Para este problema usaremos la siguiente notación para indicar las operaciones elementales que estamos efectuando :

  • $R_i \leftrightarrow R_j$ para intercambiar el renglón $i$ con el renglón $j$.
  • $kR_i$ para multiplicar el renglón $i$ por el escalar $k$.
  • $R_i + kR_j$ para sumarle $k$ veces el renglón $j$ al renglón $i$.


\begin{align*}
A=&\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_1 \leftrightarrow R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_4 – R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 + 3R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
\frac{1}{2}R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 – 4R_2
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}
\end{align*}
\begin{align*}
R_1 – R_2
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
-1\cdot R_3
&\begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_4 – R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}\\
R_2 – \frac{1}{2} R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix} \\
R_1 + \frac{1}{2}R_3
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}
\end{align*}
\begin{align*}
\frac{1}{3} R_4
&\begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
R_3 + 4R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_2 – \frac{5}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_1 + \frac{1}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & 0 & -\frac{1}{3}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
=&A_{red}
\end{align*}

$\triangle$

Problema 2. Resuelve el siguiente sistema homogéneo.
\begin{align*}
\begin{cases}
x+2y-3z &=0\\
2x+5y+2z &=0\\
3x-y-4z &=0
\end{cases}
\end{align*}

Solución. La matriz asociada al sistema anterior es
\begin{align*}
\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}
\end{align*}
Para resolver el sistema $AX=0$ nos bastará con encontrar $A_{red}$, pues el sistema $A_{red}X=0$ es equivalente al sistema $AX=0$.
\begin{align*}
&\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}\\
R_2 -2R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
3 & -1 & -4
\end{pmatrix}\\
R_3 – 3R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_1 – 2R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_3 + 7R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & 0 & 61
\end{pmatrix}\\
R_2 – \frac{8}{61}R_3
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
R_1 + \frac{19}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
\frac{1}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=A_{red}
\end{align*}

De lo anterior se sigue que para resolver el sistema $AX=0$ basta con resolver el sistema
\begin{align*}
\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z
\end{pmatrix}= \begin{pmatrix}
0\\
0\\
0
\end{pmatrix}.
\end{align*}
Pero este sistema es el sistema

\begin{align*}
\begin{cases} x = 0\\ y = 0 \\ z = 0. \end{cases}
\end{align*}

De esta forma, $x=y=z=0$ es la (única) solución al sistema original.

$\triangle$

Problema 3. Determina las soluciones fundamentales del sistema homogéneo $AX=0$, donde $A$ es la matriz
\begin{align*}
A=\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix}.
\end{align*}

Solución. Sea $AX=0$ el sistema
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}

Para este problema nuevamente nos interesa llevar la matriz asociada al sistema a su forma escalonada reducida.

Aunque es muy importante saber cómo se hacen estos procedimientos, es cierto que también existen herramientas que nos ayudan a hacer estos cálculos de manera más rápida. En esta ocasión usaremos una calculadora de forma reducida escalonada disponible en línea, la cual nos indica que la forma escalonada reducida de la matriz $A$ es
\begin{align*}
A_{red}=\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix}.
\end{align*}

De esta forma, el sistema del problema es equivalente al sistema $A_{red}X=0$
\begin{align*}
\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}
Las variables pivote son $x$ y $z$. Las variables libres son $y$ y $w$.

Como se mencionó en una entrada anterior, para encontrar las soluciones fundamentales hay que expresar a las variables pivote en términos de las variables libres. En el sistema anterior podemos notar que
\begin{align*}
\begin{cases}
x =2y+w\\
z=-w.
\end{cases}
\end{align*}
por lo que
\begin{align*}
\begin{pmatrix}
x\\
y\\
z\\
w
\end{pmatrix}&=\begin{pmatrix}
2y+w\\
y\\
-w\\
w
\end{pmatrix}\\
&=y\begin{pmatrix}
2\\
1\\
0\\
0
\end{pmatrix} + w \begin{pmatrix}
1\\
0\\
-1\\
1
\end{pmatrix}
\end{align*}
siendo los vectores columna de la última igualdad las soluciones fundamentales del sistema $AX=0$, es decir que con estas soluciones se pueden generar todas las demás.

$\triangle$

Hasta ahora hemos visto ejemplos de reducción gaussiana de matrices de tamaño muy concreto y entradas muy concretas. Sin embargo, otra habilidad importante es aprender a usar reducción gaussiana en una matriz de tamaño arbitrario, con algunas entradas específicas. Veamos un ejemplo de cómo hacer esto.

Problema 4. Sea $n>2$ un número entero. Resuelve en números reales el sistema
\begin{align*}
x_2=\frac{x_1+x_3}{2}, x_3= \hspace{2mm} \frac{x_2+x_4}{2}, \hspace{2mm} \dots , \hspace{2mm}, x_{n-1}=\frac{x_{n-2}+x_n}{2}.
\end{align*}

Solución. Este es un sistema lineal homogéneo de ecuaciones. Esto se puede verificar multiplicando cada ecuación por $2$ e igualándola a $0$. Por ejemplo, la primer ecuación se puede escribir como $x_1-2x_2+x_3=0$. Transformando el resto de las ecuaciones, obtenemos que el sistema se puede escribir en forma matricial como $AX=0$, donde$A$ es la matriz en $M_{n-2,n}(F)$ dada por
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Esta matriz se ve algo intimidante, pero igual se le puede aplicar reducción gaussiana. Hagamos esto.

Afortunadamente, en cada fila ya tenemos un pivote y están «escalonados». Basta con hacer transvecciones para asegurar que en cada columna de un pivote, el pivote es la única entrada no cero. Haremos los primeros pasos para encontrar un patrón de qué va sucediendo.

En el primer paso, sumamos dos veces la fila $2$ a la primer fila. Al hacer esto obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & -3 & 2 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Con esto la segunda columna ya queda lista. El el siguiente paso, multiplicamos por 3 (y 2) la tercer fila y se lo sumamos a la primera fila (y segunda, respectivamente). Obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & -3 & 2 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Para el siguiente paso, ahora hay que multiplicar por 4 (3, 2) la cuarta fila y sumárselo a la primera (segunda, tercera, respectivamente), y obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & -5 & 4 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -3 & 2 &\cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & 0 &\cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

El patrón es ahora claro. Conforme arreglamos la columna $j$, luego la columna $j+1$ tiene a los números $-(j+1), -j, \ldots, -3, -2$ y la columna $j+2$ tiene a los números $j,j-1,j-2,\ldots,1,-2,1$. Esto puede demostrarse formalmente por inducción. Al arreglar la columna $n-2$, la matriz queda en la siguiente forma escalonada reducida:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots & 0 & -(n-1) & n-2 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 & -(n-2) & n-3 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & -(n-3) & n-4 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & -(n-4) & n-5 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -3 & 2\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1
\end{pmatrix}.
\end{align*}

Estamos listos para resolver el sistema asociado. Las variables libres son $x_{n-1}$ y $x_n$, que podemos darles valores arbitrarios $a$ y $b$. Las variables pivote son todas las demás, y de acuerdo a la forma de la matriz anterior, están dadas por

\begin{align*}
x_1&=(n-1)a – (n-2) b\\
x_2&=(n-2)a – (n-3) b\\
x_3&=(n-3)a – (n-4) b\\
&\vdots\\
x_{n-2}&=2a- b.
\end{align*}

Esto determina todas las soluciones.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de sistemas de ecuaciones y forma escalonada reducida

Por Ayax Calderón

Introducción

En esta entrada nos encargaremos de resolver algunos problemas de sistemas de ecuaciones lineales y de dar algunos ejemplos más de matrices en forma escalonada reducida.

Problemas resueltos

Problema 1. ¿Para cuáles números reales $a$ se tiene que el siguiente sistema es consistente?. Resuelve el sistema para estos casos.

\begin{align*}
\begin{cases}
x + 2y &=1\\
4x+8y &=a.
\end{cases}
\end{align*}

Solución. Tomando la primera ecuación y multiplicandola por $4$ vemos que

\begin{align*}
4x+8y=4
\end{align*}

De lo anterior se sigue que el único número real $a$ para el cuál el sistema es consistente es $a=4$, pues en otro caso tendríamos ecuaciones lineales que se contradicen entre sí.

Cuando $a=4$, tenemos entonces una única ecuación $x+2y=1$. Para encontrar todas las soluciones a esta ecuación lineal, podemos fijar el valor de $y$ arbitrariamente como un número real $r$. Una vez fijado $y$, obtenemos que $x=1-2y=1-2r$. Así, el conjunto de soluciones es $$\{(1-2r,r): r \in \mathbb{R}\}.$$

$\triangle$

Problema 2. Encuentra todos $a,b\in\mathbb{R}$ para los cuales los sistemas

\begin{align*}
\begin{cases}
2x + 3y &=-2\\
x – 2y &=6
\end{cases}
\end{align*}
y
\begin{align*}
\begin{cases}
x + 2ay &=3\\
-x – y &=b
\end{cases}
\end{align*}
son equivalentes.

Solución. Para resolver el primer sistema tomamos la segunda ecuación y despejamos $x$:
\begin{align*}
x=6+2y.
\end{align*}
Sustituyendo lo anterior en la primera ecuación se tiene
\begin{align*}
2(6+2y)+3y&=-2\\
12+7y&=-2\\
7y&=-14\\
y&=-2.
\end{align*}
Luego sustituimos el valor de $y$ para encontrar $x$
\begin{align*}
x&=6+2y\\
&=6+2(-2)\\
&=2.
\end{align*}
Ahora, para encontrar los valores de $a$ y $b$, sustituimos los valores de $x$ y $y$ que encontramos en el primer sistema y de esta forma garantizamos que ambos sistemas tendrán el mismo conjunto de soluciones, es decir, son equivalentes.
\begin{align*}
\begin{cases}
x + 2ay &=3\\
-x – y &=b
\end{cases}
\end{align*}
\begin{align*}
\begin{cases}
2 + 2a(-2) &=3\\
-2 – (-2) &=b
\end{cases}
\end{align*}
De la segunda ecuación es inmediato que $b=0$.
Por otro lado, despejando $a$ de la primera ecuación se tiene
\begin{align*}
2-4a&=3\\
-4a&=1\\
a&=-\frac{1}{4}
\end{align*}
Concluimos que los sistemas son equivalentes cuando
\begin{align*}
a=-\frac{1}{4}, \hspace{4mm} b=0.
\end{align*}

$\triangle$

Más ejemplos de forma escalonada reducida

Para finalizar con esta entrada veremos más ejemplos de matrices que están en forma escalonada reducida y de matrices que no lo están.

Ejemplo 1. La matriz
\begin{align*}
\begin{pmatrix}
2 & -1 & 3 & 1\\
1 & 0 & 2 & 2\\
3 & 1 & 7 & 0\\
1 & 2 & 4 & -1\end{pmatrix}
\end{align*}
no está en forma escalonada reducida, pues todas las entradas de la primera columna son distintas de cero.
En cambio, la matriz
\begin{align*}
\begin{pmatrix}
1 & 0 & 2 & 0\\
0 & 1 & 1 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0\end{pmatrix}
\end{align*}
sí está en forma escalonada reducida. Queda como tarea moral verificar que esto es cierto.

$\triangle$

Ejemplo 2. La matriz
\begin{align*}
\begin{pmatrix}
0 & 0 & 0 & 0 & 0\\
0 & 1 & -5 & 2 & 0\\
0 & 0 & 0 & 0 & 3\\
0 & 0 & 0 & 0 & 0\end{pmatrix}
\end{align*}
no está en forma escalonada reducida, pues hay filas cero por encima de filas no cero. Otro problema que tiene es que el pivote de la tercer fila no es igual a $1$.


En cambio
\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & -1\\
0 & 1 & 0 & 0 & 2\\
0 & 0 & 1 & 0 & 1\\
0 & 0 & 0 & 1 & 1\end{pmatrix}
\end{align*}
sí está en forma escalonada reducida.

$\triangle$

Ejemplo 3. La matriz $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}$ no está en forma escalonada reducida pues el pivote de la segunda fila está más a la izquierda que el de la primera. Sin embargo, si intercambiamos las filas, la matriz $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$ sí está en forma escalonada reducida.

$\triangle$

Más adelante veremos un método para llevar una matriz a su forma escalonada reducida y veremos que esto es muy útil para resolver sistemas de ecuaciones lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»