Archivo del Autor: Rubén Alexander Ocampo Arellano

Geometría Moderna I: Teoremas de Varignon y Van Aubel

Por Rubén Alexander Ocampo Arellano

Introducción

Con esta entrada damos inicio a la cuarta unidad que tratará sobre cuadriláteros. Comenzaremos hablando sobre el paralelogramo de Varignon y el teorema de Van Aubel.

Área del cuadrilátero

A partir de la ubicación de las diagonales de un cuadrilátero podemos establecer una clasificación de estos.

Un cuadrilátero es convexo si sus dos diagonales se encuentran dentro de él, es cóncavo si tiene una diagonal dentro y otra fuera de él, y es cruzado si las dos diagonales se ubican fuera del cuadrilátero.

El teorema de Varignon nos habla sobre el área de un cuadrilátero en general y ya que no es tan intuitivo definir el área de un cuadrilátero cruzado es necesario introducir el concepto de área orientada.

Consideraremos el área de un triángulo como positiva si recorremos sus vértices en el sentido opuesto a las manecillas del reloj y como negativa en caso contrario.

De esta manera tenemos que para un triángulo $\triangle ABC$,
$(\triangle ABC) = (\triangle BCA) = (\triangle CAB) $
$= – (\triangle CBA) = – (\triangle ACB) = – (\triangle BAC)$.

Figura 1

Definición 1. Definimos el área de un cuadrilátero $\square ABCD$ como la suma de las áreas de los triángulos que se forman al considerar una de sus diagonales, esto es,
$(\square ABCD) = (\triangle ABC) + (\triangle CDA)$.

Notemos que como resultado de esta definición el área del cuadrilátero cruzado resulta ser la diferencia de las áreas de los triángulos que se forman al considerar la intersección cruzada de los lados.

Paralelogramo de Varignon

Teorema 1, de Varignon.
$i)$ Los puntos medios de los lados de un cuadrilátero convexo son los vértices de un paralelogramo, conocido como paralelogramo de Varignon, cuyo perímetro es la suma de las diagonales del cuadrilátero,
$ii)$ el área del paralelogramo de Varignon es la mitad del área del cuadrilátero.

Demostración. Sean $\square ABCD$ un cuadrilátero convexo y $M_{ab}$, $M_{bc}$, $M_{cd}$ y $M_{da}$ los puntos medios de $AB$, $BC$, $CD$ y $DA$ respetivamente.

Figura 2

Notemos que $M_{ab}M_{bc}$ y $M_{cd}M_{da}$ son segmentos medios de $\triangle ABC$ y $\triangle DAC$ por lo que $M_{ab}M_{bc} \parallel CA \parallel M_{cd}M_{da}$ y $2M_{ab}M_{bc} = CA = 2M_{cd}M_{da}$.

De manera análoga podemos ver que $M_{ab}M_{da} \parallel DB \parallel M_{bc}M_{cd}$ y $2M_{ab}M_{da} = BD = 2M_{bc}M_{cd}$.

Por lo tanto los lados opuestos de $\square M_{ab}M_{bc}M_{cd}M_{da}$ son paralelos y $M_{ab}M_{bc} + M_{bc}M_{cd} + M_{cd}M_{da} + M_{da}M_{ab} = \dfrac{CA + BD + CA +BD}{2} = CA + BD$.

Para calcular el área de  $\square M_{ab}M_{bc}M_{cd}M_{da}$ primero notemos que $\triangle AM_{ab}M_{da}$ y $\triangle ABD$ son semejantes pues $M_{ab}M_{da} \parallel BD$.

También sabemos que $M_{ab}M_{da} = \dfrac{BD}{2}$, por lo que las alturas desde $A$, $h$ y $h’$ de $\triangle AM_{ab}M_{da}$ y $\triangle ABD$ respectivamente, también cumplirán que $h = \dfrac{h’}{2}$.

Por lo tanto,
$(\triangle AM_{ab}M_{da}) = \dfrac{M_{ab}M_{da} \times h}{2}$
$= \dfrac{\frac{1}{2}DBD \times \frac{1}{2}h’}{2} = \dfrac{1}{4} \dfrac{BD \times h’}{2} $
$= \dfrac{1}{4} (\triangle ABD)$.

De manera similar podemos encontrar las áreas de $\triangle BM_{bc}M_{ab}$, $\triangle CM_{cd}M_{bc}$ y $\triangle DM_{da}M_{cd}$.

En consecuencia,
$(\square M_{ab}M_{bc}M_{cd}M_{da}) = (\square ABCD) – (\triangle AM_{ab}M_{da}) – (\triangle BM_{bc}M_{ab}) – (\triangle CM_{cd}M_{bc}) – (\triangle DM_{da}M_{cd})$
$= (\square ABCD) – \dfrac{1}{4} ((\triangle ABD) + (\triangle BCD) + (\triangle CDB) + (\triangle DAC))$
$= (\square ABCD) – \dfrac{2}{4}(\square ABCD) $
$ = \dfrac{(\square ABCD)}{2}$.

$\blacksquare$

Corolario. Sea $\square ABCD$ un cuadrilátero convexo, entonces su cuadrilátero de Varignon
$i)$ es un rombo si y solo si $AC = BD$,
$ii)$ es un rectángulo si y solo si $AC \perp BD$,
$iii)$ es un cuadrado si y solo si $AC = BD$ y $AC \perp BD$.

Demostración. Sean $E$, $F$, $G$, $H$, los puntos medios de $BC$, $CD$, $DA$, $AB$, respectivamente como $EF$ y $FG$ son segmentos medios de $\triangle DBC$ y $\triangle ADC$, entonces, $2EF = BD$, $EF \parallel BD$ y $2FG = AC$, $FG \parallel AC$.

Figura 3

$i)$ $\square EFGH$ es un rombo, entonces por definición $EF = FG \Leftrightarrow AC = BD$.

$ii)$ $\square EFGH$ es un rectángulo, entonces por definición $EF \perp FG \Leftrightarrow AC \perp BD$.

$iii)$ Es consecuencia de $i)$ y $ii)$.

$\blacksquare$

Centroide de un cuadrilátero

Definición 2. Los segmentos que unen los puntos medios de los lados opuestos de un cuadrilátero se llaman bimedianas.

Al segmento que une los puntos medios de las diagonales de un cuadrilátero se le conoce como recta de Newton.

Teorema 2. Las bimedianas de un cuadrilátero convexo y su recta de Newton son concurrentes y se bisecan entre sí, el punto de concurrencia es el centroide del cuadrilátero.

Demostración. Sea $\square ABCD$ un cuadrilátero convexo y $M_{ab}$, $M_{bc}$, $M_{cd}$, $M_{da}$, $M$, $N$, los puntos medios de $AB$, $BC$, $CD$, $DA$, $AC$, $BD$, respectivamente.

$M_{ab}M_{cd}$ y $M_{bc}M_{da}$ son las diagonales del paralelogramo de Varignon, por lo tanto, se intersecan en $J$ su punto medio.

Figura 4

Por otra parte, $M_{ab}M$ es un segmento medio de $\triangle ABC$, por lo que $M_{ab}M \parallel BC$; $NM_{cd}$ es un segmento medio de $\triangle DBC$, por lo tanto, $NM_{cd} \parallel BC$, y así $NM_{cd} \parallel M_{ab}M$.

Igualmente vemos que $M_{ab}N \parallel MM{cd}$.

Por lo tanto, $\square M_{ab}NM_{cd}M$ es un paralelogramo, en consecuencia las diagonales $M_{ab}M_{cd}$ y $NM$ se intersecan en $J$ su punto medio.

En conclusión, $J$ es el punto medio de $M_{ab}M_{cd}$, $M_{bc}M_{da}$ y $NM$.

$\blacksquare$

Construcción de un cuadrilátero

Problema. Construye un cuadrilátero $\square ABCD$ conociendo $AB$, $BC$, $CD$, $DA$ y $M_{ab}M_{cd}$ donde $M_{ab}$ y $M_{cd}$ son los puntos medios de $AB$ y $CD$ respectivamente.

Solución. Primero construimos el paralelogramo $\square M_{ab}NM_{cd}M$, donde $M$ y $N$ son los puntos medios de las diagonales $AC$ y $BD$, de la siguiente manera.

De la demostración del teorema 2 sabemos que $M_{ab}M = NM_{cd} = \dfrac{BC}{2}$ y $M_{ab}N = MM_{cd} = \dfrac{AD}{2}$ (figura 4).

También sabemos que la diagonal de un paralelogramo lo divide en dos triángulos congruentes, por lo que basta construir un triángulo de lados $M_{ab}M_{cd}$, $\dfrac{BC}{2}$  y $\dfrac{AD}{2}$ y luego trazar paralelas por $M_{ab}$ y $M_{cd}$ a los lados del triángulo construido completando así el paralelogramo.

De manera similar construimos el paralelogramo $\square M_{ab}M_{bc}M_{cd}M_{da}$ donde $M_{bc}$ y $M_{da}$ serían los puntos medios de $BC$ y $AD$ respectivamente.

Sabemos también que $M_{bc}M \parallel AB$ por lo que trazamos la paralela $AB$ a $M_{bc}M$ por $M_{ab}$ tal que $AM_{ab} = M_{bc}B = \dfrac{AB}{2}$.

Con $A$ y $B$ construidos, por $M_{bc}$ trazamos $ABC$ tal que $BM_{bc} = M_{bc}C = \dfrac{BC}{2}$, similarmente construimos $D$.

$\blacksquare$

Teorema de Van Aubel

Teorema 3, de Van Aubel. Los segmentos que unen los centros de cuadrados construidos externamente sobre lados opuestos de un cuadrilátero convexo son perpendiculares y tienen la misma longitud.

Demostración. Sean $\square ABCD$ un cuadrilátero convexo y $\square EFBA$, $\square BGHC$, $\square DCIJ$, $\square LADK$, cuadrados construidos externamente sobre los lados de $\square ABCD$ y $O_1$, $O_2$, $O_3$, $O_4$, sus respectivos centros.

Figura 5

Sea $M = LB \cap ED$, como $AL = AD$ y $AB = AE$ y $\angle LAB = \angle DAE$, por criterio de congruencia LAL, $\triangle LAB \cong \triangle DAE$,
$\Rightarrow LB = DE$ y $\angle AEM = \angle ABM$.

Por lo tanto, $\square MEBA$ es cíclico, así, $\angle EMB = \angle EAB$, es decir $LB \perp DE$.

Considera $N$ el punto medio de $BD$, $NO_4$ y $NO_3$ son segmentos medios de $\triangle BDE$ y $\triangle DBL$ respectivamente.

Esto implica que $2NO_4 = DE$ y $NO_4 \parallel DE$ y $2NO_3 = LB$ y $NO_4 \parallel LB$.

Por lo tanto, $NO_4 = NO_3$ y $NO_4 \perp NO_3$.

Igualmente vemos que $NO_1 = NO_2$ y $NO_1 \perp NO_2$.

Sea $V = O_1O_3 \cap O_2O_4$, por criterio de congruencia LAL, $NO_1O_3 \cong NO_2O_4$,
$\Rightarrow O_1O_3 = O_2O_4$ y $\angle VO_1N = \angle VO_2N$.

Por lo tanto, $\square VNO_1O_2$ es cíclico, y así $O_1O_3 \perp O_2O_4$.

$\blacksquare$

Definición 3. Nos referiremos al cuadrilátero $\square O_1O_1O_3O_4$ como cuadrilátero externo de Van Aubel y a la intersección de sus diagonales como punto externo de Van Aubel.

Centroide del cuadrilátero de Van Aubel

Teorema 4. Un cuadrilátero y su cuadrilátero externo de Van Aubel tienen el mismo centroide.

Demostración. Sean $\square ABCD$ y $\square O_1O_2O_3O_4$ su cuadrilátero externo de Van Aubel, $M$ y $N$ los puntos medios de $AC$ y $BD$, y $V$ el punto externo de Van Aubel.

Figura 6

En el teorema anterior vimos que $NV$ es una cuerda común a las circunferencias cuyos diámetros son $O_1O_2$ y $O_3O_4$, por lo tanto la línea que une sus centros $M_{1,2}M_{3,4}$ biseca a $NV$ y $M_{1,2}M_{3,4} \perp NV$.

De manera análoga podemos ver que $MV$ es una cuerda común a las circunferencias cuyos diámetros son $O_2O_3$ y $O_4O_1$ y por lo tanto la línea que une sus centros $M_{2,3}M_{4,1}$ biseca a $MV$ y $M_{2,3}M_{4,1} \perp MV$.

Por otra parte, por el teorema de Van Aubel las diagonales del cuadrilátero de Van Aubel son perpendiculares y tienen la misma longitud. Entonces por el corolario, su paralelogramo de Varignon $\square M_{1,2}M_{2,3}M_{3,4}M_{4,1}$ es un cuadrado, en particular, $M_{1,2}M_{3,4} \perp M_{2,3}M_{4,1}$.

En consecuencia, en $\triangle MNV$, $M_{1,2}M_{2,3} \parallel MV$ y $M_{1,2}M_{2,3}$ pasa por el punto medio de $NV$, por lo tanto $M_{1,2}M_{2,3}$ biseca a $MN$.

Igualmente podemos ver que $M_{2,3}M_{4,1}$ biseca a $MN$.

Por el teorema 2 sabemos que el punto medio $J$ de $MN$ es el centroide de $\square ABCD$ y que la intersección de las bimedianas $M_{1,2}M_{3,4}$ y $M_{2,3}M_{4,1}$ es el centroide de $\square O_1O_2O_3O_4$.

$\blacksquare$

Más adelante…

En la siguiente entrada continuaremos el estudio de los cuadriláteros cíclicos que comenzamos en la entada teorema de Ptolomeo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que un cuadrilátero es dividido por una de sus diagonales en dos triángulos de igual área si y solo si la diagonal biseca a la otra diagonal.
  2.  Verifica que el teorema de Varignon se cumple para los cuadriláteros cóncavo y cruzado.
  3. Sean $\square ABCD$ un cuadrilátero $U$ y $V$ los puntos medios de $\overline{AC}$ y $\overline{BD}$ respectivamente y $T$ la intersección de $\overline{AB}$ con $\overline{CD}$. Prueba que $(\triangle TUV) = \dfrac{(\square ABCD)}{4}$.
    Sugerencia. Considera $H$ y $F$ los puntos medios de $\overline{AD}$ y $\overline{BC}$ y los cuadriláteros $\square ACBD$, $\square CUFT$ y $\square BVFT$ para calcular el área de los triángulos $\triangle UVF$, $\triangle UFT$ y $\triangle VFT$.
Figura 7
  1. Construye un cuadrilátero dados dos ángulos opuestos, la longitud de las diagonales y el ángulo entre las diagonales.
  2. Verifica que el teorema de Van Aubel se cumple cuando los cuadrados son construidos internamente, y también para los para los cuadriláteros cóncavo y cruzado.
  3. Muestra que en un cuadrilátero convexo los puntos medios de sus diagonales y los puntos medios de las diagonales de su cuadrilátero externo de Van Aubel, forman un cuadrado, y que el punto externo de Van Aubel pertenece al circuncírculo de este cuadrado.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Postulados de Euclides

Por Rubén Alexander Ocampo Arellano

Introducción

En la primera entrada del curso definimos algunos objetos importantes que nos permitirán desarrollar la teoría. Es importante mencionar que para poder empezar a construir una teoría, se tienen que suponer algunas propiedades como ciertas. A este tipo de propiedades que se aceptan a priori les llamamos axiomas.

En Lógica Matemática se requiere que los axiomas de una teoría tengan las siguientes tres características:

$i)$ ser completos, esto quiere decir que a partir de ellos todas las proposiciones referentes a objetos de la teoría puedan ser demostradas,
$ii)$ que sean independientes, es decir, que ninguno de ellos pueda ser demostrado a partir de los demás,
$iii)$ que sean consistentes, es decir, que no se contradigan.

Postulados de Euclides

Euclides fue un matemático griego que vivió alrededor del año 300 AC. En su obra reunió los conocimientos fundamentales que los matemáticos griegos habían desarrollado hasta ese momento y los expuso de manera ordenada. Sus demostraciones geométricas se basaban en el método deductivo, lo que garantizaba la validez de sus afirmaciones.

Euclides comenzó su obra definiendo los objetos con los que iba a trabajar, después estableció las reglas generales con que esos objetos se relacionaban es decir los postulados y a continuación enuncio propiedades generales sobre la igualdad de magnitudes llamadas nociones comunes. Cabe destacar que los axiomas de Euclides no cumplen con la condición de ser completos, sin embargo, a partir de ellos se puede construir gran parte de la teoría geométrica que hoy se estudia.

Para hablar del quinto postulado necesitamos presentar un concepto nuevo.

Definición. Consideremos $l_{1}$, $l_{2}$ y $l_{3}$ tres rectas distintas y tal que $l_{3}$ interseca a las primeras dos, entonces decimos que $l_{3}$ es transversal a $l_{1}$ y a $l_{2}$.

En estas condiciones se forman 8 ángulos (figura 1), decimos que $\alpha_{2}$, $\beta_{1}$, $\delta_{1}$ y $\gamma_{2}$ son ángulos internos.

Las parejas de ángulos ($\alpha_{1}$, $\alpha_{2}$), ($\beta_{1}$, $\beta_{2}$), ($\delta_{1}$, $\delta_{2}$) y ($\gamma_{1}$, $\gamma_{2}$) se llaman ángulos correspondientes, y las parejas de ángulos ($\beta_{1}$, $\gamma_{2}$) y ($\delta_{1}$, $\alpha_{2}$) son ángulos alternos internos.

Figura 1

A continuación enunciamos los cinco postulados de Euclides.

$i)$ Por dos puntos siempre es posible trazar una recta.

$ii)$ Es posible prolongar una recta tanto como se quiera en cualquiera de sus dos direcciones.

$iii)$ Cualquier punto del plano y segmento pueden ser usados como centro y radio, respectivamente de un círculo.

$iv)$ Todos los ángulos rectos son iguales.

$v)$ Si por dos rectas pasa una transversal tal que, de alguno de los lados de la transversal, la suma de los ángulos interiores es menor a dos ángulos rectos, entonces si las dos rectas se prolongan lo suficientemente del lado en que dicha suma es menor a 2 ángulos rectos, las rectas se intersecan.

Figura 2

Nociones comunes

Las nociones comunes que enunció Euclides también son axiomas que se refieren al manejo de magnitudes del mismo tipo.

$i)$ Cosas que sean iguales a una tercera son iguales entre sí.
Si $a = c$ y $c = b$ entonces $a = b$.

$ii)$ Si a cosas iguales se añaden cosas iguales las resultantes son iguales.
Si $a = b$ entonces $a + c = b + c$.

$iii)$ Si de cosas iguales se substraen cosas iguales las resultantes son iguales.
Si $a = b$ entonces $a – c = b – c$.

$iv)$ Cosas que coinciden una con otra son iguales entre sí.
Esto se refiere, por ejemplo, a la superposición de objetos, es decir, si al superponer dos objetos estos coinciden, entonces tendrán las mismas magnitudes.

$v)$ El todo es mayor que cualquiera de sus partes.
Si $a$ y $b$ son positivos y $c = a + b$ entonces $c > a$ y $c > b$.

Hay otras nociones que también usamos frecuentemente, por ejemplo, las primeras tres nociones se preservan si usamos desigualdades.

$vi)$ Si $a > c$ y $c > b$ entonces $a > b$.

$vii)$ Si $a > b$ entonces $a + c > b + c$.

$viii)$ Si $a > b$ entonces $a – c > b – c$.

En las últimas tres nociones, podemos cambiar el mayor que ($>$) por menor que ($<$), mayor igual que ($\geq$) o menor igual que ($\leq$).

$ix)$ Tricotomía. Para $a$ y $b$ magnitudes del mismo tipo ocurre uno y solo uno de los siguientes casos:
$a = b$,
$a < b$,
$b < a$.

El quinto postulado y sus consecuencias

Como podemos apreciar, los primeros cuatro postulados son aseveraciones intuitivas mientras que el quinto está enunciado de una forma que parece establecer condiciones a partir de las cuales ocurre algo, esto causo mucha controversia por más de dos mil años, pues aparenta ser una proposición que debe ser demostrada.

Hubo numerosos intentos por demostrar el quinto postulado conocido como axioma de las paralelas. Como resultado se encontraron varias equivalencias, se llegó a la conclusión de que no era posible demostrar el quinto postulado a partir de los cuatro primeros y que además era posible aceptar otros axiomas como ciertos en lugar del quinto, lo que dio origen a las geometrías no euclidianas.

Proposición. El quinto postulado de Euclides es equivalente a la afirmación los ángulos alternos internos entre paralelas son iguales.

Demostración: Seguiremos el método de reducción al absurdo. La idea es suponer que dada una hipótesis no se cumple la tesis de la proposición y a partir de ahí tenemos que encontrar algún tipo de contradicción a algo que sabemos que si es cierto.

Primero asumimos como cierto el quinto postulado y debemos mostrar que dadas dos rectas paralelas y una transversal a ella los ángulos alternos internos son iguales.

Sean $l_{1}$ y $l_{2}$ las rectas paralelas y $l_{3}$ la transversal a ellas y supongamos que los ángulos alternos internos $\alpha$ y $\beta$ no son iguales, entonces por tricotomía uno es mayor que el otro.

Figura 3

Sin pérdida de generalidad supongamos que $\beta > \alpha$, podemos sumar a ambos lados de la desigualdad $\gamma$, el ángulo suplementario de $\beta$, entonces
$\pi = \beta + \gamma > \alpha + \gamma$ $\Rightarrow$ $\pi > \alpha + \gamma$.

Entonces por el quinto axioma de Euclides las rectas se cortan, lo cual es una contradicción al hecho de que las rectas son paralelas. Así, nuestra suposición de que los ángulos alternos internos eran diferentes es errónea, y por lo tanto, los ángulos alternos internos son iguales $\alpha = \beta$.

$\blacksquare$

Ahora tomemos por cierto que los ángulos alternos internos entre paralelas son iguales y mostremos que si de un lado de una transversal que corta a dos rectas la suma de los ángulos internos es menor que dos ángulos rectos entonces dichas rectas se cortan en algún punto.

Demostración. Sea $l_{3}$, transversal a $l_{1}$ y $l_{2}$ y tal que la suma de los ángulos $\alpha + \beta < \pi$, supongamos que las rectas $l_{1}$ y $l_{2}$ son paralelas, por hipótesis sabemos que los ángulos alternos internos son iguales, $\beta = \gamma$.

Figura 4

Pero $\gamma$ y $\alpha$ son suplementarios , entonces $\pi = \alpha + \gamma = \alpha + \beta$.

Lo que es una contradicción pues nuestra hipótesis era que la suma de los ángulos era menor que dos ángulos rectos. Por lo tanto, las rectas se cortarán en algún punto.

$\blacksquare$

Teorema. La suma de los ángulos internos de todo triángulo es igual a dos ángulos rectos, además un ángulo exterior de un triángulo es igual a la suma de los ángulos internos no adyacentes a el.

Demostración. Sea $\triangle ABC$ un triángulo, y sea $\angle BAC = \alpha$. Consideremos la recta paralela a $BC$ que pasa por $A$.

Figura 5

Entonces por la proposición anterior, $\angle CBA = \beta$ y $\angle ACB = \gamma$ (figura 5), pues son ángulos alternos internos entre paralelas.

Por lo tanto, $\angle BAC + \angle CBA + \angle ACB = \alpha + \beta + \gamma = \pi$.

Por otra parte, sea $\delta$ el ángulo exterior en $C$, entonces $\gamma$ y $\delta$ son ángulos suplementarios, así que
$\gamma + \delta = \pi = \alpha + \beta + \gamma$
$\Leftrightarrow \delta = \alpha + \beta = \angle BAC + \angle CBA$.

$\blacksquare$

Más adelante…

En la siguiente entrada hablaremos de las transformaciones rígidas y estudiaremos los criterios de congruencia una herramienta muy útil en geometría.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que los ángulos correspondientes entre paralelas son iguales entre sí.
  2. Dados una recta y un punto fuera de ella muestra que la paralela a la recta dada por el punto dado es única.
  3. Sea $l_{3}$ transversal a $l_{1}$ y $l_{2}$ muestra que si los ángulos alternos internos son iguales entonces $l_{1}$ y $l_{2}$ son paralelas.
  4. $i)$ Muestra que dos rectas que son paralelas a una tercera son paralelas entre si.
    $ii)$ Muestra que dos rectas que son perpendiculares a una tercera son paralelas entre si.
  5. $i)$ Dados una recta y un punto fuera de ella muestra que la perpendicular a la recta dada por el punto dado es única.
    $ii)$ Dados una recta y un punto en ella muestra que la perpendicular a la recta dada por el punto dado es única.

Entradas relacionadas

Fuentes

  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 5-10.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 4, 8-9.
  • Clark University
  • Geometría interactiva

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Definiciones

Por Rubén Alexander Ocampo Arellano

Introducción

Esta es la primera entrada del curso de Geometría Moderna I el cual está basado en el temario oficial de la Facultad de Ciencias de la UNAM. Aquí presentaremos algunos conceptos básicos que nos serán de ayuda para empezar el curso.

El termino Geometría Moderna se refiere a aquella geometría deductiva, que fue desarrollada después de Euclides y hasta el desarrollo de las geometrías no euclidianas, este periodo está comprendido entre los siglos III AC y XIX DC, es decir, la geometría griega hecha con regla y compás, pero después de los griegos.

La geometría euclidiana estudia propiedades básicas de los objetos geométrico tales como punto, recta, triángulo o circunferencia, a partir de un conjunto de axiomas y de manera sintética, es decir, sin el uso de un eje de coordenadas o métodos algebraicos muy complejos, aunque si se hace uso de nociones básicas de Teoría de Conjuntos, como las de pertenencia o intersección de conjuntos.

Muchas de estas propiedades son de carácter métrico, es decir, sobre la medición de magnitudes de ángulos, longitudes de segmentos, distancias entre puntos o áreas de figuras geométricas, pero también nos hablan sobre la concurrencia de rectas (rectas diferentes que pasan por un mismo punto), colinealidad de puntos (puntos distintos que están sobre una misma recta) o puntos cíclicos (puntos distintos que están en una misma circunferencia).

Punto, recta y circunferencia

Definición 1. Un punto es la representación de un lugar específico en el plano, no tiene longitud, altura ni ninguna otra dimensión, en nuestro cuaderno o el pizarrón podemos representar este lugar con la marca más pequeña y visible que nuestro lápiz o gis puedan hacer, la cual en realidad si tiene dimensiones, pero lo que solo nos interesa es la abstracción de ese lugar marcado.

La mayoría del tiempo para referirnos a puntos emplearemos letras mayúsculas.

Definición 2. Una línea recta es un objeto de una sola dimensión, solo tiene longitud y se extiende de manera infinita en ambos sentidos, todos sus puntos se encuentran en una misma dirección de manera que dos puntos distintos determinan a una línea recta.

Nos referiremos a una línea recta simplemente como recta. Si no conocemos dos puntos por donde pasa una recta la denotaremos con la letra $l$.

Cuando la intersección de dos rectas $l_{1}$, $l_{2}$ es vacía, es decir, no tienen ningún punto en común $l_{1} \cap l_{2} = \varnothing$, decimos que son rectas paralelas y lo denotamos como $l_{1} \parallel l_{2}$.

A la porción de línea recta que une dos puntos distintos en el plano (incluyendo a los puntos) y que no se extiende más allá de ellos le llamamos segmento de recta o simplemente segmento.

La distancia entre dos puntos es la magnitud del segmento de recta que los une.

Si conocemos dos puntos distintos $P$, $Q$ de una recta nos referiremos al segmento que une dichos puntos como $PQ$, en ocasiones también nos podremos referir a la recta completa con la misma notación de acuerdo al contexto del problema.

Figura 1

Definición 3. Dados un punto $O$ del plano y una magnitud $r \geq 0$, definimos a la circunferencia con centro en $O$ y radio $r$ $(O, r)$ como el conjunto de puntos en el plano cuya distancia al punto $O$ es $r$.

Algunas veces no nos importará o no conoceremos el centro o el radio de una circunferencia, en tal caso nos referiremos a ella con cualquier otra letra como $\Gamma$.

Al segmento que une dos puntos distintos de una circunferencia y que pasa por su centro le llamamos diámetro.

Si conocemos dos puntos $A$ y $B$ diametralmente opuestos de una circunferencia podemos denotarla como $\Gamma(AB)$.

A la porción de una circunferencia que une dos puntos distintos en ella le llamamos arco de circunferencia, para dos puntos distintos en una circunferencia $A$ y $B$, denotamos al arco recorrido de $A$ a $B$ en el sentido contrario de las manecillas del reloj como $\overset{\LARGE{\frown}}{AB}$.

Figura 2

Ángulo

Definición 4. Un ángulo es un objeto formado cuando dos rectas o segmentos se intersecan. Al punto en común le llamamos vértice y los segmentos o semirectas que concurren en el vértice son los lados del ángulo.

Cuando es claro cuáles son los lados de un ángulo con vértice en $O$ lo denotamos como $\angle O$.

Cuando queremos hacer énfasis en los segmentos que forman un ángulo con vértice $O’$, escribimos $\angle AO’B$ si nos referimos al desplazamiento del segmento $AO$ hacia $BO$ en contra del movimiento de las manecillas del reloj.

También podemos etiquetar a un ángulo con letras griegas minúsculas.

Figura 3

Cuando dos rectas o segmentos distintos se intersecan se forman cuatro ángulos, en este caso a los ángulos que comparten un lado en común les llamamos adyacentes y a los que no tienen un lado en común, opuestos por el vértice.

Decimos que un ángulo es recto si es aquel que se obtiene cuando dos rectas $l_{1}$, $l_{2}$ se intersecan formando cuatro ángulos iguales y en este caso decimos que las rectas son perpendiculares $l_{1} \perp l_{2}$. Denotamos a la suma de dos ángulos rectos como $\pi$.

Para medir la magnitud de un ángulo $\angle O$ trazamos una circunferencia de radio $1$ con centro en el vértice del ángulo y ubicamos las intersecciones de los lados del ángulo con la circunferencia digamos $A$ y $B$, entonces la medida de $\angle AOB$ será la magnitud del arco $\overset{\LARGE{\frown}}{AB}$.

En calculo se muestra que $\pi = 3.14159…$, es un numero irracional, esto es, su representación decimal es infinita y no periódica.

Otra forma de medir los ángulos es dividir a la circunferencia en $360$ partes iguales o grados, de esto se sigue que $\dfrac{\pi}{2} = 90^{\circ}$, $\pi = 180^{\circ}$, $2\pi = 360^{\circ}$.

Figura 4

Un ángulo que es menor que uno recto es un ángulo agudo y uno que es mayor a uno recto se llama ángulo obtuso.

Dos ángulos que suman $\dfrac{\pi}{2}$ son complementarios y dos ángulos cuya suma es igual a $\pi$ se llaman suplementarios.

Figura 5

Triángulo

Definición 5. Un triángulo es una figura en el plano que consiste de tres puntos distintos, llamados vértices, que no son colineales, y por los segmentos que unen dichos vértices a los que llamamos lados del triángulo.

Si los vértices de un triangulo son $A$, $B$ y $C$, denotamos al triángulo como $\triangle ABC$ recorriendo los vértices en el sentido contrario de las manecillas del reloj.

Recordemos leer los ángulos en el sentido contrario al de las manecillas del reloj. A $\angle BAC$, $\angle CBA$ y $\angle ACB$ les llamamos ángulos internos o interiores.

Si extendemos los lados del triángulo, a los ángulos que son suplementarios a los ángulos interiores les llamamos ángulos exteriores o externos, notemos que por cada ángulo interno hay dos externos.

Figura 6

Clasificamos a los triángulos de acuerdo a la magnitud de sus lados y de sus ángulos internos.

De acuerdo a sus lados:
escaleno, si ningún par de lados es igual,
isósceles, si tienen dos lados iguales,
equilátero, si todos sus lados son iguales.

Figura 7

De acuerdo a sus ángulos internos:
rectángulo, si un ángulo interno es recto,
acutángulo, si todos sus ángulos internos son agudos,
obtusángulo, si uno de sus ángulos internos es obtuso.

Figura 8

Problema. Dado un segmento construir sobre él un triángulo equilátero.

Solución. Para hacer una construcción geométrica usamos una regla sin graduar y un compás. La regla nos permite trazar la recta que une cualesquiera dos puntos distintos y con el compás podemos trazar circunferencias conociendo su centro y radio.

Sea $BC$ el segmento dado, trazamos dos circunferencias de radio $BC$, una con centro en $B$ y otra con centro en $C$.

Figura 9

Sea $A$ la intersección de $(B, BC)$ con $(C, BC)$, trazamos $AB$ y $AC$, entonces $AB = BC$, por ser radios de $(B, BC)$ y $AC = BC$, por ser radios de $(C, BC)$.

Por lo tanto, $AB = BC = AC$ y así $\triangle ABC$ es equilátero.

$\blacksquare$

El triángulo es uno de los objetos más estudiados en geometría euclidiana. En las próximas entradas abordaremos teoremas fundamentales acerca del triángulo como los de congruencia, semejanza o el teorema de Pitágoras.

Más adelante…

En la siguiente entrada presentaremos los postulados de Euclides que son el punto de partida para poder establecer relaciones entre los objetos que hemos definido.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que los ángulos opuestos por el vértice son iguales.
  2. Convierte a grados los siguientes ángulos: $\dfrac{\pi}{3}$, $\dfrac{\pi}{4}$, $\dfrac{3\pi}{4}$.
  3. Calcula la longitud de arco de los siguientes ángulos: $225^{\circ}$, $270^{\circ}$, $315^{\circ}$.
  4. Dados dos segmentos de distinta longitud, construir sobre el mayor un segmento de igual magnitud al menor.
  5. GeoGebra es un software libre de matemáticas muy útil, con él te puedes apoyar para hacer tus demostraciones durante este curso, aquí esta la versión online.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Teorema de Tales

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada estudiaremos el teorema de Tales y algunas aplicaciones. Este teorema nos dice que dos rectas paralelas cortan a otras dos en segmentos proporcionales.

En la entrada anterior definimos el área de un rectángulo y vimos que como consecuencia de esto el área de un triángulo rectángulo era el semiproducto de sus catetos. En esta ocasión necesitaremos hablar del área de un triángulo en general.

Denotaremos al área de un triángulo $\triangle ABC$ como $(\triangle ABC)$.

Área del triángulo

Proposición 1. El área de un triángulo es el producto de la altura trazada por uno de sus vértices por la base o lado contrario a dicho vértice.

Demostración. Sea $\triangle ABC$ un triángulo, tracemos la altura desde el vértice $A$, existen dos posibilidades, el pie de la altura $D$, se encuentra en el segmento $BC$ o está en la extensión del segmento.

Caso 1, $D \in BC$.

Figura 1

Notemos que se forman dos triángulos rectángulos, $\triangle ABD$ y $\triangle ADC$.
$\Rightarrow (\triangle ABC) = (\triangle ABD) + (\triangle ADC)$
$= \dfrac{BD \times AD}{2} + \dfrac{DC \times AD}{2}$
$= \dfrac{(BD + DC)AD}{2} = \dfrac{BC \times AD}{2}$.

Caso 2, $D \notin BC$.

Figura 2

Notemos que se forman dos triángulos rectángulos, $\triangle ADB$ y $\triangle ADC$.
$\Rightarrow (\triangle ABC) = (\triangle ADC) – (\triangle ADB)$
$= \dfrac{ DC \times AD }{2} – \dfrac{DB \times AD}{2}$
$= \dfrac{(DC – DB)AD}{2} = \dfrac{BC \times AD}{2}$.

$\blacksquare$

Proposición 2. Si dos triángulos tienen una misma altura entonces las razones entre sus áreas es igual a la razón entre las bases perpendiculares a las alturas.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ dos triángulos tales que las alturas trazadas desde $A$ y $A’$ son iguales, digamos $h$.

Figura 3

$\dfrac{(\triangle ABC)}{(\triangle A’B’C’)} = \dfrac{\dfrac{BC \times h}{2}}{\dfrac{B’C’ \times h}{2}}$
$ = \dfrac{BC \times h}{B’C’ \times h} = \dfrac{BC}{B’C’}$.

$\blacksquare$

Teorema fundamental de la proporcionalidad

Teorema 1, de Tales. Sean $\triangle ABC$, $B’$ y $C’$ en $AB$ y $AC$ respectivamente tales que $B’C’ \parallel BC$, entonces
$i)$ $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$, $\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$ y $\dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$,
$ii)$ $\dfrac{AB}{AB’} = \dfrac{AC}{AC’} = \dfrac{BC}{B’C’}$.

Demostración. Como $\triangle B’C’B$ y $\triangle B’C’C$ tienen la misma base $B’C’$ y están contenidos en las mismas paralelas, lo que implica que su altura es la misma, entonces tienen la misma área.

Figura 4

$\begin{equation} (\triangle B’C’B) = (\triangle B’C’C) \end{equation}$
$\Rightarrow (\triangle AB’C’) + (\triangle B’C’B) = (\triangle AB’C’) + (\triangle B’C’C)$
$\begin{equation} \Rightarrow (\triangle AC’B) = (\triangle AB’C). \end{equation}$

De las escuaciones $(1)$ y $(2)$ y la proposición 2 obtenemos
$\dfrac{(\triangle AC’B)}{(B’C’B)} = \dfrac{(\triangle AB’C)}{(\triangle B’C’C)}$
$\Rightarrow \dfrac{AB}{B’B} = \dfrac{AC}{C’C}$.

Notemos que $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$, $\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$ y $\dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$ son equivalentes.

$\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$
$\Leftrightarrow \dfrac{AB’ + B’B}{B’B} = \dfrac{AC’ + C’C}{C’C}$
$\Leftrightarrow \dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$

$\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$, equivale a
$\dfrac{AB’ + B’B}{AB’} = \dfrac{AC’ + C’C}{AC’}$
$\Leftrightarrow \dfrac{B’B}{AB’} = \dfrac{C’C}{AC’}$
$\Leftrightarrow \dfrac{AB’}{B’B} = \dfrac{AC’}{C´C}$.

Para la parte $ii)$ trazamos una paralela a $AB$ por $C’$ que interseca a $BC$ en $D$, por la parte $i)$, se cumple
$\dfrac{AC}{AC’} = \dfrac{BC}{BD}$.

Figura 5

Como $\square B’BDC$ es paralelogramo $BD = B’C’$
$\Rightarrow \dfrac{AC}{AC’} = \dfrac{BC}{B’C’}$.

$\blacksquare$

Reciproco del teorema de Tales.

Teorema 2, reciproco del teorema de Tales. Sean $\triangle ABC$, $B’$ y $C’$ en $AB$ y $AC$ respectivamente tales que, $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$ o $\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$ o $\dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$, entonces $B’C’ \parallel BC$.

Demostración. Supongamos que $B’C’$ y $BC$ no son paralelas, sea $D \in AC$ tal que $B’D \parallel BC$, por el teorema de Tales, $\dfrac{AB}{B’B} = \dfrac{AC}{DC}$.

Figura 6

Pero por hipótesis $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$, y por transitividad
$\dfrac{AC}{DC} = \dfrac{AC}{C’C}$
$\Rightarrow DC = C’C \Rightarrow D = C’ \Rightarrow B’C’ \parallel BC$.

Por la equivalencia entre las expresiones $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$, $\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$ y $\dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$,
queda demostrado el teorema.

$\blacksquare$

Teorema de la bisectriz

Teorema 3, de la bisectriz. Las bisectrices interna y externa del ángulo de un triángulo dividen al lado opuesto en segmentos proporcionales a los otros dos lados del triángulo.

Demostración. Consideremos un triángulo $\triangle ABC$ y la bisectriz interior de $A$, la cual interseca a $BC$ en $D$.

Trazamos la paralela a $AD$ por $C$, y sea $E$ la intersección de la extensión de $AB$ con la paralela.

Figura 7

Como $AD \parallel CE$ entonces $\angle BAD = \angle AEC$ por ser ángulos correspondientes entre paralelas y $\angle DAC = \angle ECA$ por ser ángulos alternos internos entre paralelas.

Ya que $AD$ es bisectriz de $A$ entonces $\angle BAD = \angle DAC$ y por lo tanto $\angle AEC = \angle ECA$
$\Rightarrow \triangle ACE$ es isósceles, es decir, $AC = AE$.

Aplicando el teorema de Tales a $\triangle BCE$ tenemos que
$\dfrac{BD}{DC} = \dfrac{AB}{AE} = \dfrac{AB}{AC}$.

$\blacksquare$

Definición. Una ceviana es un segmento que tiene extremos en el vértice de un triángulo y en el lado opuesto a dicho vértice.

Reciproco del teorema de la bisectriz

Teorema 4, reciproco del teorema de la bisectriz. Si una ceviana divide internamente al lado de un triángulo en segmentos proporcionales a los otros lados del triángulo entonces es la bisectriz interna del ángulo por donde pasa.

Demostración. Sea $\triangle ABC$ y $AD$ con $D \in BC$ tal que $\dfrac{AB}{AC} = \dfrac{BD}{DC}$.

Extendemos $AB$ del lado de $A$ hasta $E$ talque $AE = AC$ (figura 7), como $\triangle AEC$ es isósceles entonces
$\begin{equation} \angle AEC = \angle ECA. \end{equation}$

En el triángulo $\triangle BCE$ tenemos que $\dfrac{AB}{AE} = \dfrac{BD}{DC}$,
por el reciproco del teorema de Tales, $AD \parallel EC$,
$\Rightarrow \angle BAD = \angle AEC$, por ser ángulos correspondientes,
$\Rightarrow \angle DAC = \angle ECA$, por ser ángulos alternos internos.

Por $(3)$ se sigue que $\angle BAD = \angle DAC$, por lo tanto, $AD$ es la bisectriz interna de $A$.

$\blacksquare$

El caso para la bisectriz exterior se deja como ejercicio.

Construcciones

Problema. Dados dos segmentos y un segmento unitario, construye el producto y el cociente de los segmentos dados.

Solución. Sean $a$ y $b$ la magnitud de los segmentos dados.

Sea $AB$ el segmento unitario, extendemos $AB$ hasta $B’$ tal que $BB’ = a$.

Levantamos sobre $AB$ en $A$ un segmento $AC = b$, unimos $B$ con $C$ y trazamos por $B’$ la paralela a $BC$.

Sea $C’$ la intersección de $AC$ con la paralela trazada, por el teorema de Tales aplicado a $\triangle AB’C’$, $\dfrac{AB}{BB’} = \dfrac{AC}{CC’} $.
$\Rightarrow AB \times CC’ = AC \times BB’ $
$\Rightarrow CC’ = ab$.

Figura 8

Para el cociente seguimos el mismo procedimiento, pero esta vez con $AB = a$ y $BB’ = 1$, por el teorema de Tales obtendremos
$a = \dfrac{b}{CC’} \Rightarrow CC’ = \dfrac{b}{a}$.

Figura 9

$\blacksquare$

Más adelante…

En la siguiente entrada y con la ayuda del Teorema de Tales veremos otra herramienta importante en el estudio de la geometría, los criterios de semejanza de triángulos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que la suma de las distancias de un punto interior a los lados de un triangulo equilátero es constante. Este resultado es conocido como teorema de Viviani.
Figura 10
  1. $i)$ Muestra que si dos rectas $l_{1}$ y $l_{2}$ son transversales a tres paralelas $AA’$, $BB’$ y $CC’$ (figura 11), entonces $\dfrac{AB}{BC} = \dfrac{A’B’}{B’C’}$.
    $ii)$ Recíprocamente si $\dfrac{AB}{BC} = \dfrac{A’B’}{B’C’}$ y dos de las tres rectas $AA’$, $BB’$, $CC’$son paralelas, entonces las tres rectas son paralelas.
Figura 11
  1. Usando el teorema de Tales,
    $i)$ muestra que el segmento que une puntos medios de dos lados de un triangulo es paralelo e igual a la mitad del tercer lado,
    $ii)$ recíprocamente muestra que si una recta pasa por el punto medio de un triangulo y es paralela a un segundo lado entonces pasa por el punto medio del tercer lado.
  2. Prueba que un segmento que pasa por el vértice de un triangulo divide externamente al lado opuesto en segmentos proporcionales a los restantes lados del triangulo si y solo si es la bisectriz exterior del ángulo.
Figura 12
  1. Divide un segmento dado en una razón dada.
  2. Divide un segmento dado en $n$ partes iguales.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Desigualdad del triángulo y lugar geométrico

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión estudiaremos una propiedad muy importante de los triángulos, la desigualdad del triángulo que básicamente nos dice que la distancia mas corta entre dos puntos es el segmento de recta que los une, también veremos lo que es un lugar geométrico y mostraremos un par de ejemplos importantes.

Desigualdad del triángulo

Proposición 1. En todo triángulo al mayor de los lados se opone el mayor de los ángulos.

Demostración. Sea $\triangle ABC$ tal que $AB > AC$, debemos mostrar que $\angle C > \angle B$.

Figura 1

Como $AB > AC$, podemos construir un punto $D \in AB$ tal que $AD = AC$, ya que $\triangle ADC$ es isósceles, por la proposición de la entrada anterior, se cumple $\angle CDA = \angle ACD$, de aquí se sigue que:

$\begin{equation} \angle C = \angle ACB > \angle ACD = \angle DCA. \end{equation}$

Como $\angle ADC$ es un ángulo exterior de $\triangle DBC$, entonces $\angle ADC$ es mayor que los ángulos internos de $\triangle DBC$, no adyacentes a él, en particular

$\begin{equation} \angle ADC > CBD = \angle B. \end{equation}$

De $(1)$ y $(2)$ se sigue que $\angle C > \angle B$.

$\blacksquare$

Corolario. En todo triángulo el ángulo mayor es opuesto al lado mayor.

Demostración. Sea $\triangle ABC$ tal que $\angle A > \angle B$, por demostrar que $BC > AC$. Supongamos lo contrario.

Figura 2

Caso 1. Si $BC = AC$, entonces $\triangle ABC$ es isósceles por lo que $\angle A = \angle B$, lo que es una contradicción a nuestra hipótesis.

Caso2. Si $BC < AC$, entonces por la proposición anterior $\angle B > \angle A$, esto nuevamente contradice la hipótesis.

Por lo tanto, no queda otra opción más que $\angle A > \angle B$.

$\blacksquare$

Proposición 2. Si dos lados de un triángulo son iguales a dos lados de un segundo triángulo, pero el ángulo comprendido entre el primer par de lados es mayor que el ángulo formado por los lados del segundo triangulo, entonces el lado restante del primer triángulo será mayor al tercer lado del segundo triangulo.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $AC = A’C’$ y $\angle A > \angle A’$, por demostrar que $BC > B’C’$.

Figura 3

Sobre $A’B’$ y tomando como vértice $A’$ construimos un ángulo igual a $\angle A$, y construimos $D$ tal que $A’D = AC$, entonces por criterio LAL, $\triangle ABC \cong \triangle A’B’D$ por lo que $B’D = BC$.

Notemos que $\triangle C’A’D$ es isósceles, entonces $\angle DC’A = \angle A’DC’$.

Ahora en $\triangle DC’B’$ tenemos $\angle DC’B’ = \angle A’C’B’ + \angle DC’A$,
$\Rightarrow \angle DC’B’ > \angle DC’A = \angle A’DC’$.

Pero $\angle A’DC’ = \angle A’DB’ + \angle B’DC’$,
$\Rightarrow \angle A’DC’ > \angle B’DC’$.

Por transitividad, $\angle DC’B’ > \angle B’DC’$.

Aplicando el corolario obtenemos $B’D > B’C’$, pero $B’D = BC$,
$\Rightarrow BC > B’C’$.

$\blacksquare$

Teorema 1, desigualdad del triángulo. Para todo triangulo se cumple que la suma de cualesquiera dos de sus lados es mayor al lado restante.

Demostración. Sea $\triangle ABC$, sobre la recta que pasa por $B$ y $C$, construimos un punto $D$ tal que $CD = AC$.

Figura 4

Como $\triangle ACD$ es isósceles, $\angle CAD = \angle ADC$, entonces en $\triangle ABD$ tenemos $\angle BAD > \angle CAD = \angle ADC = \angle ADB$, por el corolario anterior $BD > AB$.

Pero $BD = BC + CD = BC + AC$, por lo tanto, $AC + BC > AB$.

Las otras desigualdades, $AB + BC > AC$ y $AB + AC > BC$, se muestran de manera similar.

$\blacksquare$

El reciproco de este teorema también es cierto y lo mostramos a continuación.

Construcción de un triángulo y un ángulo

Teorema 2. Si $a$, $b$ y $c$ son tres números positivos tales que $a + b > c$, $a + c > b$ y $b + c > a$, entonces es posible construir un triángulo de lados $a$, $b$ y $c$.

Demostración. Construyamos un segmento $BC$ de longitud $a$, trazamos una circunferencia con centro en $B$ y radio $c$ $(B, c)$, trazamos otra circunferencia con centro en $C$ y radio $b$ $(C, b)$.

$(B, c)$ y $(C, b)$ se intersecan en dos puntos, sea $A$ uno de estos puntos. $AB = c$ por ser radio de $(B, c)$, $AC = b$ por ser radio de $(C, b)$ y $BC = a$ por construcción.

Figura 5

Notemos que si $(B, c)$ y $(C, b)$ se intersecaran en un solo punto entonces la intersección estaría sobre $BC$ o su extensión, y en tal caso se tendría alguna de las siguientes igualdades
$a = b + c$, $b = a + c$ o $c = a + b$, figura 6.

Figura 6

Y si $(B, c) \cap (C, b) = \varnothing$, entonces alguna de las cantidades seria mayor que la suma de las otras dos, $a > b + c$, $b > a + c$ o $c > a + b$, figura 7, lo que sería una contradicción a nuestras hipótesis.

Figura 7

Por lo tanto, $\triangle ABC$ es el triángulo buscado.

$\blacksquare$

Problema. Sobre una recta dada construir un ángulo igual a un ángulo dado.

Solución. Sea $\angle AOB$ el ángulo dado y $l$ la recta dada.

Con centro en $O$ y radio arbitrario $r > 0$ trazamos una circunferencia $(O, r)$ que corte a $OA$ en $C$ y a $OB$ en $D$.

Figura 8

Tomamos $O’ \in l$ y construimos una circunferencia con centro en $O’$ y radio $r$, $(O’, r)$, tomamos una de las intersecciones de $l$ con $(O’, r)$, digamos $D’$, trazamos otra circunferencia con centro en $D’$ y radio $CD$, $(D’, CD)$, sea $C’$ una de las intersecciones de $(O’, r)$ con $(D´, CD)$, entonces por criterio LLL $\triangle COD \cong \triangle C’O’D’$

Por lo tanto, $\angle AOB = \angle C’O’D’$.

$\blacksquare$

Lugar geométrico

Un lugar geométrico es un conjunto de puntos que cumplen un conjunto de condiciones dadas. Para probar que una figura geométrica es un lugar geométrico por lo general la prueba se divide en dos partes.

  • Probar que todos los puntos que satisfacen las condiciones pertenecen a la figura.
  • Probar que todos los puntos que pertenecen a la figura satisfacen las condiciones.

Teorema 3. El lugar geométrico de los puntos que equidistan a dos puntos dados, es la mediatriz del segmento que une los puntos dados.

Demostración. Sean $AB$ un segmento dado, $M$ el punto medio y $m$ la mediatriz de $AB$ respectivamente.

Figura 9

Primero vemos que los puntos en la mediatriz de $AB$  equidistan de $A$ y $B$.

Sea $P \in m$, por definición de mediatriz, $m \cap AB = M$ y $l \perp AB$.

Entonces por criterio LAL (lado, ángulo, lado), $\triangle PMA \cong \triangle PMB$, en consecuencia, $PA = PB$.

$\blacksquare$

Ahora veamos que todos los puntos que equidistan de $A$ y $B$, son los puntos en la mediatriz $m$ de $AB$.

Sea $P$ un punto que satisface las condiciones dadas, entonces $PA = PB$ y así $\triangle APB$ es isósceles, en la entrada anterior vimos que la mediatriz de un triángulo isósceles, pasa por el vértice que comparten los lados iguales, por lo tanto, $P \in m$.

$\blacksquare$

Definición. Definimos la distancia de un punto $P$ a una recta $l$ como la distancia entre $P$ y el pie de la perpendicular trazada desde $P$ a $l$.

Teorema 4. El lugar geométrico de los puntos que equidistan a dos rectas que se intersecan son las bisectrices de los ángulos formados por las rectas.

Demostración. Sean $l_{1}$ y $l_{2}$, dos rectas que se intersecan en $O$, consideremos $b_{1}$ la bisectriz de uno de los ángulos formados por $l_{1}$ y $l_{2}$, digamos $\alpha$, y sea $b_{2}$ la bisectriz del ángulo suplementario a $\alpha$.

Primero veamos que todos los puntos en la bisectriz de $\alpha$ equidistan a $l_{1}$ y $l_{2}$.

Figura 10

Sea $P \in b_{1}$, y sean $A$ y $B$ las intersecciones de las perpendiculares trazadas desde $P$ a $l_{1}$ y $l_{2}$ respectivamente.

Como $b_{1}$ es bisectriz, $\angle AOP = \angle POB$, además $\angle PAO = \angle OBP = \dfrac{\pi}{2}$, como la suma de los ángulos internos de todo triángulo es constante entonces $\angle OPA = \angle BPO$.

Entonces en los triángulos $\triangle PAO$ y $\triangle PBO$, $\angle AOP = \angle POB$, $\angle OPA = \angle BPO$ y $OP$ es un lado común.

Por criterio LAL, $\triangle PAO \cong \triangle PBO$, por lo tanto $PA = PB$, así la distancia de $P$ a $l_{1}$ y a $l_{2}$ es la misma.

De manera análoga podemos ver que los puntos en $b_{2}$ son equidistantes a $l_{1}$ y $l_{2}$.

$\blacksquare$

Ahora mostremos que todos los puntos que son equidistantes a $l_{1}$ y $l_{2}$ pertenecen a $b_{1}$ o $b_{2}$.

Sea $P$ un punto que satisface que $PA = PB$, donde $A$ y $B$ son los pies de las perpendiculares trazadas desde $P$ a $l_{1}$ y $l_{2}$ respectivamente.

Figura 11

Entonces $\triangle PAO$ y $\triangle PBO$ son triángulos rectángulos donde la hipotenusa es la misma, y por hipótesis tienen un cateto igual, $PA = PB$, por criterio hipotenusa – cateto $\triangle PAO \cong \triangle PBO$, en particular $\angle AOP =\angle POB$.

Notemos que las dos rectas dividen al plano en cuatro regiones distintas y en cada región podemos hacer el mismo procedimiento, pero dos rectas que se intersecan solo tienen dos bisectrices distintas.

Por lo tanto si $PA = PB$, entonces $P \in b_{1}$ o $P \in b_{2}$.

$\blacksquare$

Más adelante…

En al siguiente entrada estudiaremos a los paralelogramos y sus propiedades.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $AC = A’C’$ y $BC > B’C’$, muestra que $\angle A > \angle A’$.
  2. Sea $\square ABCD$ un cuadrado y $O$ un punto en el plano muestra que $OA < OB + OC + OD$.
  3. Sean $\triangle ABC$ y $A’$ un punto en el interior del triángulo, muestra que $AB + AC > A’B + A’C$ y que $\angle BA’C > \angle BAC$.
  4. En un poblado situado junto a un rio, cuyo borde es totalmente recto, hay un incendio en un punto $A$, la estación de bomberos se encuentra en un punto $B$ del mismo lado del río donde se dio el incendio, los bomberos necesitan pasar primero por el río para abastecerse de agua. ¿Qué punto $P$ en el borde del río hace que el trayecto $BP + PA$ sea mínimo?
  5. Muestra que si dos circunferencias se intersecan en un solo punto entonces el punto pertenece al segmento que une los centros o a su extensión.
  6. $i)$ Dados una recta y un punto en ella construye la perpendicular a la recta por el punto dado.
    $ii)$ Dados una recta y un punto fuera de ella construye la paralela a la recta por el punto dado.
    $iii)$ Dados una recta y un punto fuera de ella construye la perpendicular a la recta por el punto dado.
  7. $i)$ Dados una recta y un numero $a > 0$ encuentra el el lugar geométrico de los puntos cuya distancia a la recta es $a$.
    $ii)$ ¿Cuál es el lugar geométrico de los puntos cuya distancia a una circunferencia dada $(O, r)$ es una constante dada $b > 0$?

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 9-12, 44-54.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 16-18.
  • Geometría interactiva
  • Geometry Help

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»