Archivo de la etiqueta: reales

Álgebra Superior II: Inmersión de R en R[x], grado y evaluación de polinomios

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada comenzaremos mostrando que podemos usar «la notación de siempre» para los polinomios, usando un símbolo $x$ y potencias. Después de eso, hablaremos del grado de un polinomio y de cómo se comporta con las operaciones que hemos definido. Finalmente, haremos una distinción importante entre los polinomios, y las funciones que inducen.

Como recordatorio, en la entrada anterior definimos a los polinomios y sus operaciones de suma y multiplicación. Para ello, construimos a los polinomios como sucesiones en las que casi todos los términos son $0$. Vimos que bajo estas operaciones se obtiene un dominio entero, es decir, un anillo conmutativo con unidad multiplicativa en donde se vale la regla de cancelación.

Regresando a la notación con $x$ y potencias

Ya dimos cimientos sólidos para construir al anillo de polinomios con coeficientes reales y sus operaciones. Es momento de regresar a la «notación usual» usando $x$ y sus potencias, pues será más práctica en lo que viene.

Para empezar, notemos que a cada real $r$ podemos asociarle el polinomio $(r,\overline{0})$. Esta es una asociación en la que las operaciones de suma y producto de $\mathbb{R}$ se corresponden con las de $\mathbb{R}[x]$.

Observa además que tras esta asociación, el real $0$ es el polinomio $(\overline{0})$ y el real $1$ es el polinomio $(1,\overline{0})$, así que la asociación respeta los neutros de las operaciones. De manera similar se puede mostrar que la asociación respeta inversos aditivos y multiplicativos.

Por esta razón, para un real $r$ podemos simplemente usar el símbolo $r$ para el polinomio $(r,\overline{0})$, y todas las operaciones siguen siendo válidas. Para expresar a cualquier otro polinomio, nos bastará con introducir un símbolo más, y potencias.

Definición. Definimos $x$ como el polinomio $\{0,1,\overline{0}\}$. Para cada natural $n$ definimos $x^n$ como el polinomio $\{a_n\}$ tal que $a_j=1$ si $j=n$ y $a_j=0$ para $j\neq n$.

Ejemplo 1. La definición de arriba implica $x^0=1$ y $x^1=x$. El polinomio $x^3$ es el polinomio $$(0,0,0,1,\overline{0}).$$

$\triangle$

Ejemplo 2. Hagamos la multiplicación de los polinomios $x^2$ y $x^3$. Estos son, por definición, $(0,0,1,\overline{0})$ y $(0,0,0,1,\overline{0})$. Hagamos esta multiplicación con el método de la tabla:

$0$$0$$1$
$0$$0$$0$$0$
$0$$0$$0$$0$
$0$$0$$0$$0$
$1$$0$$0$$1$
Multiplicación de $x^2$ y $x^3$.

El producto es el polinomio $(0,0,0,0,0,1,\overline{0})$, que por definición es el polinomio $x^5$.

$\triangle$

En general, para $m$ y $n$ enteros no negativos se tiene que $x^mx^n = x^{m+n}$, como puedes verificar de tarea moral.

Ya que tenemos al símbolo $x$ y sus potencias, necesitaremos también agregar coeficientes para poder construir cualquier polinomio.

Definición. Dados un polinomio $a:=\{a_n\}$ y un real $r$, definimos al polinomio $ra$ como la sucesión $$ra:=\{ra_n\},$$ es decir, aquella obtenida de multiplicar cada elemento de $a$ por $r$.

Ejemplo 3. Si tomamos al polinomio $$a=\left(0,\frac{1}{2},0,\frac{1}{3},\overline{0}\right)$$ y al real $r=6$, tenemos que $$6a=\left(0,3,0,2,\overline{0}\right).$$

Observa que $3x$ es el polinomio $(0,3,\overline{0})$, que $2x^3$ es el polinomio $(0,0,0,2,\overline{0})$ y que la suma de los dos es precisamente el polinomio $6a$, de modo que podemos escribir $$6a=3x+2x^3.$$

Si tomamos cualquier polinomio $a$ y al real $ 0$, tenemos que $$0a=\{0,0,0,0,\ldots\}=(\overline{0}),$$ es decir, $0a$ es el polinomio cero.

$\triangle$

La siguiente proposición es sencilla y su demostración queda como tarea moral.

Proposición. Para cualquier polinomio $a=\{a_n\}$ en $\mathbb{R}[x]$, los reales $a_0,a_1,\ldots$ son los únicos reales tales que $$a=a_0+a_1x+a_2x^2+a_3x^3+\ldots.$$

Todo lo que hemos discutido en esta sección permite que ahora sí identifiquemos formalmente al polinomio $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ con la expresión $$a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\ldots$$

y que realicemos las operaciones en $\mathbb{R}[x]$ «como siempre», es decir, sumando coeficientes de términos iguales y multiplicando mediante la distribución y reagrupamiento. Así, a partir de ahora ya no usaremos la notación de sucesiones y simplemente escribiremos a los polinomios con la notación de $x$ y sus potencias. También, favoreceremos llamarles a los polinomios $p(x),q(x),r(x),\ldots$ en vez de $a,b,c,\ldots$.

Ejercicio. Realiza la operación $6(\frac{1}{2}+x)(1+3x^2)$.

Solución. Por asociatividad, podemos hacer primero la primer multiplicación, que da $3+6x$. Luego, multiplicamos este polinomio por el tercer término. Podemos usar las propiedades de anillo para distribuir y agrupar, o bien, podemos seguir usando el método de la tabla.

Cuando hacemos lo primero, queda
\begin{align*}
(3+6x)(1+3x^2)&=3+9x^2+6x+18x^3\\
&=3+6x+9x^2+18x^3.
\end{align*}

Si hacemos lo segundo, tendríamos que hacer la siguiente tabla (¡cuidado con dejar el cero correspondiente al término $x$ del segundo factor!)

$3$$6$
$1$$3$$6$
$0$$0$$0$
$3$$9$$18$
Multiplicación de dos polinomios

Leyendo por diagonales, el resultado es $$3+6x+9x^2+18x^3,$$ tal y como calculamos con el primer método.

$\triangle$

Grado de polinomios

Vamos a definir «grado» para todo polinomio que no sea el polinomio $0$. Es muy importante recordar que el polinomio $0$ no tiene grado.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es de grado $n$ si es de la forma $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ para reales $a_0,\ldots,a_n$ y $a_n\neq 0$. Al grado de $p(x)$ lo denotamos por $\deg(p(x))$.

Por la discusión de la sección anterior, el grado está bien definido. En términos de la sucesión correspondiente al polinomio, su grado es el mayor entero que sea subíndice de una entrada no cero.

Ejemplo 1. El grado del polinomio $p(x)=3$ es $0$. De hecho, todo polinomio que viene de un real tiene grado $0$. Excepto el polinomio $0$.

El grado del polinomio $q(x)=1+2x^3+3x^7$ es $7$.

Sin embargo, el polinomio $r(x)=0$ no tiene grado, pues es el polinomio $0$.

Notemos que el polinomio $s(x)=2+4x$ se escribe como $(2,4,\overline{0})$ en notación de sucesión. La entrada $0 $ es $2$, la entrada $1$ es $4$ y el resto de las entradas son $0$. El grado de $s(x)$ es $1$, que es precisamente la posición de la última entrada distinta de $0$ en su notación de sucesión.

$\triangle$

El siguiente resultado habla de cómo interactúa el grado con operaciones de polinomios.

Proposición. Si $p(x)$ y $q(x)$ son polinomios en $\mathbb{R}[x]$ distintos de cero, entonces:

  • El grado del producto cumple $$\deg(p(x)q(x)) = \deg(p(x))+\deg(q(x)).$$
  • El grado de la suma cumple $$\deg(p(x)+q(x))\leq \max(\deg(p(x)),\deg(q(x))).$$
  • Si $\deg(p(x))>\deg(q(x))$, entonces $$\deg(p(x)+q(x))=\deg(p(x)).$$

Demostración. Supongamos que los grados de $p(x)$ y $q(x)$ son, respectivamente, $m$ y $n$, y que $p(x)$ y $q(x)$ son
\begin{align*}
p(x)&=a_0+a_1x+\ldots+a_mx^m\\
q(x)&=b_1+b_1x+\ldots+b_nx^n.
\end{align*}
La demostración de la primera parte ya la hicimos en la entrada anterior. En la notación que estamos usando ahora, vimos que el coeficiente de $x^{m+n}$ en $p(x)q(x)$ es justo $a_mb_n\neq 0$, y que este es el término de mayor exponente.

Para la segunda y tercera partes, podemos asumir que $m\geq n$. Tenemos que $p(x)+q(x)$ es $$\left(\sum_{i=0}^n (a_i+b_i)x^i\right) + a_{n+1}x^{n+1}+\ldots+a_mx^m.$$ De aquí, se ve que el máximo exponente que podría aparecer es $m$, lo cual prueba la segunda parte.

Para la tercer parte, cuando $m>n$ tenemos que el coeficiente de $x^m$ es $a_m\neq 0$, y que es el término con mayor exponente. Así, el grado de la suma es $m$.

$\square$

La hipótesis adicional del tercer punto es necesaria, pues en la suma de dos polinomios del mismo grado, es posible que «se cancele» el término de mayor grado.

Ejemplo 2. El producto de los polinomios $1+x+x^2+x^3$ y $1-x$ es $1-x^4$. Esto concuerda con lo que esperábamos de sus grados. El primero tiene grado $3$, el segundo grado $1$ y su producto grado $4=3+1$.

La suma de los polinomios $1+\pi x^3 + \pi^2 x^5$ y $1-\pi x^3$ es $2+\pi^2x^5$, que es un polinomio de grado $5$, como esperaríamos por la tercer parte de la proposición.

La suma de los polinomios $4x^5+6x^7$ y $6x^5+4x^7$ es $10x^5+10x^7$. Es de grado $7$, como esperaríamos por la segunda parte de la proposición.

Sin embargo, en la suma de polinomios el grado puede disminuir. Por ejemplo, los polinomios $1+x^3-x^7$ y $1+x^2+x^7$ tienen grado $7$, pero su suma es el polinomio $2+x^2+x^3$, que tiene grado $3$.

$\triangle$

Evaluación de polinomios e introducción a raíces

Es importante entender que hay una diferencia entre un polinomio, y la función que induce. Por la manera en que definimos a los polinomios, «en el fondo» son sucesiones, incluso con la nueva notación de $x$ y potencias. Sin embargo, cualquier polinomio define una función.

Definición. Si tenemos un polinomio $$p(x)=a_0+a_1x+\ldots+a_nx^n$$ en $\mathbb{R}$, éste define una función aplicar $p$ que es una función $f_p:\mathbb{R}\to \mathbb{R}$ dada por $$f_p(r)=a_0+a_1r+a_2r^2+\ldots+a_nr^n$$ para todo $r\in \mathbb{R}$.

Ejemplo 1. El polinomio $p(x)=3x^2+4x^3$ induce a la función $f_p:\mathbb{R}\to \mathbb{R}$ tal que $f_p(r)=3r^2+4r^3$. Tenemos, por ejemplo, que $$f_p(1)=3\cdot 1^2 + 4\cdot 1^3 = 7$$ y que $$f_p(2)=3\cdot 2^2 + 4\cdot 2^3=44.$$

$\triangle$

Como las reglas de los exponentes y la multiplicación por reales funciona igual en $\mathbb{R}$ que en $\mathbb{R}[x]$, la evaluación en un real $r$ obtiene exactamente lo mismo a que si simplemente reemplazamos $x$ por $r$ y hacemos las operaciones. Por ello, usualmente no distinguimos entre $p(x)$ y $f_p$, su función evaluación, y para un real $r$ usamos simplemente $p(r)$ para referirnos a $f_p(r)$.

De manera totalmente análoga, podemos pensar a $p(x)$ como una función $p:\mathbb{C}\to \mathbb{C}$. También, como comentamos al inicio, podemos definir a los polinomios con coeficientes complejos, es decir a $\mathbb{C}[x]$, y pensarlos como funciones.

Es momento de introducir una definición clave para lo que resta del curso.

Definición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ o $\mathbb{C}[x]$ y sea $r$ un real o complejo. Decimos que $r$ es una raíz de $p(x)$ si $p(r)=0$.

Ejemplo 2. El polinomio $p(x)=3$ no tiene raíces, pues para cualquier real o complejo $r$ se tiene $p(r)=3\neq 0$. Por otro lado, cualquier real o complejo es raíz del polinomio $z(x)=0$.

El polinomio $q(x)=x^2+1$ no tiene raíces en $\mathbb{R}$ pues $q(r)\geq 1$ para cualquier real $r$. Pero sí tiene raíces en $\mathbb{C}$, pues $$q(i)=i^2+1=-1+1=0.$$

El polinomio $s(x)=x(x-1)(x-1)=x^3-2x^2+x$ tiene como únicas raíces a $ 0$ y $1$, lo cual se puede verificar fácilmente antes de hacer la multiplicación. Esto debería darnos la intuición de que conocer a las raíces de un polinomio nos permite factorizarlo y viceversa. Esta intuición es correcta y la formalizaremos más adelante.

$\triangle$

Cuando hablamos de los números complejos, vimos cómo obtener las raíces de los polinomios de grado $2$, y de los polinomios de la forma $x^n-a$ en $\mathbb{C}$. La mayor parte de lo que haremos de aquí en adelante en el curso será entender a las raíces reales y complejas de más tipos de polinomios.

Más adelante…

Ya que hemos formalizado la notación estándar que conocemos de los polinomios, su estudio podrá ser más cómodo, hacemos énfasis en que casi todas las definiciones que dimos en esta sección se apoyaros simplemente en un uso adecuado de la notación; por lo que no hay que perder de vista que en el fondo, los polinomios siguen siendo sucesiones de números, y que el símbolo $x$ solo es una forma de representar la sucesión $(0,1,\overline{0})$.

Aun así, hemos justificado que este cambio de notación no tiene nada que envidiar a la notación original, por lo que en las siguientes entradas, ocuparemos la notación más familiar, lo cual será una pieza clave, para hacer más legibles las demostraciones en las siguientes entradas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Pasa el polinomio $(0,0,0,0,4,0,3,\overline{0})$ a notación con $x$ y potencias. Luego, pasa el polinomio $1-x^3+x^6-x^9$ a notación de sucesión. Suma ambos polinomios y exprésalos en notación con $x$. Multiplícalos usando distribución y agrupamiento. Multiplícalos usando una tabla.
  2. Prueba usando la definición de multiplicación y de $x^n$ que para $m$ y $n$ enteros no negativos se tiene que $x^{m+n}= x^m x^n$.
  3. Toma $P_1(x),\ldots,P_m(x)$ polinomios en $\mathbb{R}[x]$ de grado $n_1,\ldots,n_m$ respectivamente. ¿Cuál es el grado de $P_1(x)+\ldots+P_m(x)$? ¿Y el grado de $P_1(x)\cdot \ldots \cdot P_m(x)$?
  4. Usando distribución y agrupamiento, muestra que para cada entero positivo $n$ se cumple que $$(1-x)(1+x+x^2+\ldots+x^{n-1})=1-x^n.$$
  5. Justifica que si $r(x)$ es un polinomio y $f_r$ es la función aplicar $r$, entonces para cualesquiera polinomios $p(x)$ y $q(x)$, se tiene que $f_p+f_q=f_{p+q}$ y que $f_pf_q=f_{pq}$.

Para practicar la aritmética de polinomios, puedes ir a la sección correspondiente de Khan Academy.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Racionales y expansiones decimales

Por Claudia Silva

Introducción

En la entrada anterior hablamos acerca de cómo se construyen los números racionales y los números reales. A los números reales que no son racionales les llamamos irracionales. En esta entrada, queremos hablar de algunas formas en las que podemos determinar si un número es racional o irracional.

Expresión decimal de un racional

A los reales los construimos como clases de equivalencia de cierto tipo de sucesiones, pero otra forma de pensarlos es mediante su expresión decimal. Una forma de detectar la racionalidad o irracionalidad de un número es mediante su expresión decimal.

Lo primero que haremos en esta entrada será verificar la validez de la observación 88 del libro Álgebra Superior de Bravo, Rincón, Rincón. Para quienes tiene dificultades para ver los vídeos, pueden seguir la demostración del libro tal cual. Recuerden que pueden conseguir el libro de manera gratuita en la página Plaza Prometeo.

El resultado es el siguiente.

Proposición. Un número $r$ es racional si y sólo si tiene una expresión decimal que se vuelva periódica.

Lo haremos desglosando el «sí» y el «sólo sí» en dos vídeos separados.

La ida:

Demostración de que un número real es racional, entonces éste tiene una expresión decimal periódica

El regreso:

Un número real con expansión decimal periódica es racional

Ejercicios de determinar si un número es racional

Ahora, un par de ejemplos (éstos también vienen el libro, son el 126 y uno similar al 127):

Dos ejemplos del Teorema: un real es racional sii tiene expansión decimal periódica.

Por último, probaremos que $\sqrt7$ no es racional:

Demostración de que raíz de 7 no es racional.

Este último ejercicio se los dejo escrito, para los que no puedan ver el video con tanta facilidad:

Ejercicio de mostrar que raiz de 7 no es racional

Más ejemplos

Aquí en el blog puedes ver otros ejemplos en los que se usa la expansión decimal de un número y otros argumentos de bases numéricas.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Esbozo de construcción de los números racionales y reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la unidad pasada vimos la construcción de los números enteros a partir de los números naturales. Lo que hicimos fue considerar parejas de números naturales $(a,b)$ para las que dimos la relación $\sim$ definida por $(a,b)\sim (c,d)$ si y sólo si $a+d=b+c$, vimos que esta relación es de equivalencia. Dijimos que, aunque era incorrecto formalmente, convenía pensar a la pareja $(a,b)$ como $a-b$ (es incorrecto ya que no siempre se puede restar en $\mathbb{N}$).

La relación $\sim$, así definida, genera las clases de equivalencia $$\overline{(a, b)}=\lbrace (c, d)\in \mathbb{N}\times\mathbb{N} : a+d=b+c\rbrace$$ en $\mathbb{N}\times\mathbb{N}$. El conjunto $\mathbb{Z}$ lo construimos como el conjunto de todas estas clases de equivalencia. En él definimos las operaciones:

  • Suma: $\overline{(a,b)}+\overline{(c,d)}=\overline{(a+c,b+d)}$.
  • Producto: $ \overline{(a,b)}\overline{(c,d)}=\overline{(ac+bd,ad+bc)}$.

Vimos que estas operaciones están bien definidas. La suma es bastante natural. El producto parece algo artificial, pero se vuelve natural si pensamos en «multiplicar $a-b$ con $c-d$», pues $(a-b)(c-d)=(ac+bd)-(ad+bc)$. Recordemos que es una justificación informal, pero ayuda a entender la intuición.

Después, nos dedicamos a probar que con estas operaciones, suma y producto, el conjunto $\mathbb{Z}$ es un anillo conmutativo con $1$ en donde se vale cancelar. A partir de ahí empezamos a ver a $\mathbb{Z}$ desde el punto de vista de la teoría de números. Estudiamos el máximo común divisor, la relación de divisibilidad, el anillo de enteros módulo $n$, congruencias, ecuaciones en congruencias, teorema chino del residuo y mencionamos un poco de ecuaciones diofantinas.

Con eso terminamos la unidad de enteros, correspondiente al segundo segundo parcial del curso.

Las siguientes dos unidades contempladas por el temario oficial son:

  • Números complejos.
  • Anillo de polinomios.

Vale la pena hacer una observación. Típicamente tenemos la siguiente cadena de contenciones entre sistemas numéricos $$\mathbb{N}\subset \mathbb{Z}\subset \mathbb{Q} \subset \mathbb{R}\subset \mathbb{C}.$$

En las primeras dos unidades del curso hablamos de $\mathbb{N}$ y de $\mathbb{Z}$. De acuerdo a las contenciones anteriores, lo siguiente sería tratar a detalle los racionales $\mathbb{Q}$ y los reales $\mathbb{R}$. Sin embargo el temario oficial «se los salta». Esto es un poco raro, pero podría estar justificado en que estos sistemas numéricos se estudian en otros cursos del plan de estudios. Por ejemplo, $\mathbb{R}$ se estudia con algo de profundidad en los cursos de cálculo.

De cualquier forma nos va a ser muy útil mencionar, por lo menos por «encima», cómo hacer la construcción de $\mathbb{Q}$ y $\mathbb{R}$. La construcción de los números racionales ayuda a repasar la construcción de los enteros. En la construcción de los números reales nos encontraremos con propiedades útiles que usaremos, de manera continua, cuando hablemos de la construcción de los números complejos $\mathbb{C}$. Por estas razones, aunque no vayamos a evaluar, las construcciones de $\mathbb{Q}$ y $\mathbb{R}$, en el curso, las ponemos aquí para que las conozcas o las repases.

Motivación de construcción de los racionales

Los naturales no son suficientes para resolver todas las ecuaciones de la forma $$x+a=b,$$ pues si $a>b$ la ecuación no tiene solución en $\mathbb{N}$ y esta fue nuestra motivación para construir los números enteros. En $\mathbb{Z}$ todas estas ecuaciones tienen solución. Sin embargo, en $\mathbb{Z}$ la ecuación $$ax=b$$ tiene solución si y sólo si $a$ divide a $b$ (por definición se tiene que $a$ divide a $b$ si y sólo si $b$ es un múltiplo de $a$), pero no siempre sucede esto. Por ejemplo, $3x=7$ no tiene solución en $\mathbb{Z}$.

Construcción de los racionales

Para la construcción de los racionales consideremos el conjunto $\mathbb{Z}\times \mathbb{Z}\setminus\{0\}$ y sobre él la relación $\sim$ definida por $(a,b)\sim (c,d)$ si y sólo si $ad=bc$. Resulta que $\sim$ es relación de equivalencia, así que, para cada pareja $(a,b)$ denotaremos como $\overline{(a,b)}$ a su clase de equivalencia. En este caso $$\overline{(a, b)}=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\} : an=bm\rbrace.$$

Observa que esta construcción se parece mucho a la que hicimos para $\mathbb{Z}$, aunque ahora nos basamos en el producto en $\mathbb{Z}$ (antes era la suma en $\mathbb{N}$). De nuevo, una forma de pensar bastante intuitiva (aunque formalmente incorrecta), es pensar a cada clase $\overline{(a,b)}$ «como $\frac{a}{b}$». Nota que estamos considerando sólo aquellas parejas $(a,b)$ tales que $b\neq 0$.

De esta forma $\mathbb{Q}$ es el conjunto de clases de equivalencia de las parejas $(a,b)$ tales que $b\neq 0$, en símbolos, $$\mathbb{Q}:=\{\overline{(a,b)}: a\in \mathbb{Z}, b\in \mathbb{Z}\setminus\{0\}\}.$$

Operaciones y orden en los racionales

Vamos a definir las operaciones en $\mathbb{Q}$. Ahora el producto es «intuitivo» y la suma no tanto.

  • Suma: $\overline{(a,b)} + \overline{(c,d)} = \overline{(ad+bc,bd)}$.
  • Producto: $\overline{(a,b)}\overline{(c,d)}=\overline{(ac,bd)}$.

La suma se vuelve mucho más intuitiva si primero pensamos en nuestra interpretación (informal) de $\overline{(a,b)}$ como $\frac{a}{b}$ y luego, por lo que aprendimos en educación primaria sobre la suma de fracciones, vemos que $$\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}.$$

Ahora, para definir el orden en $\mathbb{Q}$, tomemos la pareja $(a,b)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}$. Tenemos que la clase $\overline{(a,b)}$ es

  • Cero si $a=0$,
  • Positiva si ambos ($a$ y $b$) son negativos o ninguno es negativo con el orden definido en $\mathbb{Z}$ y
  • Negativa si exactamente alguno ($a$ o $b$) es negativo con el orden definido en $\mathbb{Z}$.

Diremos que $\overline{(a,b)}>\overline{(c,d)}$ si $\overline{(a,b)}-\overline{(c,d)}$ es positiva.

Se puede probar que estas operaciones suma y producto, así como el orden están bien definidas (es decir que no dependen del representante que se tome).

Antes, de continuar, consideremos lo siguiente: un campo se puede pensar como un conjunto en el que están definidas la «suma» y la «multiplicación» tales que:

  • La suma es asociativa, conmutativa, tiene un neutro (el $0$) e inversos aditivos.
  • La multiplicación es asociativa, conmutativa, tiene un neutro (el $1$) y todo elemento distinto de $0$ tiene un inverso multiplicativo.
  • Se tiene la distributividad del producto sobre la suma $a(b+c)=ab+bc$.

En vista de lo anterior queremos mencionar que se puede probar lo siguiente:

Teorema. El conjunto $\mathbb{Q}$ con sus operaciones de suma y producto es un campo ordenado.

Retomando lo que hablamos del neutro para la multiplicación, en un campo, veamos un ejemplo.

Ejemplo. La clase $\overline{(c,c)}$ es el neutro multiplicativo en $\mathbb{Q}$, veamos:

Se tiene que $$\overline{(a, b)(c, c)} = \overline{(ac,bc)}=\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: acn=bcm\rbrace$$

y $\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: acn=bcm\rbrace=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: anc=bmc\rbrace$, pero $\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: anc=bmc\rbrace=\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: an=bm\rbrace=\overline{(a, b)}$. Por lo tanto $\overline{(a, b)(c, c)}=\overline{(a, b)}$. Nota que aquí estamos usando que el producto en $\mathbb{Z}$ es asociativo, conmutativo y que se pueden cancelar factores distintos de cero.

En $\mathbb{Q}$, el inverso multiplicativo de la clase $\overline{(a,b)}$ es $\overline{(b,a)}$, veamos:

Su producto es $$\overline{(ab,ba)}=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: abn=bam\rbrace$$ y $\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: abn=bam\rbrace=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: m=n\rbrace=\overline{(c, c)}$.

$\triangle$

Notación simple de racionales y ecuaciones aún sin solución

Vamos a denotar la clase de equivalencia $\overline{(a,b)}$ por $\frac{a}{b}$, a partir de lo cual nuestra interpretación de pensarlo así ya se vuelve formal. Se puede mostrar que todo lo que aprendimos de esta notación en la primaria se deduce de las propiedades de $\mathbb{Q}$.

La ecuación $$ax=b$$ tiene solución casi siempre, el único problema es si $a=0$. Pero si $a\neq 0$, la solución es única y es $x=\frac{b}{a}$.

El conjunto $\mathbb{Q}$ es bastante bueno algebraicamente, pero le falta todavía más para ser bueno para análisis y cálculo. Todavía tiene «bastantes hoyos»: en él no podemos probar, por ejemplo, el teorema del valor intermedio para funciones continuas. Así mismo, hay varias ecuaciones que todavía no tienen solución en $\mathbb{Q}$.

Ejercicio. La ecuación $x^2=3$ no tiene una solución en $\mathbb{Q}$.

Una forma de enunciar el resultado anterior es decir «$\sqrt{3}$ es irracional». Pero nota que es incorrecto enunciarlo así, pues para ponerle un nombre a $\sqrt{3}$, es necesario saber quién es, y justo el punto del ejercicio es que, tan sólo con $\mathbb{Q}$, no podemos definirlo.

Solución. Vamos a proceder por contradicción. Supongamos que la ecuación $x^2=3$ tiene una solución $p/q$ en los racionales. De esta forma,$(p/q)^2=3$. Multiplicando por $q^2$ en ambos lados, $p^2=3q^2$.

La factorización en primos del lado izquierdo tiene una cantidad par de $3$’s. La factorización en primos del lado derecho tiene una cantidad impar de $3$’s. Esto es una contradicción al teorema fundamental de la aritmética, por lo tanto, no existe $p/q$ solución racional de $x^2=3$.

$\triangle$

Reales y hoyos en los racionales

Para la construcción de los reales, ya no podemos proceder como le hemos estado haciendo, considerando simplemente parejas de números del sistema anterior y construyendo una relación de equivalencia sobre ellas. Lo que buscamos cuando damos el paso entre $\mathbb{Q}$ y $\mathbb{R}$ ya no es sólo que los números tengan «inversos aditivos» o «inversos multiplicativos», sino que «todos los conjuntos acotados por abajo tengan un mejor mínimo». Esto es lo que garantiza que se «llenen los hoyos» que tienen los racionales.

Entendamos el concepto de «hoyo»:

Definición. Sea $X$ un orden total $\le$ y $S$ un subconjunto de $X$, un ínfimo de $S$, en $X$, es un $r\in X$ tal que

  • $r\leq s$ para todo $s\in S$ y
  • si $t\leq s$ para todo $t\in S$, entonces $t\leq s$.

Definición. Un conjunto $X$ con un orden total $\le$ es completo si todo subconjunto $S$ de $X$, acotado inferiormente, tiene un ínfimo.

Ejemplo. El conjunto $\mathbb{Q}$ no es completo, pues el subconjunto $$S=\{x\in \mathbb{Q}: x^2\geq 3\}$$ está acotado inferiormente, pero no tiene un ínfimo en $\mathbb{Q}$ (su ínfimo es $\sqrt{3}$ y $\sqrt{3}$ no pertenece a $\mathbb{Q}$).

$\triangle$

Sucesiones de Cauchy y construcción de los reales

Hay varias formas de construir un sistema numérico que extienda a $\mathbb{Q}$ y que no tenga hoyos. Se puede hacer mediante cortaduras de Dedekind, mediante expansiones decimales o mediante sucesiones de Cauchy de números racionales. Todas estas construcciones son equivalentes. Daremos las ideas generales de la última.

Definición. Una sucesión $$\{x_n\}=\{x_1,x_2,x_3,\ldots\}$$ es de Cauchy si para todo $N$ existe un $M$ tal que si $m\geq M$ y $n\geq M$, entonces $|x_m-x_n|<\frac{1}{N}$. Denotaremos con $C(\mathbb{Q})$ al conjunto de todas las sucesiones de Cauchy de números racionales.

Construiremos una relación de equivalencia $\sim$ en $C(\mathbb{Q})$. Si tenemos dos de estas sucesiones:
\begin{align*}
\{x_n\}&=\{x_1,x_2,x_3,\ldots\} \quad \text{y}\\
\{y_n\}&=\{y_1,y_2,y_3,\ldots\},
\end{align*}

diremos que $\{x_n\}\sim \{y_n\}$ si para todo natural $N$ existe un natural $M$ tal que para $n\geq M$ tenemos que $$|x_n-y_n|<\frac{1}{N}.$$

Se puede probar que $\sim$ es una relación de equivalencia. Para cada sucesión $\{x_n\}$ de Cauchy usamos $\overline{\{x_n\}}$ para denotar a la clase de equivalencia de $\{x_n\}$. Por definición, el conjunto $\mathbb{R}$ es el conjunto de clases de equivalencia de $\sim$, en símbolos: $$\mathbb{R}:=\{\overline{\{x_n\}}: \{x_n\} \in C(\mathbb{Q})\}.$$

Operaciones y orden en los reales

En $\mathbb{R}$ podemos definir las siguientes operaciones:

  • Suma: $\overline{\{x_n\}} + \overline{\{y_n\}}= \overline{\{x_n + y_n\}}$ .
  • Producto: $\overline{\{x_n\}} \overline{\{y_n\}}= \overline{\{x_ny_n\}}$.

También podemos definir el orden en $\mathbb{R}$. Decimos que $\overline{\{x_n\}}$ es positivo si para $n$ suficientemente grande tenemos $x_n>0$. Decimos que $\overline{\{x_n\}}>\overline{\{y_n\}}$ si $\overline{\{x_n\}}- \overline{\{y_n\}}$ es positivo.

Se puede ver que las operaciones de suma y producto, así como el orden, están bien definidos. Más aún, se puede probar el siguiente resultado.

Teorema. El conjunto $\mathbb{R}$ con sus operaciones de suma y producto es un campo ordenado y completo.

Como antes, una vez que se prueba este teorema, se abandona la notación de sucesiones y de clases de equivalencia. En realidad se oculta, pues la construcción siempre está detrás, como un esqueleto que respalda las propiedades que encontramos.

El teorema nos dice que $\mathbb{R}$ ya no tiene hoyos, y esto es precisamente lo que necesitamos para resolver algunas ecuaciones como $x^2=3$. Un esbozo de por qué es el siguiente. Gracias a la existencia de ínfimos se puede probar el teorema del valor intermedio en $\mathbb{R}$. Se puede probar que la función $x^2$ es continua, que en $x=0$ vale $0$ y que en $x=2$ vale $4$, de modo que por el teorema del valor intermedio debe haber un real $x$ tal que $x^2=3$.

Más adelante…

Las muchas otras importantes consecuencias de que $\mathbb{R}$ sea un campo ordenado y completo se discuten a detalle en cursos de cálculo. Si bien este es un logro enorme, aún tenemos un pequeño problema: ¡todavía no podemos resolver todas las ecuaciones polinomiales! Consideremos la ecuación $$x^2+1=0.$$ Podemos mostrar que para cualquier real $x$ tenemos que $x^2\geq 0$, de modo que $x^2+1\geq 1>0$. ¡Esta ecuación no tiene solución en los números reales!

Para encontrar una solución vamos a construir los números complejos. Con ellos podremos, finalmente, resolver todas las ecuaciones polinomiales, es decir, aquellas de la forma

$$a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0=0.$$

Hablaremos de esto en el transcurso de las siguientes dos unidades: números complejos y polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Cuál de las clases de equivalencia sería el neutro aditivo en $\mathbb{Q}$?
  2. ¿Por qué la definición de orden en $\mathbb{Q}$ no depende del representante elegido?
  3. ¿Cómo construirías el inverso multiplicativo de la sucesión de Cauchy $\{x_n\}$? Ten cuidado, pues algunos de sus racionales pueden ser $0$.
  4. Aprovecha esta entrada de transición entre unidades para repasar las construcciones de $\mathbb{N}$ y de $\mathbb{Z}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»