Archivo de la etiqueta: matriz invertible

Álgebra Superior I: Reducción de Gauss-Jordan

Por Eduardo García Caballero

Introducción

En la entrada anterior vimos que los sistemas de ecuaciones se encuentran íntimamente relacionados con los vectores y las matrices. Teniendo esto en cuenta, en esta entrada abordaremos una estrategia que nos permitirá encontrar soluciones de los sistemas de ecuaciones lineales.

Operaciones elementales por filas

Antes de pasar a describir el algoritmo con el cual podremos resolver un sistema de ecuaciones lineales, deberemos definir algunas operaciones y conceptos que nos ayudaran a efectuarlo. Empecemos con una lista de operaciones que se pueden aplicar a las matrices, las cuales son con conocidas como operaciones elementales por filas.

Para esto, consideremos una matriz
\[
A=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix},
\]
y veamos cómo la afecta cada una de estas operaciones.

La primera de estas operaciones es el reescalamiento. Esta operación consiste en seleccionar una fila de una matriz, y multiplicar cada una de las entradas de esta fila por un mismo número real distinto de cero. Por ejemplo, si reescalamos la tercera fila de $A$ por el número $-3$, obtendremos la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
(-3)(-1/3) & (-3)(4) & (-3)(0) \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
1& -12 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Otra operación que podemos aplicar a las matrices es la trasposición, la cual consiste en intercambiar el contenido de dos filas distintas. Por ejemplo, si transponemos las filas 2 y 4 de $A$, el resultado será la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
9 & -3 & 2/3 \\
-1/3 & 4 & 0 \\
\sqrt{2} & -1 & 2
\end{pmatrix}.
\]

La última de las operaciones que nos interesa es la transvección. Esta consiste en sumar el múltiplo de una fila (el resultado de multiplicar cada entrada de una fila por un mismo escalar) a otra fila (la suma se realiza entrada por entrada). Por ejemplo, si en $A$ realizamos la transvección que corresponde a “sumar 3/2 de la cuarta fila a la primera fila”, obtendremos la matriz
\[
\begin{pmatrix}
5 + (3/2)(9) & \pi+(3/2)(-3) & 3+(3/2)(2/3) \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
37/2 & -9/2+\pi & 4 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Si recuerdas, todos los sistemas de ecuaciones se pueden escribir como $Ax=b$. Las operaciones elementales son muy importantes por las siguientes dos razones:

  • Si aplicamos la misma operación elemental a $A$ y $b$ para obtener la matriz $A’$ y el vector $b’$, entonces $Ax=b$ y $A’x=b’$ tienen exactamente el mismo conjunto solución. Decimos que «las operaciones elementales no cambian las soluciones del sistema».
  • Usando operaciones elementales se puede llevar el sistema $Ax=b$ a un sistema mucho más sencillo $A_{red}x=b_{red}$ (que discutiremos más abajo). Entonces «las operaciones ayudan a simplificar un sistema de ecuaciones».

Juntando ambas observaciones, con operaciones elementales podemos llevar cualquier sistema de ecuaciones a uno mucho más sencillo y con el mismo conjunto solución.

Puedes intentar convencerte de la primera afirmación pensando en lo siguiente. En un reescalamiento de filas corresponde a multiplicar por una constante no nula ambos lados de una ecuación; la transposición corresponde a cambiar el orden en el que aparecen dos ecuaciones diferentes; mientras que la transvección corresponde a sumar un múltiplo de una ecuación a otra ecuación, y el sistema tiene las mismas soluciones pues, si un conjunto de valores es solución para dos ecuaciones, entonces es solución para cualquier combinación lineal de estas. En un curso de Álgebra Lineal I puedes encontrar las justificaciones con mucho más detalle.

En las siguientes secciones hablamos un poco más de la segunda afirmación.

Forma escalonada y escalonada reducida para una matriz

Además de las operaciones elementales por filas, es importante definir algunos conceptos.

Comencemos con el concepto de pivote: diremos que una entrada de una matriz es un pivote si es el primer elemento distinto de cero en una fila.

Diremos que una matriz se encuentra en forma escalonada si se cumple: 1. Todas las filas nulas se encuentran hasta abajo; 2. Todos los pivotes de filas no-nulas tienen valor 1; 3. El pivote de cada fila se encuentra la derecha del pivote de una fila superior. Es fácil identificar las matrices en forma escalonada porque parecen “estar en escalerita”. Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 9 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}
\]
se encuentra en forma escalonada, mientras que las matrices
\[
\begin{pmatrix}
1 & 0 & 2 & 4 \\
0 & 0 & 9 & 2 \\
0 & 3 & 0 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 6 & 8 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & 2
\end{pmatrix}
\]
no lo están. ¿Puedes justificar por qué?

Por su parte, diremos que una matriz se encuentra en forma escalonada reducida si está en forma escalonada y, además, si hay un pivote en alguna fila, todas las entradas que no sean pivote en la misma columna del pivote son iguales a $0$ (Ojo. Siempre hablamos de pivotes de renglones).

Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
está en forma escalonada reducida.

Como recordarás de la entrada anterior, un sistema de ecuaciones lineales
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se puede codificar como
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Como podemos cambiar el nombre de las variables, pero el vector de soluciones sigue siendo el mismo, es común codificar el sistema como una única matriz aumentada
\[
\left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\
\middle|
\
\begin{matrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{matrix}
\right).
\]

Aquí pusimos una línea vertical, pero sólo es por ayuda visual. Esa matriz la puedes tratar como cualquier matriz que hemos platicado.

Teniendo esto en cuenta, las matrices en forma escalonada reducida nos son de gran utilidad al resolver sistemas de ecuaciones lineales. Por ejemplo, consideremos el sistema
\[
\begin{cases}
x + 3y + 2w &= 8 \\
z + w &= 9,
\end{cases}
\]
el cual tiene como matriz aumentada a
\[
\left(
\begin{matrix}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
8 \\
9
\end{matrix}
\right),
\]
la cual se encuentra en forma escalonada.

Gracias a que la matriz está en forma escalonada, podemos elegir en orden inverso $w$, $z$, $y$, $x$ a las variables libres y pivote como en la entrada anterior. En este caso, podemos elegir como queramos el valor de $w$ ($w$ es variable libre). Usando la segunda ecuación, podemos despejar $z$ en términos de $w$ ($z$ es variable pivote). Estos dos valores los sustituimos en la primera ecuación y notamos que $y$ puede ser lo que queramos ($y$ es variable libre). Finalmente, $x$ queda totalmente determinado por las demás variables ($x$ es pivote). Las variables pivote justo corresponden a columnas de la matriz que tengan pivote de alguna fila.

La ventaja de la forma escalonada es que podremos ir obteniendo fácilmente el valor de cada variable “de abajo hacia arriba”. En el caso de un sistema cuya matriz se encuentre en forma escalonada reducida, será aún más sencillo pues ya no tendremos que sustituir valores y obtenemos el despeje directamente.

Teorema de reducción de Gauss-Jordan

El siguiente teorema relaciona las operaciones elementales por filas con la forma escalonada reducida de una matriz.

Teorema (de reducción de Gauss-Jordan o reducción gaussiana). Cualquier matriz con entradas reales se puede a una forma escalonada reducida aplicando una cantidad finita de pasos.

A continuación presentamos un algoritmo con el cual podemos pasar de una matriz arbitraria a una matriz en su forma escalonada reducida. Para hacer más sencilla su aplicación, nos enfocaremos en comprender la estrategia que sigue el algoritmo. La descripción formal del algoritmo y demostración de que en efecto funciona como esperamos es un tema que abordarás en el curso de Álgebra Lineal I (puedes echarle un ojo a esta entrada).

Primeramente, describiremos los pasos del algoritmo, al que se le conoce como reducción de Gauss-Jordan o reducción gaussiana.

Estrategia: Iremos arreglando la matriz de izquierda a derecha. Para ello, haremos los siguientes pasos repetidamente.

  1. Buscamos la primera columna de la matriz (de izquierda a derecha) que no tenga puros ceros.
  2. Una vez encontrada dicha columna, buscamos la primera entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos la fila que contiene a dicha entrada hasta arriba mediante la operación de transposición.
  4. Multiplicamos cada entrada de la fila que acabamos de mover hasta arriba por el inverso multiplicativo de su primera entrada (aquí usamos la operación de reescalamiento). La primera entrada de esta fila ahora será 1.
  5. Mediante la operación de transvección, sustraemos múltiplos de la primera fila al resto de renglones de la matriz, de modo que el resto de los valores en la columna correspondiente a la primera entrada de la fila en la que estamos trabajando pasen a ser 0 (como puedes observar, la entrada primera entrada no-nula de la fila en la que estamos trabajando ahora será un pivote).
  6. Ignorando la primera fila, buscamos la primera columna (de izquierda a derecha) que no tenga puros ceros.
  7. Repetimos los pasos anteriores (2 a 6), pero ahora, en vez de mover la fila con la que estamos trabajando “hasta arriba”, la moveremos inmediatamente después de la última fila con la que trabajamos.
  8. Hacemos esto hasta haber arreglado todas las columnas.

Ejemplo de reducción de Gauss-Jordan

Ahora, como ejemplo, veamos cómo podemos implementar este algoritmo en la matriz
\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 & 3 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
la cual, si la consideramos como la matriz aumentada
\[
\left(
\begin{matrix}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 2 \\
3 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
4 \\
3 \\
2 \\
1
\end{matrix}
\right),
\]
corresponde al sistema de ecuaciones
\[
\begin{cases}
y + 2z + 3w &= 4 \\
-x + z + 2w &= 2 \\
3x + y -z &= 0 \\
y + z + w &= 1.
\end{cases}
\]

Buscamos la primera la primera columna no nula, la cual resulta ser la primera columna de la matriz. En esta columna, vemos que la segunda entrada es la primera entrada distinta de cero. Entonces, mediante trasposicón, intercambiamos las filas 1 y 2 (“movemos la segunda columna hasta arriba”):
\[
\begin{pmatrix}
-1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3& 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, nos fijamos en la primera entrada no nula de la primera fila, que es $-1$, y reescalamos la fila por su inverso multiplicativo, que es $-1$:
\[
\begin{pmatrix}
(-1)(-1) & (-1)(0) & (-1)(1) & (-1)(2) & (-1)(3) \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, observamos el valor de la primera entrada de la tercera fila, el cual es $3$. Entonces, mediante transvección, sumamos $-3$ veces la fila 1 a la fila 3:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3+(-3)(1) & 1+(-3)(0) & -1+(-3)(-1) & 0+(-3)(-2) & 2+(-3)(-3) \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
y realizamos lo mismo, pero ahora considerando la fila 4.
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0+(0)(1) & 1+(0)(0) & 1+(0)(-1) & 1+(0)(-2) & 1+(0)(-3)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Como puedes observar, ninguna de las transvecciones influye en la otra, de manera que las podemos enlistar en un único paso. Además, al hacer una transvección con escalar $0$ no cambia nada de la fila, así que estas no se necesita hacerlas.

Ahora, ignorando la última fila con la que trabajamos (que es la primera), buscamos la primera columna no-nula, que en este caso será la segunda, posteriormente buscamos el primer elemento no nulo de la columna, el cual se encuentra en la segunda fila, y la “movemos enseguida de la última fila con la que trabajamos” (en este caso no tendríamos que realizar ninguna transposición, o bien, la transposición sería la de la segunda fila consigo misma, ya que ya se encuentra en seguida de la última fila con la que trabajamos). Después, reescalamos por el inverso multiplicativo del primer elemento no nulo de la fila, que es $1$:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
(1)(0) & (1)(1) & (1)(2) & (1)(3) & (1)(4) \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
(observa que reescalar por $1$ deja todas las entradas iguales) y posteriormente realizamos las transvecciones necesarias para que el resto de entradas de la segunda columna sean cero.
\[
\begin{pmatrix}
1 & 0+(0)(1) & -1+(0)(2) & -2+(0)(3) & -3+(0)(4) \\
0 & 1 & 2 & 3 & 4 \\
0 & 1+(-1)(1) & 2+(-1)(2) & 6+(-1)(3) & 11+(-1)(4) \\
0 & 1+(-1)(1) & 1+(-1)(2) & 1+(-1)(3) & 1+(-1)(4)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 7 \\
0 & 0 & -1 & -2 & -3
\end{pmatrix}
\]

De manera similar, ignorando ahora las primeras dos filas, buscamos la primera columna no-nula, la cual corresponde ahora a la tercera, y buscamos el primer elemento no-nulo de esta columna, el cual se encuentra en la cuarta fila. Entonces, transponemos las filas 3 y 4 para que el primer elemento no-nulo quede inmediatamente después de la última fila con la que trabajamos:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Seguidamente, reescalamos la tercera fila,
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
(-1)(0) & (-1)(0) & (-1)(-1) & (-1)(-2) & (-1)(-3) \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
\]
y relizamos las transvecciones necesarias:
\[
\begin{pmatrix}
1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(2) & -3+(1)(3) \\
0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(2) & 4+(-2)(3) \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Finalmente, como nuestra última columna no cero es la cuarta y la primera fila no cero (ignorando las filas que ya tienen pivote) tiene un $3$, reescalamos de la siguiente manera:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
(1/3)(0) & (1/3)(0) & (1/3)(0) & (1/3)(3) & (1/3)(7)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix},
\]

Y hacemos las transvecciones necesarias:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0+(1)(0) & 1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(7/3) \\
0+(-2)(0) & 0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(7/3) \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1/3 \\
0 & 0 & 1 & 0 & -5/3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}.
\]

Notemos que si consideramos esta matriz como la matriz aumentada
\[
\left(
\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
0 \\
1/3 \\
-5/3 \\
7/3
\end{matrix}
\right),
\]
este corresponde al sistema
\[
\begin{cases}
x = 0 \\
y = 1/3 \\
z = -5/3 \\
w = 7/3,
\end{cases}
\]
del cual sabemos inmediatamente su solución. Como mencionamos anteriormente, los sistemas de ecuaciones asociados a la matriz original y la matriz escalonada reducida resultante de aplicar operaciones elementales por filas, consideradas como matrices aumentadas, tienen las mismas soluciones. Entonces, ¡este último sistema es la solución para nuestro sistema de ecuaciones original!

Como podemos ver, los sistemas de ecuaciones asociados a una matriz en su forma escalonada reducida son fáciles de resolver por que vamos escogiendo valores arbitrarios para las variables en posición que no es pivote, mientras que podemos obtener el valor de las variables que son pivote mediante despejes sencillos.

Recuerda que este algoritmo funciona para cualquier matriz con entradas reales. ¿Podrías proponer otro sistema de ecuaciones e implementar la misma estrategia para resolverlo?

Más adelante…

Ahora vimos una estrategia para resolver sistemas de ecuaciones lineales de distintos tamaños. En las siguientes entradas conoceremos más propiedades sobre las matrices. Estas nuevas propiedades también juegan un rol fundamental en poder determinar de manera más rápida cuándo un sistema de ecuaciones lineales tiene solución, y tener otras alternativas para resolverlo bajo ciertas condiciones.

Tarea moral

  1. Aplica reducción gaussiana a las siguientes matrices:
    $$\begin{pmatrix} 5 & 2 \\ 13 & 5 \end{pmatrix},\quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$
  2. Resuelve el siguiente sistema de ecuaciones llevándolo a forma escalonada reducida, y luego aplicando a técnica de variables libres y pivote:
    $$\begin{cases} a + b + c + d + e &= -5\\2a+2b-3c-3d+e&=5 \\ a – b + c – d + e &= 0. \end{cases}$$
  3. Sea $I$ la matriz identidad de $n\times n$ y $A$ otra matriz de $n\times n$. Sea $E$ la matriz obtenida de aplicar una transvección a $I$. Sea $B$ la matriz de aplicar esa misma transvección a $A$. Demuestra que $EA=B$.
  4. Demuestra que una matriz $A$ de $2\times 2$ es invertible si y sólo si al aplicar reducción de Gauss-Jordan al final se obtiene la matriz identidad $I$. ¿Puedes hacerlo para matrices de $3\times 3$? ¿De $n\times n$?
  5. Sea $A$ una matriz de $2\times 2$ invertible. A $A$ le «pegamos» una identidad del mismo tamaño a la derecha para llegar a $(A|I)$, por ejemplo $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se convertiría en $\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$. Muestra que si aplicamos reducción de Gauss-Jordan a $(A|I)$, se llega a $(I|A^{-1})$. Intenta extender tu demostración a matrices de $3\times 3$ ó $n\times n$.

Entradas relacionadas

Álgebra Lineal I: Más ejemplos de reducción gaussiana

Por Ayax Calderón

Introducción

En esta entrada veremos varios ejemplos que nos ayudarán a comprender que la reducción gaussiana es una herramienta muy poderosa a la hora de resolver sistemas de ecuaciones lineales.

Problemas resueltos

Problema 1. Implementa el algoritmo de reducción gaussiana en la matriz
\begin{align*}
A=\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}
\end{align*}

Solución. Para este problema usaremos la siguiente notación para indicar las operaciones elementales que estamos efectuando :

  • $R_i \leftrightarrow R_j$ para intercambiar el renglón $i$ con el renglón $j$.
  • $kR_i$ para multiplicar el renglón $i$ por el escalar $k$.
  • $R_i + kR_j$ para sumarle $k$ veces el renglón $j$ al renglón $i$.


\begin{align*}
A=&\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_1 \leftrightarrow R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_4 – R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 + 3R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
\frac{1}{2}R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 – 4R_2
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}
\end{align*}
\begin{align*}
R_1 – R_2
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
-1\cdot R_3
&\begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_4 – R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}\\
R_2 – \frac{1}{2} R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix} \\
R_1 + \frac{1}{2}R_3
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}
\end{align*}
\begin{align*}
\frac{1}{3} R_4
&\begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
R_3 + 4R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_2 – \frac{5}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_1 + \frac{1}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & 0 & -\frac{1}{3}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
=&A_{red}
\end{align*}

$\triangle$

Problema 2. Resuelve el siguiente sistema homogéneo.
\begin{align*}
\begin{cases}
x+2y-3z &=0\\
2x+5y+2z &=0\\
3x-y-4z &=0
\end{cases}
\end{align*}

Solución. La matriz asociada al sistema anterior es
\begin{align*}
\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}
\end{align*}
Para resolver el sistema $AX=0$ nos bastará con encontrar $A_{red}$, pues el sistema $A_{red}X=0$ es equivalente al sistema $AX=0$.
\begin{align*}
&\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}\\
R_2 -2R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
3 & -1 & -4
\end{pmatrix}\\
R_3 – 3R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_1 – 2R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_3 + 7R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & 0 & 61
\end{pmatrix}\\
R_2 – \frac{8}{61}R_3
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
R_1 + \frac{19}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
\frac{1}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=A_{red}
\end{align*}

De lo anterior se sigue que para resolver el sistema $AX=0$ basta con resolver el sistema
\begin{align*}
\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z
\end{pmatrix}= \begin{pmatrix}
0\\
0\\
0
\end{pmatrix}.
\end{align*}
Pero este sistema es el sistema

\begin{align*}
\begin{cases} x = 0\\ y = 0 \\ z = 0. \end{cases}
\end{align*}

De esta forma, $x=y=z=0$ es la (única) solución al sistema original.

$\triangle$

Problema 3. Determina las soluciones fundamentales del sistema homogéneo $AX=0$, donde $A$ es la matriz
\begin{align*}
A=\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix}.
\end{align*}

Solución. Sea $AX=0$ el sistema
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}

Para este problema nuevamente nos interesa llevar la matriz asociada al sistema a su forma escalonada reducida.

Aunque es muy importante saber cómo se hacen estos procedimientos, es cierto que también existen herramientas que nos ayudan a hacer estos cálculos de manera más rápida. En esta ocasión usaremos una calculadora de forma reducida escalonada disponible en línea, la cual nos indica que la forma escalonada reducida de la matriz $A$ es
\begin{align*}
A_{red}=\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix}.
\end{align*}

De esta forma, el sistema del problema es equivalente al sistema $A_{red}X=0$
\begin{align*}
\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}
Las variables pivote son $x$ y $z$. Las variables libres son $y$ y $w$.

Como se mencionó en una entrada anterior, para encontrar las soluciones fundamentales hay que expresar a las variables pivote en términos de las variables libres. En el sistema anterior podemos notar que
\begin{align*}
\begin{cases}
x =2y+w\\
z=-w.
\end{cases}
\end{align*}
por lo que
\begin{align*}
\begin{pmatrix}
x\\
y\\
z\\
w
\end{pmatrix}&=\begin{pmatrix}
2y+w\\
y\\
-w\\
w
\end{pmatrix}\\
&=y\begin{pmatrix}
2\\
1\\
0\\
0
\end{pmatrix} + w \begin{pmatrix}
1\\
0\\
-1\\
1
\end{pmatrix}
\end{align*}
siendo los vectores columna de la última igualdad las soluciones fundamentales del sistema $AX=0$, es decir que con estas soluciones se pueden generar todas las demás.

$\triangle$

Hasta ahora hemos visto ejemplos de reducción gaussiana de matrices de tamaño muy concreto y entradas muy concretas. Sin embargo, otra habilidad importante es aprender a usar reducción gaussiana en una matriz de tamaño arbitrario, con algunas entradas específicas. Veamos un ejemplo de cómo hacer esto.

Problema 4. Sea $n>2$ un número entero. Resuelve en números reales el sistema
\begin{align*}
x_2=\frac{x_1+x_3}{2}, x_3= \hspace{2mm} \frac{x_2+x_4}{2}, \hspace{2mm} \dots , \hspace{2mm}, x_{n-1}=\frac{x_{n-2}+x_n}{2}.
\end{align*}

Solución. Este es un sistema lineal homogéneo de ecuaciones. Esto se puede verificar multiplicando cada ecuación por $2$ e igualándola a $0$. Por ejemplo, la primer ecuación se puede escribir como $x_1-2x_2+x_3=0$. Transformando el resto de las ecuaciones, obtenemos que el sistema se puede escribir en forma matricial como $AX=0$, donde$A$ es la matriz en $M_{n-2,n}(F)$ dada por
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Esta matriz se ve algo intimidante, pero igual se le puede aplicar reducción gaussiana. Hagamos esto.

Afortunadamente, en cada fila ya tenemos un pivote y están «escalonados». Basta con hacer transvecciones para asegurar que en cada columna de un pivote, el pivote es la única entrada no cero. Haremos los primeros pasos para encontrar un patrón de qué va sucediendo.

En el primer paso, sumamos dos veces la fila $2$ a la primer fila. Al hacer esto obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & -3 & 2 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Con esto la segunda columna ya queda lista. El el siguiente paso, multiplicamos por 3 (y 2) la tercer fila y se lo sumamos a la primera fila (y segunda, respectivamente). Obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & -3 & 2 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Para el siguiente paso, ahora hay que multiplicar por 4 (3, 2) la cuarta fila y sumárselo a la primera (segunda, tercera, respectivamente), y obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & -5 & 4 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -3 & 2 &\cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & 0 &\cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

El patrón es ahora claro. Conforme arreglamos la columna $j$, luego la columna $j+1$ tiene a los números $-(j+1), -j, \ldots, -3, -2$ y la columna $j+2$ tiene a los números $j,j-1,j-2,\ldots,1,-2,1$. Esto puede demostrarse formalmente por inducción. Al arreglar la columna $n-2$, la matriz queda en la siguiente forma escalonada reducida:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots & 0 & -(n-1) & n-2 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 & -(n-2) & n-3 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & -(n-3) & n-4 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & -(n-4) & n-5 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -3 & 2\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1
\end{pmatrix}.
\end{align*}

Estamos listos para resolver el sistema asociado. Las variables libres son $x_{n-1}$ y $x_n$, que podemos darles valores arbitrarios $a$ y $b$. Las variables pivote son todas las demás, y de acuerdo a la forma de la matriz anterior, están dadas por

\begin{align*}
x_1&=(n-1)a – (n-2) b\\
x_2&=(n-2)a – (n-3) b\\
x_3&=(n-3)a – (n-4) b\\
&\vdots\\
x_{n-2}&=2a- b.
\end{align*}

Esto determina todas las soluciones.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Eigenvalores y eigenvectores de transformaciones y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya establecimos los fundamentos para hablar de determinantes. Dimos su definición para el caso de vectores y el caso de matrices/transformaciones lineales. Enunciamos y demostramos varias de sus propiedades. Luego dedicamos toda una entrada a ver formas de calcularlos. Finalmente, vimos que nos pueden ayudar para entender mucho mejor a los sistemas de ecuaciones lineales. Entender bien estos conceptos te será de gran utilidad en tu formación matemática.

Además, los determinantes son un paso natural en uno de nuestros objetivos del curso: entender por qué las matrices simétricas reales son diagonalizables. Recuerda que una matriz $A$ en $M_n(F)$ es diagonalizable si existe una matriz diagonal $D$ y una matriz invertible $P$, ambas en $M_n(F)$, de modo que $$A=P^{-1}DP.$$

Lo que haremos en esta entrada es hablar de esos valores que aparecen en la matriz diagonal $D$ en el caso de que $A$ sea diagonalizable. Resulta que estos valores están relacionados con una pregunta muy natural en términos de lo que le hace la matriz a ciertos vectores. Y mejor aún, como veremos, hay un método para encontrar estos valores por medio de un determinante. Vamos poco a poco.

Eigenvalores y eigenvectores para transformaciones lineales

Sea $V$ un espacio vectorial sobre un campo $F$ y sea $T:V\to V$ una transformación lineal. Para fijar ideas, pensemos en $\mathbb{R}^n$ por el momento. A veces, $T$ simplemente la cambia la magnitud a un vector, sin cambiarle la dirección. Es decir, hay algunos vectores para los cuales $T$ se comporta simplemente como la multiplicación por un escalar. En símbolos, hay vectores $v$ tales que existe un valor $\lambda$ tal que $T(v)=\lambda v$.

Por supuesto, al vector $0$ siempre le pasa esto, pues como $T$ es lineal, se tiene que $T(0)=0=\lambda\cdot 0$ para cualquier escalar $\lambda$. Resulta que cuando se estudian estos vectores y escalares especiales, lo más conveniente es quitar al vector $0$ de la discusión. Estas ideas llevan a la siguiente definición.

Definición. Un eigenvalor de una transformación lineal $T:V\to V$ es un escalar $\lambda$ tal que $\lambda \text{id} – T$ no es invertible. En otras palabras, $\lambda$ es un escalar tal que existe un vector no cero en el kernel de $\lambda \text{id} – T$. A un vector $v\neq 0$ en $V$ tal que $$(\lambda \text{id} – T)v=0,$$ se le conoce como un eigenvector de $T$.

En otras palabras, $v$ es un eigenvector correspondiente a $T$ si $v$ no es cero y $T(v)=\lambda v$. A los eigenvalores y eigenvectores de $T$ también se les conoce en la bibliografía como valores propios y vectores propios de $T$.

Observa que si al conjunto de eigenvectores para un eigenvalor $\lambda$ le agregamos el vector $0$, entonces obtenemos el kernel de una transformación lineal, que sabemos que es un subespacio vectorial.

Veamos un par de ejemplos para que queden más claras las ideas.

Ejemplo 1. Consideremos a la transformación lineal $T:\mathbb{R}^3\to \mathbb{R}^3$ dada por $$T(x,y,z)=(-2x+15y+18z,3y+10z,z).$$

Observa que
\begin{align*}
T(1,0,0)&=(-2,0,0)\\
&=-2(1,0,0),
\end{align*}

que
\begin{align*}
T(-19,-5,1)&=((-2)(-19)+15(-5)+18,3(-5)+10, 1)\\
&=(28+75-18,-15+10,1)\\
&=(-19,-5,1),
\end{align*}

y que

\begin{align*}
T(3,1,0)&=(-6+15,3,0)\\
&=(9,3,0)\\
&=3(3,1,0).
\end{align*}

Estas igualdades muestran que $(1,0,0)$ es un eigenvector de $T$ con eigenvalor $-2$, que $(-19,-5,1)$ es un eigenvector de $T$ con eigenvalor $1$ y $(3,1,0)$ es un eigenvector de $T$ con eigenvalor $3$.

$\triangle$

Ejemplo 2. Consideremos al espacio vectorial $\mathbb{R}[x]$ de polinomios con coeficientes reales. Tomemos la transformación lineal $T$ que manda a un polinomio a su segunda derivada. ¿Quiénes son los eigenvalores y eigenvectores de $T$?

Para que $p$ sea un eigenvector con eigenvalor $\lambda$, tiene que suceder que $$p»=T(p)=\lambda p.$$

Como $p$ no es el vector cero, tiene un cierto grado. Si $\lambda \neq 0$, entonces la igualdad anterior no puede suceder, pues si $p$ es de grado mayor o igual a $2$, entonces el grado de $p»$ es menor al de $\lambda p$, y si el grado de $p$ es $0$ ó $1$, su segunda derivada es $0$, y no puede pasar $\lambda p = 0$. Así, el único eigenvalor que puede tener $T$ es $\lambda = 0$. Observa que sí es válido que los eigenvalores sean cero (los eigenvectores no).

Cuando $\lambda = 0$, tiene que pasar que $p»$ sea $0\cdot p$, es decir, el polinomio cero. Los únicos polinomios tales que su derivada es cero son los constantes y los lineales. Pero el polinomio cero por definición no es eigenvector.

Así, la respuesta final es que el único eigenvalor de $T$ es $0$, y sus eigenvectores correspondientes son los polinomios constantes distintos de cero, y los polinomios lineales.

$\triangle$

Eigenvalores y eigenvectores para matrices

Tenemos una definición similar para matrices. Sea $A$ una matriz en $M_n(F)$.

Definición. Un escalar $\lambda$ en $F$ es un eigenvalor de $A$ si la matriz $\lambda I_n – A$ no es invertible. En otras palabras, si existe un vector no cero $X$ en $F^n$ tal que $AX=\lambda X$. A un tal vector $X$ se le conoce como un eigenvector correspondiente al eigenvalor $\lambda$.

En otras palabras, los eigenvalores y eigenvectores de $A$ son exactamente los eigenvalores y eigenvectores de la transformación $T_A:\mathbb{F}^n\to \mathbb{F}^n$ dada por $T_A(v)=Av$.

Además, si elegimos cualquier base $B$ de un espacio de dimensión finita $V$ y $A$ es la matriz de $T$ con respecto a la base $B$, entonces para cualquier escalar $\lambda$ se tiene que $\lambda I_n – A$ es la matriz de $\lambda \text{id} – T$ con respecto a esta misma base. De aquí se deduce que los eigenvalores de $T$ son los mismos que los eigenvalores de $A$. Dos matrices que representan a $T$ difieren sólo en un cambio de base, así que obtenemos el siguiente resultado fundamental.

Proposición. Si $A$ es una matriz en $M_n(F)$ y $P$ es una matriz invertible, entonces $A$ y $P^{-1}AP$ tienen los mismos eigenvalores. En otras palabras, matrices similares tienen los mismos eigenvalores.

En el primer ejemplo tomamos la transformación lineal $T:\mathbb{R}^3\to \mathbb{R}^3$ tal que $$T(x,y,z)=(-2x+15y+18z,3y+10z,z).$$ Su matriz en la base canónica de $\mathbb{R}^3$ es $$A=\begin{pmatrix} -2 & 15 & 18\\ 0 & 3 & 10\\ 0 & 0 & 1 \end{pmatrix}.$$ En el ejemplo vimos que los eigenvalores eran $-2$, $1$ y $3$, que precisamente conciden con las entradas en la diagonal de $A$. Esto no es casualidad. El siguiente resultado muestra esto, y es una primer evidencia de la importancia de los determinantes para encontrar los eigenvalores de una matriz.

Proposición. Si $A$ es una matriz triangular (superior o inferior) en $M_n(F)$, entonces sus eigenvalores son exactamente las entradas en su diagonal principal.

Demostración. Haremos el caso para cuando $A$ es triangular superior. El otro caso queda de tarea moral.

Queremos encontrar los valores $\lambda$ para los cuales la matriz $\lambda I_n – A$ no sea invertible. La matriz $A$ es triangular superior, así que la matriz $\lambda I_n – A$ también, pues las entradas de $A$ se vuelven negativas, y luego sólo se altera la diagonal principal.

Si las entradas diagonales de $A$ son $a_{11},\ldots,a_{nn}$, entonces las entradas diagonales de $\lambda I_n -A$ son $$\lambda – a_{11},\ldots,\lambda-a_{nn}.$$

La matriz $\lambda I_n – A$ no es invertible si y sólo si su determinante es igual a cero. Como es una matriz triangular superior, su determinante es el producto de sus entradas diagonales, es decir, $$\det(\lambda I_n – A) = (\lambda – a_{11})\cdot\ldots\cdot(\lambda – a_{nn}).$$

Este producto es $0$ si y sólo si $\lambda$ es igual a alguna entrada $a_{ii}$. De esta forma, los únicos eigenvalores de $A$ son las entradas en su diagonal.

$\square$

Si $A$ es una matriz diagonalizable, entonces es semejante a una matriz diagonal $D$. Por la proposición anterior, los eigenvalores de $A$ serían entonces las entradas en la diagonal principal de $D$. Esto nos da una intuición muy importante: si acaso pudiéramos encontrar todos los eigenvalores de $A$, entonces eso podría ser un paso parcial hacia diagonalizarla.

Encontrar eigenvalores es encontrar las raíces de un polinomio

La siguiente proposición conecta eigenvalores, polinomios y determinantes.

Proposición. Sea $A$ una matriz en $M_n(F)$. Entonces la expresión $$\det(\lambda I_n – A)$$ está en $F[\lambda]$, es decir, es un polinomio en la variable $\lambda$ con coeficientes en $F$. Además, es de grado exactamente $n$.

Demostración. La fórmula para el determinante
\begin{align*}
\begin{vmatrix}
\lambda – a_{11} & -a_{12} & \ldots & -a_{1n}\\
-a_{21} & \lambda – a_{22} & \ldots & -a_{1n}\\
\vdots & & \ddots & \\
-a_{n1} & -a_{n2} & \ldots & \lambda – a_{nn}
\end{vmatrix}
\end{align*}

en términos de permutaciones nos dice que el determinante es sumas de productos de entradas de $A$. Cada una de las entradas es un polinomio en $F[\lambda]$, ya sea constante, o lineal. Como $F[\lambda]$ es cerrado bajo sumas y productos, esto prueba la primer parte de la afirmación.

Para probar que el grado es exactamente $n$, notemos que cada sumando de la expresión multiplica exactamente $n$ entradas. Como las entradas a lo mucho son de grado uno en $F[\lambda]$, entonces cada sumando es un polinomio de grado a lo más $n$. Hay una única forma que el grado sea $n$: cuando se elige la permutación identidad y entonces se obtiene el sumando $$(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).$$

Esto termina la prueba.

$\square$

La proposición anterior nos asegura entonces que la siguiente definición tiene sentido.

Definición. Para $A$ una matriz en $M_n(F)$, el polinomio característico de $A$ es el polinomio $\chi_A(\lambda)$ en $F[\lambda]$ dado por $$\chi_A(\lambda) = \det(\lambda I_n – A).$$

De esta forma, $\lambda$ es un eigenvalor de $A$ si y sólo si es una raíz del polinomio $\chi_A(\lambda)$. Esto son buenas y malas noticias. Por un lado, nos cambia un problema de álgebra lineal a uno de polinomios, en donde a veces tenemos herramientas algebraicas que nos ayudan a encontrar raíces. Sin embargo, como se ve en cursos anteriores, también hay otros polinomios para los cuales es muy difícil encontrar sus raíces de manera exacta. Lo que salva un poco esa situación es que sí existen métodos para aproximar raíces numéricamente de manera computacional.

A pesar de la dificultad de encontrar raíces, sin duda tenemos consecuencias interesantes de esta conexión. Consideremos como ejemplo el siguiente resultado.

Proposición. Una matriz $A$ en $M_n(F)$ tiene a lo más $n$ eigenvalores distintos. Lo mismo es cierto para una transformación lineal $T:V\to V$ para $V$ un espacio vectorial de dimensión $n$.

Demostración. La matriz $A$ tiene tantos eigenvalores como raíces en $F$ tiene su polinomio característico. Como el polinomio característico es de grado exactamente $n$, tiene a lo más $n$ raíces en $F$.

La parte de transformaciones queda de tarea moral.

$\square$

Ya que encontramos los eigenvalores de una matriz o transformación, es posible que queramos encontrar uno o más eigenvectores correspondientes a ese eigenvalor. Observa que eso corresponde a encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo de la forma $$(I_n-A) X = 0.$$ Para ello ya tenemos muchas herramientas, como hacer reducción Gaussiana.

Terminamos esta entrada con un ejemplo de cómo encontrar los valores propios y vectores propios en un caso concreto.

Problema. Encuentra los eigenvalores de la matriz $$A=\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$ considerándola como:

  • Una matriz en $M_3(\mathbb{R})$
  • Una matriz en $M_3(\mathbb{C})$.

En el caso de $M_n(\mathbb{R})$, encuentra un eigenvector para cada eigenvalor.

Solución. Para encontrar los eigenvalores, tenemos que encontrar el determinante $$\begin{vmatrix}\lambda – 1 & 0 & 0\\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \end{vmatrix}.$$

Usando expansión de Laplace en la primer columna y haciendo las operaciones, obtenemos que el determinante de $\lambda I_3 – A$ es el polinomio $$(\lambda-1)(\lambda^2+1).$$

Aquí es importante la distinción de saber en qué campo estamos trabajando. Si estamos en $M_3(\mathbb{R})$, la única raíz del polinomio es $1$. Si estamos en $M_3(\mathbb{C})$, obtenemos otras dos raíces: $i$ y $-i$.

Ahora, para cuando $A$ es matriz en $M_3(\mathbb{R})$, necesitamos encontrar un eigenvector para el eigenvalor $1$. Esto equivale a encontrar una solución al sistema de ecuaciones $$(I_3-A)X=0,$$ es decir, a $$\begin{pmatrix}0 & 0 & 0\\ 0 & 1 & 1 \\ 0 & -1 & 1\end{pmatrix}X=0.$$

Una solución para este sistema es $X=(1,0,0)$. Y en efecto, $(1,0,0)$ es eigenvector de $A$ para el eigenvalor $1$ pues no es el vector cero y $$\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + 0 + 0 \\ 0 + 0 + 0 \\ 0 + 0 + 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

$\triangle$

Observa que la matriz anterior no es diagonalizable en $M_n(\mathbb{R})$, pues si lo fuera tendría que ser semejante a una matriz diagonal $D$ con entradas $i$ y $-i$ en la diagonal, pero entonces $D$ no sería una matriz en $M_n(\mathbb{R})$. Esto nos da otra intuición con respecto a la diagonalización de una matriz: si acaso una matriz en $M_n(F)$ es diagonalizable, entonces su polinomio característico debe tener puras raíces en $F$. Esta es una condición necesaria, pero aún no es suficiente.

Más adelante…

En esta entrada definimos el concepto de eigenvalor y eigenvector para una transformación lineal y para una matriz; y vimos algunas de las propiedades que cumplen. En la siguiente entrada estudiaremos el concepto de polinomio característico utilizando los conceptos que hemos visto en esta entrada y enunciaremos (sin demostración) dos teoremas muy importantes. Luego, pondremos en práctica lo que hemos estudiado resolviendo algunos ejercicios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • En la entrada vimos que los eigenvalores de una transformación $T$ son los eigenvalores de cualquier matriz que la represente. ¿Es cierto que los eigenvectores de $T$ son los eigenvectores de cualquier matriz que lo represente?
  • Muestra que una transformación lineal $T:V\to V$ para $V$ un espacio vectorial de dimensión $n$ tiene a lo más $n$ eigenvalores distintos.
  • Encuentra los eigenvalores de las matrices de permutación.
  • Para un real $\theta\in[0,2\pi)$ se define la matriz $$A(\theta):=\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$ Muestra que $A(\theta)$ tiene eigenvalores reales si y sólo si $\theta=0$ \o $\theta=\pi$. Sugerencia: Encuentra el polinomio característico (que es cuadrático) y calcula su discrimintante. Si es negativo, no tiene soluciones reales.
  • Sea $A$ una matriz en $M_n(F)$. Muestra que la matriz transpuesta $^t A$ tiene los mismos eigenvalores que $A$, y de hecho, el mismo polinomio característico que $A$. Sugerencia. Recuerda que una matriz y su transpuesta tienen el mismo determinante.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»