Archivo de la etiqueta: heurísticas

Seminario de Resolución de Problemas: Aritmética modular

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos de divisibilidad, máximo común divisor y combinaciones lineales enteras. Cuando hablamos de trabajar en artimética modular nos referimos a que tomamos un entero $n$ y realizamos todas las operaciones «sólo en el mundo de $n$», es decir, aplicando las operaciones únicamente en los residuos que deja un número al ser dividido entre $n$.

Cuando estamos trabajando módulo $n$, dos enteros $a$ y $b$ «son los mismos» si $n$ divide a $a-b$. En este caso decimos que $a\equiv b \pmod n$, que se lee «$a$ es congruente con $b$ módulo $n$».

En esta entrada de blog discutimos la relación «ser congruente con» y cómo se puede enunciar en términos de anillos. Ahí damos las demostraciones de varias de las propiedades que no probaremos aquí. Es recomendable por lo menos echarle un ojo.

Aritmética modular

Para recordar los principios básicos de la aritmética modular, comencemos con el siguiente problema.

Problema. Determina cuál es el residuo obtenido de dividir $1305\cdot 1302+1314\cdot 1311$ al dividirse entre $11$.

Sugerencia pre-solución. Intenta resolver este problema trabajando módulo $11$.

Solución. Tenemos que $1305$, $1302$, $1314$ y $1311$ los podemos poner como un múltiplo de $13$ más un residuo como sigue: $1300+5$, $1300+2$ y $1313+1$, $1300+11$. Así, $1305\equiv 5\pmod {13}$, $1302\equiv 2 \pmod {13}$, $1314\equiv 1 \pmod {13}$ y $1311\equiv 11 \pmod {13}$. Así, trabajando módulo $1$ tenemos que:

\begin{align*}
1305\cdot 1302+1314\cdot 1311 &\equiv 5\cdot 2 + 1\cdot 11 \\
&\equiv 10 + 11 \equiv 21 \\
&\equiv 8 \pmod {13}
\end{align*}
De esta forma, $1305\cdot 1302+1314\cdot 1311$ deja residuo $8$ al dividirse entre $13$.

$\square$

Utilizando el algoritmo de la división, que vimos en la entrada anterior, se puede probar el siguiente resultado.

Proposición. Para cada entero $a$ y entero positivo $n$, existe un único número $r$ en $\{0,1,\ldots,n-1\}$ tal que $a\equiv r\pmod n$, que es justo el residuo obtenido al dividir $a$ entre $n$.

Dicho en otras palabras, sólo hay $n$ posibles residuos al dividir entre $n$. Esto nos permite que las operaciones módulo $n$ siempre las hagamos con números chiquitos, y que afirmaciones sencillas de divisibilidad entre $n$ dependen sólo de $n$ casos. Esto lo podemos aprovechar para resolver problemas como el siguiente.

Problema. Se tienen $13$ números enteros. Muestra que hay tres de ellos $a,b,c$ que satisfacen que $$1331\mid (a-b)(b-c)(c-a).$$

Sugerencia pre-solución. Notemos que $1331=11^3$, así que trabajamos módulo $11$. Encuentra todas las posibilidades que pueden tener los números cuadrados.

Solución. Un entero $n$ sólo puede ser congruente con alguno de los números $0,1,2,3,4,5,6,7,8,9,10$ módulo $11$. Los cuadrados tienen entonces las siguientes posibilidades:

$n$$n^2 \pmod {11}$
$0$$0$
$1$$1$
$2$$4$
$3$$9$
$4$$16\equiv 5$
$5$$25\equiv 3$
$6$$36\equiv 3$
$7$$(-4)^2\equiv 5$
$8$$9$
$9$$4$
$10$$1$

A partir del $6$ estamos aprovechando que ya conocemos los del $1$ al $6$ y que $a \equiv a-11 \pmod {11}$. Notemos que sólo hay $6$ residuos posibles para los cuadrados módulo $11$, que son $0$, $1$, $4$, $9$, $5$ y $3$.

Ahora sí, resolvamos el problema. Como tenemos $13$ números enteros y sólo hay $6$ posibles residuos para los cuadrados módulo $11$, entonces por principio de las casillas hay tres de estos enteros cuyo cuadrado deja el mismo residuo al dividirse entre $11$, digamos $a,b,c$. Como dejan los tres el mismo residuo, tenemos $11\mid a-b$, $11\mid b-c$ y $11\mid c-a$, de donde se sigue la conclusión que queremos.

$\square$

Últimos dígitos

Los últimos $m$ dígitos de un entero $n$ corresponden con el residuo de dividir $n$ entre $10^m$. Por esta razón, en este tipo de problemas es conveniente usar módulos.

Problema. Determina los últimos dos dígitos de $7^{25}+25^7$.

Sugerencia pre-solución. Trabajamos módulo $100$, así que todas las congruencias son módulo $100$. Hay muchas formas de proceder para encontrar $7^{21}$. Notemos que $7^{2}\equiv 49$. y que $$7^4\equiv 49\times 49 = 2401 \equiv 1.$$ Esto es una gran ventaja, pues entonces $7^{24}\equiv (7^4)^6 \equiv 1^6 \equiv 1$, así que $7^{25}\equiv 7$.

Para $25^7$, nos conviene notar que $25=20+5$, de modo que
\begin{align*}
25^2&=(20+5)^2\\
&=20^2+2\cdot 20 \cdot 5 + 25\\
&\equiv 25,
\end{align*}

pues los primeros dos sumandos son múltiplos de $100$. De esta forma, $25^7\equiv 25$. Así, $7^{25}+25^7\equiv 7+25\equiv 32$, por lo que los dos últimos dígitos de la expresión son $32$.

$\square$

Veamos otro ejemplo en el que además combinamos un poco de la teoría mencionada en la entrada anterior.

Problema. Demuestra que existe un entero que es múltiplo de $2002$ y que tiene por lo menos $2002$ dígitos iguales a $7$.

Sugerencia pre-solución. Intenta hacer que los $2002$ dígitos $7$ que se necesitan aparezcan hacia el final. Esto te permitirá usar congruencias. Además, necesitarás el resultado de la entrada anterior que dice que el máximo común divisor de dos números se puede expresar como combinación lineal entera de ellos.

Solución. Tomemos el número $N=777\cdots770$, en donde hay $2002$ dígitos iguales a $7$.

El máximo común divisor de $2002$ y $10^{2003}$ es $2$, de modo que existen enteros $m$ y $n$ tales que $2002m+10^{2003}n=2$.

Multiplicando esta igualdad por el entero $N/2$, obtenemos que $2002\cdot \frac{mN}{2}+10^{2003}\frac{nN}{2}=N$. Aplicando módulo $10^{2003}$ obtenemos que $2002\cdot \frac{mN}{2} \equiv N \pmod {10^{2003}}$.

Como $N<10^{2003}$, esto nos dice que $2002\cdot \frac{mN}{2}$ es un múltiplo de $2002$ cuyos últimos $2003$ dígitos son los de $N$, es decir, que tiene por lo menos $2002$ dígitos iguales a $7$.

$\square$

Teorema chino del residuo

En algunos problemas necesitamos construir un entero que satisfaga un conjunto de congruencias. El teorema chino del residuo nos da una condición bajo la cual podemos garantizar la existencia de dicho número.

Teorema. Sea $n\geq 2$ un entero, $b_i$ enteros para $i\in\{1,2,\ldots,n\}$ y $m_i$ enteros positivos para $i\in\{1,\ldots,n\}$. Supongamos además que cada par $m_i, m_j$ de enteros ($i\neq j$) son primos relativos. Entonces el sistema lineal de congruencias
\begin{align*}
x&\equiv b_1\pmod {m_1}\\
x&\equiv b_2\pmod {m_2}\\
&\vdots\\
x&\equiv b_n\pmod {m_n}
\end{align*}
tiene una y sólo una solución módulo $m_1m_2\ldots m_n$.

El teorema tiene muchas aplicaciones tanto en resolución de problemas, como en matemáticas en general. Veamos un ejemplo.

Problema. ¿Será posible encontrar $5$ enteros consecutivos tales que cada uno de ellos sea divisible entre un cubo distinto de $1$?

Sugerencia pre-solución. Intenta construir el ejemplo usando el teorema chino del residuo con $5$ módulos y en donde los $b_i$ son consecutivos.

Solución. Por el teorema chino del residuo, existe un entero positivo $n$ tal que
\begin{align*}
n&\equiv 0 \pmod{2^3}\\
n&\equiv -1\pmod{3^3}\\
n&\equiv -2\pmod{5^3}\\
n&\equiv -3\pmod{7^3}\\
n&\equiv -4\pmod{11^3}
\end{align*}

Para este entero, se tiene que $2^3$ divide a $n$, $3^3$ divide a $n+1$, $5^3$ divide a $n+2$, $7^3$ divide a $n+3$ y $11^3$ divide a $n+4$.

$\square$

Más ejemplos

Puedes ver más ejemplos del uso de esta teoría en la Sección 3.2 del libro Problem Solving through Problems de Loren Larson.

Hay otros dos teoremas que sirven cuando estamos trabajando módulo $n$, de los cuales hemos escrito aquí en el blog. Para empezar, aquí hay una entrada con videos de ejercicios de trabajar módulo $n$.

El teorema de Fermat y el de Wilson ayudan a entender potencias y factoriales, respectivamente. En la entrada sobre el teorema chino del residuo damos una demostración al teorema.

Seminario de Resolución de Problemas: Principio de inducción combinado con heurísticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuaremos con ejemplos de uso del principio de inducción en la resolución de problemas. Es una continuación de la entrada anterior. Como recordatorio, aquí está el principio de inducción en la forma en la que lo hemos estado usando:

Principio de inducción. Sea $P(n)$ una afirmación (o proposición o propiedad) que depende del número natural $n$. Si

  • la afirmación $P(a)$ es cierta y
  • la veracidad de la afirmación $P(n)$ implica la veracidad de la afirmación $P(n+1)$,

entonces la afirmación $P(n)$ es cierta para toda $n \geq a$.

Lo que nos interesa ahora es ver cómo el principio de inducción se mezcla con algunas de las heurísticas de resolución de problemas.

Inducción y trabajar hacia atrás

Lo que hemos hecho hasta ahora es lo siguiente. Tomamos un enunciado que depende de un entero $n$. Comenzamos probándolo para la base inductiva. Luego, suponemos la veracidad del enunciado para cierto entero $n$. A partir de ahí, intentamos conseguir la veracidad del enunciado para el entero $n+1$.

Como vimos cuando platicamos de trabajar hacia atrás, eso no siempre es lo más natural en la resolución de un problema. En algunas ocasiones nos conviene más empezar con el enunciado que queremos demostrar y mostrar que mediante pasos reversibles podemos llegar a algo cierto. Queremos aplicar esta idea para la demostración del paso inductivo.

Consideremos el siguiente ejemplo.

Problema. Demuestra que para todo entero no negativo $n$ se tiene que $$\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30}$$ es un número entero.

Solución. Tenemos que probar la afirmación para $n\geq 0$ entero. Procedemos por inducción sobre $n$. Si $n=0$, la expresión es igual a $0$, así que la afirmación es cierta. Supongamos entonces que
$$\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30}$$ es entero y consideremos la expresión
$$\frac{(n+1)^5}{5}+\frac{(n+1)^4}{2}+\frac{(n+1)^3}{3}-\frac{(n+1)}{30}.$$

Nuestro objetivo es mostrar que esta expresión es entera. Nos gustaría usar la hipótesis inductiva, así que queremos intentar encontrar dentro de esta expresión la expresión para $n$. Esto lo podemos hacer usando el binomio de Newton para abrir los binomios a potencias y luego agrupando. Tenemos que

\begin{align*}
\frac{(n+1)^5}{5}&=\frac{n^5+5n^4+10n^3+10n^2+5n+1}{5}\\
&=\frac{n^5}{5}+n^4+2n^3+2n^2+n+\frac{1}{5}\\
\frac{(n+1)^4}{2}&=\frac{n^4+4n^3+6n^2+4n+1}{2}\\
&=\frac{n^4}{4}+2n^3+3n^2+2n+\frac{1}{2}\\
\frac{(n+1)^3}{3}&=\frac{n^3+3n^2+3n+1}{3}\\&
=\frac{n^3}{3}+n^2+n+\frac{1}{3}\\
-\frac{n+1}{30}&=-\frac{n}{30}-\frac{1}{30}.
\end{align*}

Así, cuando hagamos la suma tenemos los términos
$$\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30},$$ cuya suma es entera por hipótesis inductiva, $$n^4+2n^3+2n^2+n+2n^3+3n^2+2n+n^2+n,$$ que es entero pues $n$ es entero y $\frac{1}{5}+\frac{1}{2}+\frac{1}{3}-\frac{1}{30}=1$, de modo que la suma total es suma de enteros y por lo tanto es un entero. Esto termina la prueba por inducción.

$\square$

Si no comenzábamos a manipular la expresión para $n+1$, hubiera sido muy difícil, sólo a partir de la de $n$, llegar a la de $n+1$.

Inducción y generalización

Una forma sencilla de combinar inducción con generalización es la siguiente:

  • Nos piden demostrar una afirmación para un natural muy específico.
  • En vez de eso, construimos un problema más general que funcione «para todos los naturales».
  • Resolvermos ese problema por inducción.

Veamos un ejemplo.

Problema. Muestra que $$\left(\frac{3+\sqrt{17}}{2}\right)^{2020}+
\left(\frac{3-\sqrt{17}}{2}\right)^{2020}$$ es un entero impar.

Solución. Sean $\alpha=\frac{3+\sqrt{17}}{2}$ y $\beta=\frac{3-\sqrt{17}}{2}$. Se pide mostrar que $\alpha^{2020}+\beta^{2020}$ es un entero impar. Mostraremos que, de hecho, $\alpha^n+\beta^n$ es un entero impar para todo entero $n\geq 1$. Vamos a proceder por inducción fuerte (hablaremos un poco más de eso más adelante).

El primer caso es $n=1$ y notemos que $\alpha^1+\beta^1=\alpha+\beta=3.$ Notemos también que $\alpha\beta=\frac{9-17}{4}=-2$, de modo que $\alpha^2+\beta^2=(\alpha+\beta)^2-2ab=9+4=13$, que también es impar. Supongamos ahora que sabemos que la afirmación es cierta para exponentes $n-1$ y $n$.

Consideremos el polinomio cuadrático $$(x-\alpha)(x-\beta)=x^2-(\alpha+\beta)x+\alpha\beta=x^2-3x-2.$$ Como $\alpha$ y $\beta$ son raíces, tenemos que $\alpha^2-3\alpha-2=0$ y $\beta^2-3\beta -2=0$. Multiplicando estas igualdades por $\alpha^{n-1}$ y $\beta^{n-1}$ respectivamente, sumando ambas igualdades obtenidas, y despejando $\alpha^{n+1}+\beta^{n+1}$ llegamos a $$\alpha^{n+1}+\beta^{n+1}=3(\alpha^n+\beta^n)+2(\alpha^{n-1}+\beta^{n-1}).$$

De aquí la conclusión inductiva es inmediata. Como la hipótesis inductiva es que el resultado es cierto para los exponentes $n$ y $n-1$, entonces en el lado derecho tenemos una suma de un entero impar con un entero par, que es un entero impar. Esto muestra que la afirmación es cierta para cuando los exponentes son $n+1$.

Para demostrar el problema original, basta con hacer la observación de que, en particular, $\alpha^{2020}+\beta^{2020}$ es un entero impar.

$\square$

Hay otra forma de combinar inducción con generalización, pero es un poco más sofisticada. Para explicarla, es mejor comenzar con un ejemplo.

Problema. Demuestra que para todo entero $n\geq 1$ se tiene que $$\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+\ldots + \frac{1}{n(n+1)} <1.$$

Antes de resolver el problema, intentemos hacer una solución «ingenua» que quiera usar inducción de manera directa. No hay ningún problema con hacer la base de inducción, pues para $n=1$ al lado izquierdo tenemos únicamente $\frac{1}{2}$ y al lado derecho $1$. Supongamos que el resultado es cierto para $n$, es decir, que $$\frac{1}{1\cdot 2}+\ldots + \frac{1}{n(n+1)} <1.$$

Llamémosle $M$ a la expresión del lado izquierdo. Lo que queremos probar ahora es que el resultado es cierto para $n+1$, es decir, que $M+\frac{1}{(n+1)(n+2)}<1$. Sabemos que $M<1$, pero ahora estamos sumando un término positivo adicional. Es posible que este término arruine la desigualdad, pues $M<1$ es una afirmación «muy débil». Veamos cómo darle la vuelta a esta dificultad.

Solución. Sea $P(n)$ la afirmación del problema. Consideremos la afirmación $Q(n)$ que dice que para todo entero $n\geq 1$ se tiene que
$$\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\ldots + \frac{1}{n(n+1)} =1-\frac{1}{n+1}.$$

Si logramos demostrar $Q(n)$, entonces $P(n)$ será cierta de manera inmediata, pues $1-\frac{1}{n+1}<1$. Vamos a demostrar $Q(n)$ por inducción.

Tenemos que $Q(1)$ es cierto pues en ambos lados de la igualdad queda $\frac{1}{2}$. Supongamos que $Q(n)$ es cierto. Usando esto, tenemos que
\begin{align*}
\frac{1}{1\cdot 2}+\ldots+\frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} &=\left(1-\frac{1}{n+1}\right)+\frac{1}{(n+1)(n+2)}\\
&=1-\frac{(n+2)-1}{(n+1)(n+2)}\\
&=1-\frac{1}{n+2},
\end{align*}

es decir, que $Q(n+1)$ es cierto. Así, por inducción $Q(n)$ es cierto para todo entero $n$ y con eso $P(n)$ también.

$\square$

Lo que sucedió fue lo siguiente. Al hacer el paso inductivo, intentamos mostrar que $P(n)$ implica $P(n+1)$. Pero esto es imposible pues $P(n)$ «es muy débil», o bien «pierde información de todo lo que está pasando». Sin embargo, cuando consideramos la afirmación auxiliar $Q(n)$, resulta que esta «tiene más información». Aquí, esta información es «qué tal lejos está la expresión de $1$ «

La afirmación $Q(n)$ tiene tanta información, que ahora sí con ella se puede probar $Q(n+1)$. Se termina el problema usando que $Q(n)$ implica $P(n)$. Así, la estrategia fue la siguiente:

  • Se tiene una afirmación $P(n)$ que se quiere demostrar para todos los naturales. Hacer inducción no parece funcionar, pues $P(n)$ parece no ser suficiente para probar $P(n+1)$
  • Se considera entonces una afirmación $Q(n)$ más fuerte (que implique a $P(n)$), pero para la cual $Q(n)$ sí pueda probar $Q(n+1)$.
  • Se prueba $Q(n)$ por inducción, y se concluye que $P(n)$ es cierta.

Hay que ser cuidadosos. Parte del ingenio en usar esta estrategia consiste en poder identificar un balance en la generalización $Q(n)$ que necesitamos de modo que sí sirva para solucionar el problema original, pero que no sea demasiado ambiciosa como para que sea falsa.

Más ejemplos

Hay más ejemplos bastante elaborados del uso de estas ideas en Problem Solving Through Problems de Loren Larson, Secciones 2.1, 2.2, 2.3 y 2.4. Otro libro con muchos ejemplos interesantes es el Putnam and Beyond, de Gelca y Andreescu. También hay otros ejemplos de inducción en las siguientes entradas:

Seminario de Resolución de Problemas: Principio de las Casillas

Por Fabian Ferrari

Introducción

Imaginemos que tenemos un botiquín con $9$ espacios para acomodar medicamentos. Si contamos con un total de $10$ medicamentos para acomodar en los $9$ espacios, es claro pensar que al menos uno de los $9$ espacios tendrá al menos $2$ medicamentos. Eso lo podemos deducir a partir de que no hay posibilidad de repartir los $10$ medicamentos de manera equitativa en los $9$ espacios, ya que tenemos más objetos que acomodar que lugares en donde distribuir.

Siguiendo el ejemplo anterior, podemos generalizar un poco. Si tuviésemos $n$ lugares en el botiquín y $n+1$ medicamentos, podemos concluir lo mismo: al menos en una casilla habría más de un medicamento.

El esquema propuesto anteriormente es un versión básica del principio de casillas. Si volvemos a nuestro problema inicial, con el botiquín con $9$ lugares disponibles, pero ahora tenemos un total de $19$ medicamentos, de igual manera, no podemos distribuir los medicamentos de manera equitativa en los nueve lugares, y ahora si lo pensamos con un poco más de detalle, podemos concluir que en alguna de las $9$ casillas deberían de haber al menos $3$ medicamentos. Esto surge en consecuencia de pensar que podemos distribuir de manera equitativa los $19$ medicamentos en los $9$ lugares, sin embargo si colocamos en cada lugar un total de $2$ medicamentos, tendríamos que hemos acomodado un total de $18$ ($9\times 2$) medicamentos, quedándonos $1$ medicamento por acomodar, el cual debería de ir en alguno de los lugares con $2$ medicamentos cada uno. Con esto concluimos que en alguno de los lugares del botiquín debe de haber al menos $3$ medicamentos.

Con lo anterior, enunciaremos el principio de casillas.

Principio de Casillas: Si se distribuyen al menos $nk+1$ elementos en $n$ lugares, se tiene que uno de esos lugares tiene al menos $k+1$ elementos.

Este principio puede ser de gran utilidad para la resolución de problemas en los cuales hay que exhibir la existencia de elementos que cumplen cierta propiedad.

Problemas

A continuación veremos ciertos problemas en los que se muestra que el principio de las casillas es una herramienta poderosa para su resolución.

Problema. Demuestre que si hay $n$ personas en una fiesta, entonces dos de ellos conocen la misma cantidad de personas (entre los presentes).

Solución. Supongamos que hay una persona $P$ que no conoce a ninguna de las $n-1$ personas restantes. Cada una de las personas en la fiesta conoce a un número de personas entre un rango de $0$ a $n-2$ (nadie puede conocer a los $n-1$ restantes pues nadie puede conocer a $P$)Ahora, aplicando el principio de casillas, relacionando a cada persona su número de conocidos, el cual varía de $0$ a $n-2$, tenemos que al menos dos personas deben de conocer el mismo número de personas.

De igual manera, si suponemos que toda persona conoce a alguien, tenemos que el número de conocidos de cada persona varía de $1$ a $n-1$. Aplicando de nueva cuenta el principio de casillas, al asociar a cada persona su número de conocidos, tenemos que al menos dos se repiten.

$\square$

Problema 2. Dado un conjunto de $n+1$ enteros positivos, todos ellos menores o iguales a $2n$, muestra que al menos un miembro del conjunto debe dividir a otro miembro del conjunto.

Solución. Sean $a_1, a_2, …, a_{n+1}$ dichos enteros positivos. Al factorizar la máxima potencia de dos que divide a cada uno de ellos, podemos escribir a cada número de la forma $a_i=2^{m_i}·b_i$ de tal forma que $b_i$ es un número impar mayor o igual que uno y $m_i$ es un entero no negativo. Consideramos a $B$ como el conjunto de todos los $b_i$´s $$B=\lbrace b_1, b_2, …, b_{n+1}\rbrace.$$

Tenemos que entre $1$ y $2n$ hay un total de $n$ números impares, así que en el conjunto $B$ debe de haber dos elementos que sean iguales entre sí. Supongamos que $b_i$ y $b_j$ son dichos elementos. Con ello, si $m_i\leq m_j$ entonces $a_i$ divide a $a_j$. Y si $m_i>m_j$ entonces $a_j$ divide a $a_i$.

$\square$

Problema 3. Dados los puntos A, B, C, D, E al interior de un cuadrado unitario, demuestra que al menos hay dos puntos cuya distancia es menor a $\frac{\sqrt{2}}{2}$.

Solución. Si dividimos el cuadrado en $4$ cuadrados iguales, tenemos que por el principio de casillas en al menos uno de los cuadrados debe de haber $2$ puntos. Sin perdida de generalidad, supongamos que  A y B son dichos puntos que quedan la interior de uno de estos cuadrados pequeños. Tenemos que le diagonal del cuadrado pequeño es $\frac{\sqrt{2}}{2}$, es por ello que cualesquiera dos puntos al interior del cuadrado pequeño estarán distanciados menos que $\frac{\sqrt{2}}{2}$.

$\square$

Problema 4. Prueba que una línea recta que no pasa por uno de los vértices de un triángulo, no puede cortar los tres lados del triángulo.

Solución. Tenemos que una recta divide al plano en dos regiones. Si tomamos estas regiones como «casillas» tenemos que en una de nuestras casillas hay al menos dos puntos del triángulo los cuales forman un segmento de recta que es uno de los lados del triángulo. Con esto tenemos que la recta no corta ese lado del triángulo.

$\square$

Puedes dejar dudas de la entrada o soluciones alternativas a algunos de estos problemas aquí abajo en los comentarios.

Más ejemplos

Puedes encontrar más ejemplos en la Sección 2.6 del Larson, o en la siguiente entrada que escribiremos al respecto.

Usa la paridad

Por Leonardo Ignacio Martínez Sandoval

HeuristicasLos números enteros pueden ser pares o impares, dependiendo de si son divisibles entre dos o no. Más aún, se van alternando uno y uno. Además, es muy sencillo saber cómo es la paridad de la suma de dos números o bien de su producto si sabes la paridad de esos números. Estas ideas pueden parecer muy básicas, pero ayudan en una gran cantidad de problemas y son una introducción a los invariantes.

Cuando en un problema observamos nada más la paridad, estamos cubriendo una gran cantidad de casos nada más analizando pocos. En estos videos vemos cómo se aplica la idea de paridad en varios problemas de tableros, juegos, álgebra y teoría de números.

Ir a los videos…

Busca una contradicción

Por Leonardo Ignacio Martínez Sandoval

HeuristicasTerminamos esta serie de técnicas de resolución de problemas con una de las técnicas más finas y más usadas en las matemáticas: las pruebas por contradicción.

La idea es la siguiente. Por un momento suponemos que lo que queremos demostrar es falso. Después trabajaremos haciendo todo lo demás correctamente. La idea es llegar a una contradicción con las hipótesis del problema, o bien a algo que sabemos que es imposible. De esta forma, sabemos que debe haber un error en la demostración de eso imposible. Y como lo único que hicimos mal fue suponer que lo original era falso, debemos tener que en realidad es verdadero.

En estos videos veremos varios ejemplos de este argumento para acostumbrarnos. Es súper útil pensar en estos argumentos casi automáticamente.

Ir a los videos…