Archivo de la etiqueta: ecuaciones lineales

Ecuaciones Diferenciales I: Ecuaciones diferenciales lineales de primer orden y el teorema de existencia y unicidad – Método de variación de parámetros

Por Omar González Franco

Las leyes de la naturaleza no son más que los pensamientos matemáticos de Dios.
– Euclides

Introducción

Hemos comenzado a desarrollar métodos de resolución de ecuaciones diferenciales lineales de primer orden. El tipo de ecuaciones que queremos resolver es

$$\dfrac{dy}{dx} + P(x) y = Q(x) \label{1} \tag{1}$$

En la entrada anterior vimos que la solución general $y(x)$ es la suma de la solución homogénea $y_{h}(x)$, más la solución particular $y_{p}(x)$.

$$y(x) = y_{h}(x) + y_{p}(x) \label{2} \tag{2}$$

La solución homogénea está dada como

$$y_{h}(x) = k e^{- \int P(x) dx} = \dfrac{k}{\mu (x)} \label{3} \tag{3}$$

Mientras que la solución particular tiene la forma

$$y_{p}(x) = e^{- \int{P(x) dx}} \left( \int{e^{\int{P(x) dx}} Q(x) dx} \right) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} \right) \label{4} \tag{4}$$

Donde $\mu (x)$ es el factor integrante

$$\mu(x) = e^{\int{P(x) dx}} \label{5} \tag{5}$$

Así, la solución general de la ecuación diferencial (\ref{1}) es

$$y(x) = k e^{-\int{P(x) dx}} + e^{-\int{P(x) dx}} \left(\int{e^{\int{P(x) dx}}Q(x) dx}\right) \label{6} \tag{6}$$

O de forma más compacta

$$y(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} + k \right) \label{7} \tag{7}$$

En la entrada anterior mencionamos que hay dos métodos distintos para la obtención de la solución particular, ya presentamos el método por factor integrante, en este entrada vamos a desarrollar el método conocido como variación de parámetros.

Método de variación de parámetros

Sabemos que la solución de la ecuación diferencial homogénea

$$\dfrac{dy}{dx} + P(x) y = 0 \label{8} \tag{8}$$

es

$$y_{h}(x) = k e^{- \int P(x) dx}$$

Este resultado nos incita a suponer que para la ecuación no homogénea

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

la solución particular puede tener la forma

$$y_{p}(x) = k(x) e^{- \int P(x) dx} \label{9} \tag{9}$$

En donde $k$ pasa a ser una función dependiente de $x$. El método de variación de parámetros consiste en determinar justamente la expresión explícita de $k(x)$.

Sustituyamos la solución propuesta (\ref{9}) en la ecuación no homogénea (\ref{1}).

\begin{align*}
\dfrac{dy_{p}}{dx} + P(x) y_{p} &= \dfrac{d}{dx} \left(k e^{- \int P(x) dx} \right) + P(x) k e^{- \int P(x) dx} \\
&= \left[k \dfrac{d}{dx} \left( e^{- \int P(x) dx} \right) + \dfrac{dk}{dx} e^{- \int P(x) dx}\right] + P(x) k e^{- \int P(x) dx} \\
&= – k P(x) e^{- \int P(x) dx} + \dfrac{dk}{dx} e^{- \int P(x) dx} + k P(x) e^{- \int P(x) dx} \\
&= \dfrac{dk}{dx} e^{- \int P(x) dx} \\
&= Q(x)
\end{align*}

De la última igualdad obtenemos que

$$\dfrac{dk}{dx} = e^{\int P(x) dx} Q(x) \label{10} \tag{10}$$

Integremos ambos lados de la ecuación con respecto a $x$.

\begin{align*}
\int{\left( \dfrac{dk}{dx} \right) dx} &= \int{ \left( e^{\int P(x) dx} Q(x) \right) dx} \\
k(x) + c &= \int{ \left( e^{\int P(x) dx} Q(x) \right) dx} \\
\end{align*}

Si consideramos $c = 0$ obtenemos que la forma explícita de $k(x)$ es

$$k(x) = \int{ e^{\int P(x) dx} Q(x) dx} \label{11} \tag{11}$$

Sustituyamos este resultado en la solución particular (\ref{9}).

$$y_{p}(x) = \left( \int{e^{\int P(x) dx} Q(x) dx} \right) e^{- \int P(x) dx} \label{12} \tag{12}$$

Si consideramos el factor integrante (\ref{5}) esta función la podemos escribir como

$$y_{p}(x) = \dfrac{1}{\mu (x)} \left( \int{ \mu (x) Q(x) dx} \right) \label{13} \tag{13}$$

Hemos obtenido la misma expresión que usando el método por factor integrante visto en la entrada anterior.

Algunas consideraciones

La solución completa (o solución general) de la ecuación diferencial lineal (\ref{1}) es la suma de la solución homogénea $y_{h}(x)$, más la solución particular $y_{p}(x)$, es importante reconocer este hecho ya que en muchas ocasiones la ecuación homogénea, y por tanto la solución homogénea, serán muy relevantes si estamos estudiando algún fenómeno real. Sin embargo, cuando nuestro objetivo es obtener la solución completa no es necesario obtener ambas soluciones por separado para después sumarlas, sino que podemos intentar obtener directamente la solución general, esto está directamente relacionado con la omisión de constantes de integración que hemos hecho, así que es momento de explicar qué está ocurriendo con estas constantes.

Es posible desarrollar los métodos por factor integrante y variación de parámetros manteniendo las constantes de integración, aunque los cálculos se vuelven más extensos, sin embargo al final todas las constantes que resulten se pueden agrupar en una sola constante $C$, es así que en ambos métodos siempre llegaremos al resultado

$$y(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} + C \right) \label{14} \tag{14}$$

Donde $C$ es la constante resultante de juntar todas las constantes de integración que pudieran aparecer en el proceso.

El resultado (\ref{14}) corresponde a la solución general que hemos obtenido anteriormente, es decir, si en ambos métodos mantenemos a las constantes de integración podemos obtener la solución general. Lo que nosotros hicimos anteriormente fue que la constante $k$ de la ecuación (\ref{7}) la asociábamos a la solución homogénea (\ref{3}), de manera que al sumar ambas soluciones ya obteníamos la solución general, pero en realidad también se puede obtener de ambos métodos manteniendo a las constantes. Decidimos hacerlo así porque es importante el papel que pueden tomar por separado las soluciones homogénea y particular en algunas situaciones, además de que omitir las constantes evitó hacer cálculos más extensos en ambos métodos.

Finalmente, como ya mencionamos antes, no se recomienda resolver ecuaciones diferenciales usando las formulas obtenidas para las soluciones, sino aplicar cada paso del método correspondiente, sin embargo, a continuación presentamos una serie de pasos que se recomiendan seguir para la resolución de ecuaciones diferenciales lineales de primer orden.

Método para resolver ecuaciones lineales

Si bien es cierto que ya conocemos las formas explícitas de las soluciones de las ecuaciones diferenciales lineales, es conveniente seguir una serie de pasos para resolverlas. Dichos pasos se describen a continuación.

  1. Escribir la ecuación diferencial lineal en la forma canónica

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

  1. Calcular el factor integrante $\mu (x)$ mediante la fórmula

$$\mu (x) = e^{\int{P(x) dx}}$$

  1. Multiplicar a la ecuación diferencial en su forma canónica por el factor integrante en ambos lados de la ecuación.

$$\mu (x) \dfrac{dy}{dx} + \mu (x) P(x) y = \mu (x) Q(x)$$

  1. Identificar que el lado izquierdo de la ecuación es la derivada de $\mu(x)$ por $y(x)$ y sustituir.

$$\dfrac{d}{dx} (\mu y) = \mu (x) Q(x)$$

  1. Integrar la última ecuación y dividir por $\mu (x)$ para obtener finalmente la solución general $y(x)$. En la última integración debemos considerar a la constante de integración.

Esta serie de pasos nos permiten obtener directamente la solución general de la ecuación diferencial lineal, es por ello que en el último paso sí debemos considerar a la constante de integración, dicha constante representa el resultado de juntar todas las contantes que podremos omitir en pasos intermedios.

Realicemos un ejemplo en el que apliquemos este algoritmo de resolución.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\left( x^{2} +1 \right) \dfrac{dy}{dx} = x^{2} + 2x -1 -4xy$$

Solución: El primer paso es escribir a la ecuación diferencial en la forma canónica.

\begin{align*}
\left( x^{2} +1 \right) \dfrac{dy}{dx} &= x^{2} + 2x -1 -4xy \\
\dfrac{dy}{dx} &= \dfrac{x^{2} + 2x -1 -4xy}{x^{2} +1} \\
\dfrac{dy}{dx} &= \dfrac{x^{2} + 2x -1}{x^{2} +1} -\left( \dfrac{4x}{x^{2} +1} \right) y
\end{align*}

La forma canónica es

$$\dfrac{dy}{dx} + \left( \dfrac{4x}{x^{2} +1} \right) y = \dfrac{x^{2} + 2x -1}{x^{2} +1}$$

Identificamos que

$$P(x) = \dfrac{4x}{x^{2} +1} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{x^{2} + 2x -1}{x^{2} +1}$$

El segundo paso es determinar el factor integrante.

$$\mu(x) = e^{\int{P(x) xd}} = e^{\int{\left( \dfrac{4x}{x^{2} +1} \right) dx}}$$

Resolvamos la integral omitiendo la constante de integración.

\begin{align*}
\int{\dfrac{4x}{x^{2} +1} dx} &= 4 \int{\dfrac{x}{x^{2} +1} dx} \\
&= \dfrac{4}{2} \ln{\left( x^{2} + 1 \right)} \\
&= 2 \ln{\left(x^{2} + 1\right)} \\
&= \ln{\left( x^{2} + 1\right)^{2}}
\end{align*}

Sustituimos en el factor integrante.

\begin{align*}
\mu (x) = e^{\ln{\left( x^{2} + 1\right)^{2}}} = \left( x^{2} + 1\right)^{2}
\end{align*}

Por tanto, el factor integrante es

$$\mu (x) = ( x^{2} + 1)^{2}$$

El tercer paso es multiplicar a la ecuación diferencial en su forma canónica por el factor integrante en ambos lados.

\begin{align*}
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + \left( x^{2} + 1\right)^{2} \left( \dfrac{4x}{x^{2} +1} \right) y &= \left( x^{2} + 1\right)^{2} \left(\dfrac{x^{2} + 2x -1}{x^{2} +1}\right) \\
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y &= \left( x^{2} + 1\right) \left(x^{2} + 2x -1\right) \\
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y &= x^{4} + 2x^{3} +2x -1
\end{align*}

El cuarto paso es identificar que

$$\dfrac{d}{dx}(\mu (x) y(x)) = \dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) = \left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y$$

Así que ahora podemos escribir

$$\dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) = x^{4} + 2x^{3} +2x -1$$

El quinto y último paso es integrar esta relación por ambos lados con respecto a $x$ considerando a la constante de integración.

\begin{align*}
\int{\dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) dx} &= \int{\left( x^{4} + 2x^{3} +2x -1\right)}dx \\
y \left( x^{2} + 1\right)^{2} + k &= \int{\left( x^{4} + 2x^{3} +2x -1\right)} dx
\end{align*}

Resolvamos la integral.

\begin{align*}
\int{\left( x^{4} + 2x^{3} +2x -1\right)} dx &= \int{x^{4} dx} + \int{2x^{3} dx} + \int{2x dx} -\int{dx} \\
&= \dfrac{x^{5}}{5} + 2\left(\dfrac{x^{4}}{4}\right) + 2 \left(\dfrac{x^{2}}{2}\right) -x \\
&= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x
\end{align*}

Omitimos todas las constantes de esta integral. Sustituyendo este resultado obtenemos

\begin{align*}
y \left( x^{2} + 1\right)^{2} + k &= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x \\
y\left( x^{2} + 1\right)^{2} &= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K \\
y(x) &= \dfrac{1}{\left(x^{2} + 1\right)^{2}} \left( \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K \right)
\end{align*}

Por lo tanto, la solución general de la ecuación diferencial

$$\left( x^{2} +1 \right) \dfrac{dy}{dx} = x^{2} + 2x -1 -4xy$$

es

$$y(x) = \dfrac{1}{\left(x^{2} + 1\right)^{2}} \left( \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K\right)$$

Donde $K$ es la constante que engloba a todas las contantes de integración que omitimos.

$\square$

Para concluir el análisis de las ecuaciones diferenciales lineales de primer orden, presentaremos el teorema de existencia y unicidad para este tipo de ecuaciones.

Teorema de existencia y unicidad

Ya presentamos el teorema de existencia y unicidad para ecuaciones diferenciales de primer orden, podemos usar este resultado para justificar el teorema de existencia y unicidad para el caso de las ecuaciones diferenciales lineales de primer orden.

Demostración: Consideremos la ecuación diferencial

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Reescribamos esta ecuación en su forma normal.

$$\dfrac{dy}{dx} = Q(x) -P(x) y$$

Definimos

$$f(x, y) = Q(x) -P(x) y \label{15} \tag{15}$$

De manera que

$$\dfrac{dy}{dx} = f(x, y) \label{16} \tag{16}$$

Debido a que en un intervalo de solución $\delta$ debe satisfacerse que $P(x)$ y $Q(x)$ sean continuas, entonces tenemos garantizado que (\ref{15}) es continua y por tanto $\dfrac{\partial f}{\partial y}$ también lo es, con esto estamos cumpliendo las hipótesis del teorema de existencia y unicidad para ecuaciones diferenciales de primer orden que establecimos anteriormente, aplicando dicho teorema obtenemos que entonces existe algún intervalo $\delta_{0}: (x_{0} -h, x_{0} + h)$, $h > 0$, contenido en $\delta$, y una función única $\gamma (x)$, definida en $\delta_{0}$, que satisface la condición inicial $y(x_{0}) = y_{0}$.

$\square$

Apliquemos este resultado a la solución general. Consideremos la condición inicial $y(x_{0}) = y_{0}$ y la solución general de la ecuación diferencial no homogénea (\ref{1})

$$y(x) = \dfrac{1}{\mu (x)} \left( \int{ \mu (x) Q(x) dx} + k \right)$$

Apliquemos la condición inicial.

$$y_{0} = y(x_{0}) = \dfrac{1}{\mu (x_{0})} \left( \int{ \mu (x) Q(x) dx} \Bigg|_{x = x_{0}} + k \right) \label{17} \tag{17}$$

De este resultado se puede despejar a $k$ obteniendo un único valor, digamos $k = k_{0}$, por lo tanto la función

$$\gamma (x) = \dfrac{1}{\mu (x_{0})} \left( \int{ \mu (x) Q(x) dx} + k_{0} \right) \label{18} \tag{18}$$

es solución del problema de valor inicial. Así, para cada $x_{0} \in \delta_{0}$, encontrar una solución particular de la ecuación (\ref{1}) es exactamente lo mismo que encontrar un valor adecuado de $k$ en la ecuación (\ref{17}), es decir, a todo $x_{0} \in \delta_{0}$ le corresponde un distinto $k$.

Con esto damos por concluido el desarrollo de métodos para resolver ecuaciones diferenciales lineales de primer orden, en la siguiente entrada comenzaremos a desarrollar métodos para resolver ecuaciones diferenciales de primer orden que no son lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. De acuerdo al algoritmo para resolver ecuaciones diferenciales lineales de primer orden, encontrar la solución general de las siguientes ecuaciones diferenciales.
  • $3\dfrac{y}{x} -8 + 3\dfrac{dy}{dx} = 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0$
  • $\dfrac{dy}{dx} + \cos(x) (y -1) = 0$
  1. Una vez que se conoce la solución general de la ecuación diferencial
    $$x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0$$ Resolver los siguientes problemas de valor inicial y analizar cada situación considerando el teorema de existencia y unicidad.
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(0) = 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(0) = y_{0}, \hspace{1cm} y_{0} > 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(x_{0}) = y_{0}, \hspace{1cm} x_{0} > 0, \hspace{0.3cm} y_{0} > 0$

    ¿Que se puede concluir al respecto?.

Más adelante…

Ya sabemos resolver ecuaciones diferenciales lineales de primer orden tanto homogéneas como no homogéneas y conocemos el teorema de existencia y unicidad que justifica los métodos que hemos desarrollado.

En la siguiente entrada comenzaremos a desarrollar métodos para resolver ecuaciones diferenciales de primer orden no lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales homogéneas de segundo orden. Propiedades del conjunto de soluciones

Por Eduardo Vera Rosales

Introducción

Hola a todos. Después de haber estudiado ecuaciones diferenciales de primer orden, llegamos a la segunda unidad del curso donde analizaremos ecuaciones diferenciales de segundo orden. Dada la dificultad para resolver este tipo de ecuaciones, nos enfocaremos únicamente en las ecuaciones lineales de segundo orden, es decir, de la forma $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t).$$

En esta entrada comenzaremos con el caso de las ecuaciones homogéneas de segundo orden, es decir, cuando $g(t)$ es la función constante cero en un intervalo $(\alpha,\beta)$. Estudiaremos la teoría de las soluciones a este tipo de ecuaciones antes de analizar las distintas técnicas para resolverlas. Debido a que el conjunto de soluciones a este tipo de ecuaciones se comportan de buena manera, podremos encontrar la solución general a la ecuación si previamente conocemos dos soluciones particulares que cumplan una hipótesis que daremos a conocer en el intervalo $(\alpha,\beta)$. Definiremos el Wronskiano y la independencia lineal de dos soluciones a una ecuación diferencial, y probaremos distintos teoremas y propiedades de las soluciones con base en estos conceptos.

¡Comencemos!

Ecuaciones lineales homogéneas de segundo orden, Teorema de existencia y unicidad y solución general

En este video damos una introducción a las ecuaciones diferenciales de segundo orden, y en particular, a las ecuaciones lineales de segundo orden. Enunciamos el teorema de existencia y unicidad para ecuaciones lineales de segundo orden, y comenzamos a desarrollar la teoría para encontrar la solución general a ecuaciones homogéneas.

Conjunto fundamental de soluciones y el Wronskiano

Continuando con la teoría de las soluciones a ecuaciones homogéneas de segundo orden, demostramos un par de teoremas que nos ayudan a encontrar la solución general a este tipo de ecuaciones. Además, definimos al conjunto fundamental de soluciones de la ecuación homogénea y el Wronskiano de dos funciones.

Independencia lineal de soluciones

En este último video definimos el concepto de independencia lineal de soluciones a la ecuación homogénea de segundo orden, y demostramos un teorema que nos da otra forma de encontrar un conjunto fundamental de soluciones a la ecuación diferencial homogénea.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que $y_{1}(t)=\sin{t}$ y $y_{2}(t)=\cos{t}$ son soluciones a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+y=0.$$ Posteriormente prueba que $y(t)=k_{1}\sin{t}+k_{2}\cos{t}$ también es solución a la ecuación, donde $k_{1}$, $k_{2}$ son constantes.
  • Prueba que $\{\sin{t},\cos{t}\}$ es un conjunto fundamental de soluciones a la ecuación del ejercicio anterior. ¿En qué intervalo es el conjunto anterior un conjunto fundamental de soluciones?
  • Prueba que si $p(t)$, $q(t)$ son continuas en $(\alpha,\beta)$, $y_{1}(t)$, $y_{2}(t)$ son soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en $(\alpha,\beta)$ y existe $t_{0}$ en dicho intervalo, donde $W[y_{1},y_{2}](t_{0})\neq 0$, entonces $\{y_{1}(t),y_{2}(t)\}$ forman un conjunto fundamental de soluciones en $(\alpha,\beta)$.
  • Prueba que si $p(t)$, $q(t)$ son continuas en $(\alpha,\beta)$, entonces existe un conjunto fundamental de soluciones $\{y_{1}(t),y_{2}(t)\}$ a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en el mismo intervalo. (Hint: Toma un punto en el intervalo $(\alpha,\beta)$ y dos problemas de condición inicial adecuados de tal forma que puedas utilizar el teorema de existencia y unicidad y el Wronskiano para deducir el resultado).
  • Prueba que $y_{1}(t)=t|t|$, $y_{2}(t)=t^{2}$ son linealmente independientes en $[-1,1]$ pero linealmente dependientes en $[0,1]$. Verifica que el Wronskiano se anula en $\mathbb{R}$. ¿Pueden ser $y_{1}(t)$, $y_{2}(t)$ soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en $(-1,1)$ si $p$ y $q$ son continuas en este intervalo?

Más adelante

En la próxima entrada conoceremos el método de reducción de orden, donde supondremos que ya conocemos una solución particular $y_{1}(t)$ a la ecuación lineal homogénea de segundo orden, y con ayuda de esta hallaremos una segunda solución $y_{2}(t)$ tal que forma un conjunto fundamental de soluciones junto con $y_{1}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Teorema de existencia y unicidad para ecuaciones lineales de primer orden

Por Eduardo Vera Rosales

Introducción

En las entradas anteriores hemos estudiado las soluciones a ecuaciones de primer orden desde dos distintos puntos de vista, el cualitativo y el analítico. En el camino hemos encontrado un comportamiento similar en las soluciones, como es el que el problema de condición inicial tenga una solución, o que las curvas solución no se intersectan en el plano. Estos comportamientos no son una casualidad, y están justificados por el teorema de existencia y unicidad que nos dice que el problema de condición inicial tiene una y sólo una solución definida en un intervalo $(a,b)$. Este teorema, en su versión para ecuaciones lineales sustenta el trabajo que hemos realizado en los últimos videos.

Teorema de existencia y unicidad para ecuaciones lineales de primer orden

En el video demostramos la versión del teorema de existencia y unicidad para ecuaciones lineales de primer orden.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Resuelve el problema de condición inicial $\frac{dy}{dt}=\frac{y}{t}$ ; $y(t_{0})=y_{0}$, con $t_{0}\neq 0$, $y_{0}\neq 0$.
  • Resuelve el problema de condición inicial inicial $\frac{dy}{dt}=\frac{y}{t}$ ; $y(0)=0$.
  • Resuelve el problema de condición inicial $\frac{dy}{dt}=\frac{y}{t}$ ; $y(0)=y_{0}$, con $y_{0}\neq 0$.
  • ¿Contradicen las soluciones de los ejercicios anteriores el Teorema de existencia y unicidad?
  • Esboza las soluciones a la ecuación diferencial.

Más adelante

Con esta entrada terminamos el estudio a las ecuaciones lineales de primer orden. En la siguiente entrada comenzaremos a estudiar ecuaciones diferenciales no lineales de primer orden. En particular veremos un caso especial de estas ecuaciones, a las que llamaremos ecuaciones separables.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales no homogéneas de primer orden. Solución por factor integrante y por variación de parámetros

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos el estudio de las ecuaciones diferenciales lineales de primer orden. En particular, resolvimos el caso cuando la función $g(t)$ que aparece en la ecuación $a_{0}(t) \frac{dy}{dt}+a_{1}(t)y=g(t)$ es la función constante cero.

Ahora veremos el caso no homogéneo, es decir, cuando la función $g(t)$ no es cero. Resolveremos esta ecuación por dos vías distintas. El primer método es mediante la búsqueda de una función que dependa de la variable independiente $t$ que nos ayude a simplificar la ecuación. A esta función la llamaremos factor integrante. El segundo método, llamado variación de parámetros, utiliza la solución general a la ecuación homogénea asociada, para encontrar a su vez la solución general a la ecuación no homogénea.

¡Vamos a comenzar!

Solución a ecuación lineal no homogénea por factor integrante

En el primer video resolvemos la ecuación diferencial $a_{0}(t) \frac{dy}{dt}+a_{1}(t)y=g(t)$ como un caso general por el método de factor integrante. En el segundo video resolvemos algunas ecuaciones por el mismo método.

Solución a ecuación lineal no homogénea por variación de parámetros

En el primer video resolvemos de forma general la ecuación lineal no homogénea, ahora por el método de variación de parámetros. En el segundo video resolvemos dos ecuaciones por este método, una de ellas la resolvimos en la sección anterior por el método de factor integrante, esto para comprobar que los dos métodos llevan a la misma solución.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que la expresión de la solución general para la ecuación lineal homogénea es un caso particular de la solución general de la ecuación lineal no homogénea.
  • Resuelve las siguientes ecuaciones diferenciales por los métodos de factor integrante y variación de parámetros: $$\frac{dy}{dt}=y+t^{2}$$ $$\frac{dy}{dt}+y+t+t^{2}+t^{3}=0.$$
  • Intenta resolver la ecuación $t^{2}\frac{dy}{dt}+y=\frac{1}{t}$ con $t>0$, por el método de variación de parámetros. ¿Qué dificultades se presentan? Esto muestra que habrá ocasiones en que alguna ecuación diferencial no podrá ser resuelta por ciertos métodos.
  • Sean $y_{1}$ y $y_{2}$ soluciones a las ecuaciones diferenciales $\frac{dy}{dt}+p(t)y=q_{1}(t)$ y $\frac{dy}{dt}+p(t)y=q_{2}(t)$. Prueba que $c_{1}y_{1}+c_{2}y_{2}$ es solución a la ecuación $\frac{dy}{dt}+p(t)y=c_{1}q_{1}(t)+c_{2}q_{2}(t)$, donde $c_{1}$ y $c_{2}$ son constantes.
  • Cuando resolvimos la ecuación lineal no homogénea por variación de parámetros, encontramos una forma explícita para la suma de soluciones $y_{H}+y_{P}$ donde $y_{H}$ es solución general a la ecuación homogénea y $y_{P}$ es una solución particular a la ecuación no homogénea, y afirmamos que esta nueva solución es la misma que encontramos por el método del factor integrante. Ahora supongamos por un momento que no conocemos el método del factor integrante. Argumenta por qué $y_{H}+y_{P}$ es solución general a la ecuación no homogénea. (Hint: Utiliza el ejercicio anterior).
  • Resuelve la ecuación diferencial $\frac{dT}{dt}=-50(T(t)-30)$ con condición inicial $T(0)=75$.

Más adelante

Hasta el momento hemos estudiado diversos tipos de ecuaciones diferenciales desde un punto de vista cualitativo y también analítico. Sin embargo, muchos de los resultados a los que hemos llegado tienen una justificación que aún no hemos revisado a detalle. Dicha justificación está dada por el Teorema de existencia y unicidad.

En la siguiente entrada demostraremos una primera versión de este teorema, enfocado en ecuaciones lineales de primer orden, que son las ecuaciones que hemos estudiado en los últimos videos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales homogéneas de primer orden

Por Eduardo Vera Rosales

Introducción

Durante las dos últimas entradas conocimos un poco de la geometría de las soluciones a ecuaciones diferenciales de primer orden, aún sin conocerlas explícitamente. En esta entrada resolveremos por primera vez de manera analítica algunas de ellas. En particular, resolveremos ecuaciones del tipo $a_{0}(t)\frac{dy}{dt}+a_{1}(t)y=0$, que llamaremos ecuaciones homogéneas. Primero encontraremos la solución a la ecuación de forma general, y posteriormente resolveremos algunos ejemplos particulares.

Ecuaciones lineales homogéneas

En el primer video resolvemos la ecuación lineal homogénea de primer orden en su forma general.

En el segundo video ponemos en práctica lo aprendido en el video anterior para resolver un par de ecuaciones diferenciales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la solución general a la ecuación $\frac{dy}{dt}+e^{t}y=0$.
  • Resuelve el problema de condición inicial $t^2\frac{dy}{dt}+\sqrt{t}y=0$ ; $y(0)=5$. Encuentra el intervalo donde la solución está definida.
  • Antes de resolver analíticamente, esboza las soluciones a la ecuación $\frac{dP}{dt}=kP$, con $k>0$, $P(t) \geq 0, \forall t \in \mathbb{R}$, que modela el crecimiento de una población. (Para mayor referencia a esta ecuación revisa la primer entrada de este curso). Si no recuerdas cómo hacerlo, te recomiendo revisar la entrada anterior.
  • Encuentra la solución general a la ecuación anterior.
  • Compara las soluciones que dibujaste en el tercer ejercicio con las soluciones que encontraste en el cuarto ejercicio. ¿Qué observas?

Más adelante

Ya sabemos cómo resolver ecuaciones homogéneas. Ahora vamos a ver el otro lado de la moneda, es decir, vamos a resolver ecuaciones no homogéneas.

En la siguiente entrada estudiaremos dos métodos para resolver éste tipo de ecuaciones: primero por medio de una función que llamaremos factor integrante, y más adelante por el método de variación de parámetros en el cual las ecuaciones homogéneas nos serán de mucha ayuda.

Nos vemos en la próxima entrada!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»