Archivo de la etiqueta: Cálculo I

Cálculo Diferencial e Integral I: Sucesiones de Cauchy

Por Juan Manuel Naranjo Jurado

Introducción

En las entradas anteriores vimos las propiedades de una sucesión convergente para lo cual era necesario conocer su límite. En esta ocasión estudiaremos a las sucesiones de Cauchy, éstas cumplen una propiedad particular: dado un valor positivo arbitrario, existe un momento a partir del cual la distancia entre dos términos cualesquiera de la sucesión es menor al valor arbitrario establecido. Además, probaremos la relación entre este tipo de sucesiones y las sucesiones convergentes.

Sucesiones de Cauchy

La definición formal de sucesión de Cauchy se da a continuación.

Definición. Se dice que una sucesión $\{a_n\}$ de números reales es una sucesión de Cauchy si para todo $\varepsilon > 0$ existe un número natural $k$ tal que para todos los números naturales $n$, $m \geq k$ se satisface que $|a_n – a_m| < \varepsilon.$

En esta entrada demostraremos la equivalencia entre que una sucesión sea de Cauchy y que sea convergente. La gran ventaja que presenta el concepto de sucesión de Cauchy es que podremos probar que una sucesión converge sin necesidad de conocer su límite, puesto que la definición no hace uso de él. Pero antes de probarlo, veremos un par de ejemplos para familiarizarnos con la definición.

Ejemplo 1. La sucesión $\{\frac{1}{n}\}$ es una sucesión de Cauchy.

Demostración.

Sea $\varepsilon > 0$.

Tomemos $k > \frac{2}{\varepsilon}$. Si $n$, $m > k$, entonces $\frac{1}{n} < \frac{1}{k} < \frac{\varepsilon}{2}$. Análogamente se tiene que $\frac{1}{m} < \frac{\varepsilon}{2}.$

Por lo anterior, si $n$, $m > k$, entonces

\begin{align*}
\left\lvert \frac{1}{n}-\frac{1}{m} \right\rvert & \leq \frac{1}{n} + \frac{1}{m} \\
& < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
& = \varepsilon.
\end{align*}

$$\therefore \left\lvert \frac{1}{n}-\frac{1}{m} \right\rvert < \varepsilon.$$

Se concluye que $\{\frac{1}{n}\}$ es una sucesión de Cauchy.

$\square$

Ejemplo 2. Prueba que la sucesión $\{ \frac{n}{n+1} \}$ es de Cauchy.

Demostración.

Sea $\varepsilon > 0.$ Consideremos $k \in \mathbb{N}$ tal que $k > \frac{2}{\varepsilon}$, y por tanto $ \frac{1}{k} < \frac{\varepsilon}{2}$. Además, si $n$, $m > k$, entonces se sigue que

\begin{align*}
\left| \frac{n}{n+1} – \frac{m}{m+1} \right| & = \left| \frac{nm+n-nm-m}{(n+1)(m+1)} \right| \\ \\
& = \left| \frac{n-m}{(n+1)(m+1)} \right| \\ \\
& \leq \left| \frac{n-m}{nm} \right| , \text{ pues } (n+1)(m+1) > nm \\ \\
& = \left| \frac{n}{nm} – \frac{m}{nm} \right| \\ \\
& = \left| \frac{1}{m} – \frac{1}{n} \right| \\ \\
& \leq \frac{1}{n} + \frac{1}{m} \\ \\
& < \frac{1}{k} + \frac{1}{k}, \text{ pues } n,m > k \\ \\
& < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}, \text{ pues } \frac{1}{k} < \frac{\varepsilon}{2} \\ \\
& = \varepsilon.
\end{align*}

Por tanto, $\{ \frac{n}{n+1} \}$ es de Cauchy.

$\square$

Ejemplo 3. Demuestra que la sucesión $\{ (-1)^n \}$ no es de Cauchy.

Demostración.

Debemos probar que existe $\varepsilon > 0$ tal que para todo $k \in \mathbb{N}$, existe al menos un $n > k$ y al menos un $m > k$, tales que $|a_n-a_m| \geq \varepsilon$.

Notemos que la sucesión toma el valor $1$ cuando $n$ es par y $-1$ cuando $n$ es impar. Así, consideremos $\varepsilon = 2$ y sea $k \in \mathbb{N}$. Tomemos cualquier número par $n$ tal que $n > k$ y sea $m = n+1$, $m$ impar. Entonces se tiene que

$$|a_n-a_m| = |1-(-1)| = 2 = \varepsilon.$$

Por tanto, se puede concluir que $\{(-1)^n\}$ no es de Cauchy.

$\square$

Proposición. Si $\{a_n\}$ y $\{b_n\}$ son sucesiones de Cauchy, entonces la sucesión $\{a_n+b_n\}$ también es de Cauchy.

Demostración.

Sea $\varepsilon > 0$. Como $\{a_n\}$ es de Cauchy, para $\frac{\varepsilon}{2} > 0$ existe $k_1$ tal que si $n$, $m > k_1$, se tiene que $$|a_n-a_m| < \frac{\varepsilon}{2}.$$

Como $\{b_n\}$ es de Cauchy, para $\frac{\varepsilon}{2} > 0$ existe $k_2$ tal que si $n$, $m > k_2$, se tiene que $$|b_n-b_m| < \frac{\varepsilon}{2}.$$

Consideremos $k = max\{k_1, k_2 \}$, si $n$, $m > k$, entonces

\begin{align*}
|(a_n+b_n)-(a_m+b_m)| & = |(a_n-a_m)+(b_n-b_m)| \\
& \leq |a_n-a_m| + |b_n-b_m| \\
& < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\end{align*}

$$\therefore |(a_n+b_n)-(a_m+b_m)| < \varepsilon.$$

Por lo tanto, la sucesión $\{a_n+b_n\}$ también es de Cauchy.

$\square$

Una de las propiedades naturales de las sucesiones de Cauchy es que son sucesiones acotadas; esto derivado directamente de la definición donde debe existir un punto $k$ a partir de donde cualesquiera dos términos deben distar menos de $\varepsilon$. A continuación demostraremos tal propiedad.

Proposición. Toda sucesión de Cauchy está acotada.

Demostración.

Sea $\{a_n\}$ una sucesión de Cauchy. Entonces para $\varepsilon = 1$, existe $k \in \mathbb{N}$ tal que para $n \geq k$, se tiene que $|a_n – a_k| < \varepsilon = 1$. De la desigualdad del triángulo se tiene que

\begin{gather*}
& |a_n|-|a_k| \leq |a_n-a_k| < 1. \\
\Rightarrow & |a_n| \leq 1 + |a_k|.
\end{gather*}

Notemos que $1+|a_k|$ es una cota para los términos subsecuentes de $a_k$. Para extender la cota a los primeros $k-1$ términos, consideremos $M = max\{ |a_1|, |a_2|, \ldots, |a_{k-1}|, 1+|a_k|\}$. De esta forma, para todo $n \in \mathbb{N}$ se tiene que $|a_n| < M$. Por tanto, la sucesión está acotada.

$\square$

Es importante resaltar que no es equivalente que una sucesión sea de Cauchy a que cumpla que la distancia entre dos términos consecutivos sea cada vez menor, y lo veremos en el siguiente ejemplo.

Ejemplo 4. Sea $\{a_n\}$ tal que $a_n = \sqrt{n}$. Prueba que la sucesión $\{a_n\}$ satisface que

$$\lim_{n \to \infty} |a_{n+1}-a_n| = 0.$$

Pero que no es una sucesión de Cauchy.

Demostración.

Notemos que

\begin{align*}
|a_{n+1}-a_n| & = \left\lvert \sqrt{n+1}-\sqrt{n} \right\rvert \\ \\
& = \left( \sqrt{n+1}-\sqrt{n} \right) \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} \\ \\
& = \frac{n+1-n}{\sqrt{n+1}+\sqrt{n}} \\ \\ & = \frac{1}{\sqrt{n+1}+\sqrt{n}}.
\end{align*}

Por lo anterior, se sigue que
$$\lim_{n \to \infty} |a_{n+1}-a_n| = \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$$

Por otro lado, se tiene que la sucesión $\{a_n\}$ no está acotada, por lo cual no puede ser una sucesión de Cauchy.

$\square$

Relación entre sucesiones convergentes y de Cauchy

Como se menciona anteriormente, dentro del conjunto de los números reales, que una sucesión sea de Cauchy es equivalente a que sea convergente y a este hecho se le suele llamar Completitud de $\mathbb{R}$. Este tema se estudiará en cursos más avanzados, pero de forma intuitiva, que $\mathbb{R}$ sea completo quiere decir que «no deja huecos en la recta numérica». Es decir, a cada punto de la recta le corresponde un número real.

Teorema. Si $\{a_n\}$ es una sucesión convergente de números reales, entonces es de Cauchy.

Demostración

Sea $\varepsilon > 0$. Dado que $\{a_n\}$ es convergente, digamos a $L$, entonces para $\frac{\varepsilon}{2}$ existe un número $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ se satisface que $|a_n – L | < \frac{\varepsilon}{2}.$

Consideremos $k = n_0$. Si $n$, $m \geq k$, entonces

\begin{align*}
|a_n-a_m| & = |a_n-L+L-a_m| \\
& \leq|a_n-L| + |L-a_m| \\
& = |a_n-L| + |a_m – L| \\
& < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
& = \varepsilon.
\end{align*}

$$\therefore |a_n-a_m| < \varepsilon.$$

Por lo tanto, $\{a_n\}$ es de Cauchy.

$\square$

Teorema. Toda sucesión de Cauchy es convergente.

Demostración.

Sea $\{a_n\}$ una sucesión de Cauchy. Por la proposición revisada anteriormente, $\{a_n\}$ está acotada. Además, por el teorema de Bolzano-Weierstrass, existe una subsucesión $\{a_{n_r}\}$ convergente y llamemos $L$ al límite de tal subsucesión. Probaremos que $\{a_n\}$ también converge a $L$.

Sea $\varepsilon > 0$. Como la sucesión $\{a_n\}$ es de Cauchy, entonces existe $k \in \mathbb{N}$ tal que
$$|a_n-a_m| < \varepsilon \quad \forall n,m \geq k. \tag{1}$$

Por otro lado, como $\{a_{n_r} \}$ converge a $L$, existe $n_0 \in \mathbb{N}$ tal que

$$|a_{n_l} – L| < \varepsilon \quad \forall n_l \geq n_0. \tag{2}$$

Consideremos $M = max\{k, n_0\}$. Si $s \geq M \geq n_0$, entonces se cumple $(2)$ y además sabemos que $n_s \geq s \geq M \geq k$, pues $n_l$ es una sucesión creciente de números naturales. Por tanto, también se cumple $(1)$. De esto se sigue que

\begin{align*}
|a_s-L|& = |a_s-a_{n_s}+a_{n_s}-L| \\
& \leq |a_s-a_{n_s}|+|a_{n_s}-L| \\
& \leq \frac{\varepsilon}{2} +\frac{\varepsilon}{2} \\
& = \varepsilon.
\end{align*}

$$\therefore |a_s-L| < \varepsilon \quad \forall s \geq M.$$

Se concluye que $\{a_n\}$ es convergente.

$\square$

Más adelante…

Uno de los números más famosos en matemáticas y que probablemente has escuchado hablar de él es el número de Euler: $e$. En la siguiente entrada estudiaremos este número a través de sucesiones y probaremos algunas de sus propiedades.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Da un ejemplo de una sucesión de Cauchy.
  • Da un ejemplo de una sucesión acotada que no sea una sucesión de Cauchy.
  • Prueba mediante la definición que la sucesión $\{ \frac{n+1}{n} \}$ es de Cauchy.
  • Demuestra mediante la definición que la sucesión $\{ (-1)^n \}$ no es de Cauchy.
  • Demuestra mediante la definición que si $\{a_n\}$ y $\{b_n\}$ son sucesiones de Cauchy, entonces la sucesión $\{a_n \cdot b_n\}$ también es de Cauchy.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Subsucesiones

Por Juan Manuel Naranjo Jurado

Introducción

Dada una sucesión, si «quitamos» cierta cantidad de términos de tal forma que aún queda una cantidad infinita de ellos y se conserva el orden de la sucesión original, se genera un tipo particular de sucesión llamado subsucesión. En esta entrada probaremos algunas de sus características y veremos cómo se enlazan sus propiedades respecto a la sucesión original.

Subsucesiones

Primero formalizaremos la idea intuitiva dada en la introducción a través de la siguiente definición.

Definición. Sea $\{a_n\}$ una sucesión de números reales y sea $n_1 < n_2 < \ldots < n_k < \ldots$, con $k \in \mathbb{N}$, una sucesión estrictamente creciente de números naturales. Entonces la sucesión $\{ a_{n_k} \}$ dada por $$\{ a_{n_1}, a_{n_2}, \ldots, a_{n_k}, \ldots \}$$

es una subsucesión de $\{a_n\}$.

Observación. Es importante recalcar que en la definición se indica que los índices de los términos de la subsucesión son una sucesión por sí mismos. Esto se podrá apreciar claramente en los ejemplos siguientes.

Ejemplo 1. Consideremos la sucesión $\{ a_n \} = \{ \frac{1}{n} \}$.

Si tomamos los términos con índice par, obtenemos la subsucesión $\{ a_2, a_4, a_6, \ldots, a_{2k}, \ldots \}$ cuyos términos son

$$\left\lbrace \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots, \frac{1}{2k}, \ldots \right\rbrace.$$

De esta forma, se tiene que $n_1 = 2$, $n_2 = 4$, $\ldots$, $n_k = 2k$, $\ldots$. Y podemos observar que los índices forman una sucesión estrictamente creciente, es decir, se cumple que $$n_1 < n_2 < \ldots < n_k < \ldots.$$

Si consideramos ahora $n_k = 2k-1$, obtenemos una nueva subsucesión $\{ a_1, a_3, a_5, \ldots, a_{2k-1}, \ldots \}$ conformada por los términos

$$\left\lbrace \frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \ldots, \frac{1}{2k-1}, \ldots \right\rbrace.$$

Otra subsucesión podría ser la generada por los índices $n_k = k^2$, generando la subsucesión $\{ a_1, a_4, a_9, \ldots, a_{k^2} \}$, con términos

$$\left\lbrace \frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \ldots, \frac{1}{k^2}, \ldots \right\rbrace.$$

En contraste, podemos observar que $\{a_2, a_1, a_4, a_3, \ldots, a_{k+1}, a_{k-1}, \ldots \}$ no es una subsucesión de $\{ a_n \}$. Los términos generados son

$$\left\lbrace \frac{1}{2}, \frac{1}{1}, \frac{1}{4}, \frac{1}{3}, \ldots, \frac{1}{k+1}, \frac{1}{k-1}, \ldots \right\rbrace.$$

Y no es subsucesión debido a que ésta no respeta el orden de la sucesión original, en otras palabras, la sucesión de índices $\{n_k\}$ no es estrictamente creciente. En este caso
$$n_k = \begin{cases} k+1 & \text{ si } k \text{ es impar} \\ k-1 & \text{ si } k \text{ es par}. \end{cases}$$

Con lo cual podemos ver que $n_1 = 2$, $n_2=1$, $n_3 = 4$, $n_4 = 3$, $\ldots$, por lo que $\{n_k\}$ no es monótona y, particularmente, no es estrictamente creciente.

Una forma singular de crear subsucesiones a partir de una sucesión dada, es eliminando los primeros $m$ términos de la sucesión. Así, tenemos la siguiente definición.

Definición. Sea $\{a_n\}$ una sucesión de números reales y sea $m \in \mathbb{N}$. Definimos la cola-$m$ de $\{a_n\}$ como la sucesión

$$\{a_{m+n}: n \in \mathbb{N}\} = \{ a_{m+1}, a_{m+2}, \ldots \}.$$

La cola-$m$ es una subsucesión donde $n_1 = m+1$, $n_2 = m +2$, $\ldots$, $n_k = m+k$.

Ejemplo 2. Consideremos la sucesión $\{a_n\} = \{ \sqrt{n} \}.$

La cola-$10$ de $\{a_n\}$ es la subsucesión $\{ a_{11}, a_{12}, \ldots, a_k \ldots \}$, cuyos términos son $\{ \sqrt{11}, \sqrt{12}, \ldots, \sqrt{k}, \ldots \}.$

Subsucesiones de sucesiones convergentes

Si generamos una subsucesión de una sucesión convergente, es natural que dicha subsucesión también converja y, de hecho, lo hace al límite de la sucesión original.

Teorema. Si una sucesión $\{a_n\}$ de números reales converge a un número real $L$, entonces cualquier subsucesión $\{ a_{n_k}\}$ también converge a $L$.

Demostración.

Sea $\varepsilon > 0$. Como $\{a_n\}$ converge a $L$, entonces existe un número natural $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ se tiene que

$$|a_n – L| < \varepsilon.$$

Dado que $n_1 < n_2 < \ldots < n_k < \ldots$ es una sucesión creciente de números naturales, se tiene que $n_k \geq k$. De esta forma, tenemos que si $k \geq n_0$, entonces $n_k \geq k \geq n_0$. Por lo que se cumple que
$$|a_{n_k} – L| < \varepsilon.$$

Por lo tanto, la sucesión $\{ a_{n_k} \}$ también converge a $L$.

$\square$

Ejemplo 3. Del teorema anterior se sigue que dada una sucesión $\{a_n\}$ convergente a $L$, la cola-$m$ de la sucesión también converge a $L$ para todo $m \in \mathbb{N}$.

Ejemplo 4. Consideremos la sucesión $\{a_n\} = \{ \frac{1}{\pi^n}\}$.

Notemos que $\frac{1}{\pi^n} = \left( \frac{1}{\pi} \right)^n$.

Además, como $\pi > 1$, entonces $\frac{1}{\pi} <1$. Por tanto $$\lim_{n \to \infty} \frac{1}{\pi^n} = 0.$$

Así, toda subsucesión de $\{a_n\}$ converge a cero. Podemos considerar, por ejemplo, la subsucesión generada tomando $n_k = 2k$, es decir, la subsucesión $\{a_{n_k} \} = \{ \frac{1}{\pi^{2k}} \}$ converge a cero.

Subsucesiones y la no convergencia

Hasta este punto hemos revisado las subsucesiones y su relación con la convergencia; ahora es momento de encontrar qué sucede respecto a la no convergencia.

Teorema. Sea $\{a_n\}$ una sucesión de números reales. Entonces los siguientes enunciados son equivalentes:

  1. La sucesión $\{a_n\}$ no converge a $L \in \mathbb{R}.$
  2. Existe $\varepsilon_0 > 0$ tal que para cualquier $k \in \mathbb{N}$, existe $n_k \in \mathbb{N}$ tal que $n_k \geq k$ y $|a_{n_k} – L| \geq \varepsilon_0.$
  3. Existe $\varepsilon_0 > 0$ y una subsucesión $\{a_{n_k}\}$ de $\{a_n\}$ tal que $|a_{n_k} – L| \geq \varepsilon_0$ para todo $k \in \mathbb{N}.$

Demostración.

$1 \Rightarrow 2]$ Si $\{a_n\}$ no converge, entonces existe $\varepsilon_0 > 0$ para el cual no es posible encontrar un natural $k$ tal que para todo $n \geq k$ se cumpla $|a_n-L| < \varepsilon$. Es decir, para todo $k \in \mathbb{N}$ existe un natural $n_k \geq k$ tal que $|a_{n_k} – L | \geq \varepsilon_0.$

$2 \Rightarrow 3]$ Sea $\varepsilon_0 > 0$ tal que cumple $2)$ y sea $n_1 \in \mathbb{N}$ tal que $n_1 \geq 1$ y $|a_{n_1} – L| \geq \varepsilon_0.$

Ahora sea $n_2 \in \mathbb{N}$ tal que $n_2 > n_1$ y $|a_{n_2} – L| \geq \varepsilon_0.$

Sea $n_3 \in \mathbb{N}$ tal que $n_3 > n_2$ y $|a_{n_3} – L| \geq \varepsilon_0.$

Se continúa de esta manera para obtener la subsucesión $\{a_{n_k}\}$ tal que $|a_{n_k} – L| \geq \varepsilon_0$ para todo $k \in \mathbb{N}.$

$3 \Rightarrow 1]$ Supongamos que $\{a_n\}$ tiene una subsucesión $\{a_{n_k}\}$ que satisface la condición $3)$. Entonces $\{a_n\}$ no puede converger a $L$ porque sería una contradicción al teorema anterior.

$\square$

Criterios de no convergencia. Sea $\{a_n\}$ una sucesión de números reales. Si se cumple cualquiera de las siguientes condiciones, entonces la sucesión es divergente.

  1. $\{a_n\}$ tiene dos subsucesiones convergentes $\{a_{n_k}\}$ y $\{a_{n_l}\}$. Donde $\{a_{n_k}\}$ converge $L$ y $\{a_{n_l}\}$ converge a $M$, pero $L \neq M.$
  2. $\{a_n\}$ no está acotada.

Ejemplo 5. Prueba que la sucesión $\{(-1)^n\}$ no es convergente.

Demostración.

Consideremos las subsucesiones $\{(-1)^{2k}\}$ y $\{(-1)^{2k-1}\}$. Es claro que la primera subsucesión converge a $1$, mientras que la segunda converge a $-1$. Por tanto, la sucesión no converge.

$\square$

Ejemplo 6. Prueba que la sucesión $\{n!\}$ no es convergente.

Demostración.

Dado que $n! \geq n$ para todo $n \in \mathbb{N}$, y sabemos que la sucesión generada por los números naturales no está acotada. Se sigue que la sucesión $\{n!\}$ no está acotada. Por tanto, no es convergente.

$\square$

Ejemplo 7. Prueba que la sucesión $\{ 1 – (-1)^n + \frac{1}{n} \}$ no es convergente.

Demostración.

Consideremos las subsucesiones $\{ 1 – (-1)^{2k} + \frac{1}{2k} \}$ y $\{ 1 – (-1)^{2k-1} + \frac{1}{2k-1} \}.$

Notemos que

\begin{align*}
\lim_{k \to \infty } 1 – (-1)^{2k} + \frac{1}{2k} & = \lim_{k \to \infty } 1 – ((-1)^2)^k + \frac{1}{2k} \\ \\
& = \lim_{k \to \infty } 1 – (1)^k + \frac{1}{2k} \\ \\
& = 1-1+0 \\ \\
& = 0.
\end{align*}

Análogamente, se tiene que

\begin{align*}
\lim_{k \to \infty } 1 – (-1)^{2k-1} + \frac{1}{2k-1} & = \lim_{k \to \infty } 1 – (-1)^{2k} \cdot (-1)^{-1} + \frac{1}{2k-1} \\ \\
& = \lim_{k \to \infty } 1 – (1)^k \cdot (-1) + \frac{1}{2k-1} \\ \\
& = 1+1+0 \\ \\
& = 2.
\end{align*}

Por tanto, la primera subsucesión converge a $0$, mientras que la segunda converge a $2$. Se concluye que la sucesión $\{ 1 – (-1)^n + \frac{1}{n} \}$ no es convergente.

$\square$

Teorema de Bolzano-Weierstrass

El teorema de Bolzano-Weierstrass nos indica que toda sucesión acotada tiene una subsucesión convergente. Un ejemplo claro es el revisado en esta entrada, la sucesión $\{(-1)^n\}$ de la cual hemos probado anteriormente que está acotada y es fácil notar que la subsucesión generada por los índices pares $n_k =2k$ es convergente. Sin embargo, para probar el caso general, veremos primero que toda sucesión tiene una subsucesión monótona y, usando un teorema previamente revisado que indica que toda sucesión monótona acotada es convergente, podremos probar fácilmente el teorema de Bolzano-Weierstrass.

Teorema. Si $\{a_n\}$ es una sucesión de números reales, entonces existe una subsucesión $\{a_{n_k} \}$ que es monótona.

Demostración.

Por practicidad, diremos que $a_m$ es un «pico» si $a_m \geq a_n$ para todo $n \geq m$. Es decir, $a_m$ nunca es excedido por ningún término posterior en la sucesión. Tal como se muestra en la siguiente ilustración, donde los puntos rojos representan los «picos» de la sucesión.

Podemos notar que en una sucesión decreciente cualquier término es un pico, mientras que para una sucesión creciente ningún término es un pico. Dada una sucesión, podemos dividir en dos casos de acuerdo a la cantidad de picos que ésta posea.

  • Caso 1: La sucesión tiene una cantidad infinita de picos.
    En este caso, la enumeración de los picos se hace con subíndices crecientes: $a_{m_1}$, $a_{m_2}$, $\ldots$, $a_{m_k}$, $\ldots$ Puesto que cada término es un pico se tiene que
    $$ a_{m_1} \geq a_{m_2} \geq \ldots \geq a_{m_k}.$$
    Por tanto, la subsucesión $\{ a_{m_k}\}$ es una subsucesión decreciente de $\{ a_n\}$.

  • Caso 2: La sucesión tiene una cantidad finita de picos.
    Nuevamente, la sucesión generada por los subíndices es creciente: $a_{m_1}$, $a_{m_2}$, $\ldots$, $a_{m_k}$. Sea $s_1 = m_k+1$ el primer índice después del último pico, entonces existe $s_2 > s_1$ tal que $a_{s_1} < a_{s_2}$ dado que $a_{s_1}$ no es un pico. Además, sucede que $a_{s_2}$ tampoco es un pico, por lo que existe $s_3 > s_2$ tal que $a_{s_2} < a_{s_3}$. Al continuar de esta forma, se obtiene una subsucesión creciente $\{ a_{s_k}\}$ de $\{a_n\}.$

De ambos casos podemos concluir que toda sucesión tiene una subsucesión monótona.

$\square$

Teorema de Bolzano-Weierstrass. Toda sucesión acotada de números reales tiene una subsucesión convergente.

Demostración.

Sea $\{a_n\}$ una sucesión acotada. Por el teorema anterior, sabemos que $\{a_n\}$ tiene una subsucesión monótona $\{a_{n_k}\}$, además la subsucesión también está acotada pues $\{a_n\}$ lo está, entonces $\{a_{n_k}\}$ es convergente.

$\square$

Como último teorema, revisaremos que si toda subsucesión convergente de una sucesión acotada tiene límite $L$, entonces debe suceder que la sucesión original también converja a $L$.

Teorema. Sea $\{a_n\}$ una sucesión acotada de números reales. Si toda subsucesión convergente $\{a_{n_k} \}$ de $\{a_n\}$ converge a $L$, entonces $\{a_n\}$ también converge y lo hace a $L$.

Demostración.

Sea $\{a_n\}$ una sucesión acotada tal que todas sus subsucesiones convergentes lo hacen a $L$. Entonces existe $M \in \mathbb{R}$ tal que $|a_n| < M$ para todo $n \in \mathbb{N}$.

Supongamos que $\{a_n\}$ no converge a $L$, entonces existen $\varepsilon_0 > 0$ y una subsucesión $\{a_{n_k}\}$ tal que

$$|a_{n_k} – L| \geq \varepsilon_0 \quad \forall k \in \mathbb{N}. \tag{1}$$

Puesto que $\{ a_{n_k}\}$ es una subsucesión de $\{a_n\}$, entonces también se cumple que $|a_{n_k}| < M $. Es decir, $M$ también es una cota $\{ a_{n_k}\}$. Por el teorema de Bolzano-Weierstrass, esto implica que $\{a_{n_k}\}$ tiene una subsucesión convergente $\{a_{r_k}\}$. Puesto que esta última subsucesión también es subsucesión de $\{a_n\}$ converge a $L$ por hipótesis. Por tanto, existe $n_0 \in \mathbb{N}$ tal que para $r_k \geq n_0$ se tiene que $|a_{r_k} – L| \leq \varepsilon_0$, lo cual contradice $(1).$

$\square$

Más adelante…

En la siguiente entrada estudiaremos las sucesiones de Cauchy, las cuales nos permitirán dar un enfoque especial a las sucesiones convergentes donde no será necesario conocer a priori el valor del límite. Además, probaremos la equivalencia existente entre las sucesiones convergentes y las sucesiones de Cauchy.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Da un ejemplo de una sucesión y dos subsucesiones de ella.
  • Da un ejemplo de una sucesión acotada que tenga una subsucesión convergente.
  • Da un ejemplo de una sucesión no acotada que tenga una subsucesión convergente.
  • Prueba que la sucesión $\{ \left( 1 + \frac{1}{n^2} \right) ^{n^2} \}$ es convergente.
  • Determina el límite de la sucesión$\{ (3n)^{\frac{1}{2n}} \}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Cortaduras de Dedekind (Adicional)

Por Karen González Cárdenas

Introducción

Ya hemos visto que el campo de los números reales cumple con la propiedad de ser completos, esta propiedad la vimos enunciada con el Axioma del Supremo en la entrada pasada. Ahora veremos que utilizando Cortaduras de Dedekind podemos dar una equivalencia.

Una idea intuitiva

Previamente vimos que existe una relación biunívoca entre el conjunto de los números reales $\r$ y la recta: a cada punto en la recta le corresponde un único número real y viceversa.

Imaginemos que tomamos un punto $p$ en la recta:

Observemos que ahora la recta queda dividida en dos secciones. La primera conformada por todos los elementos menores (o iguales) que $p$ a la que llamaremos $A$:

Y la segunda por los elementos mayores (o iguales) que $p$ que será $B$:

De este modo vemos que tenemos las siguientes posibilidades:

Cada una cumple que $A$ y $B$ no son vacíos además de ser ajenos. En la próxima sección veremos formalmente su definición.

Definición de Cortadura

Definición: Sean $A, B \subseteq \r$. Decimos que la pareja $(A,B)$ forma una cortadura de un campo ordenado $\mathbb{U} \Leftrightarrow$

  • $A$ y $B$ son distintos del vacío.
  • Para todo $x \in A$ y $y \in B$ ocurre que $x \leq y$.
  • $A \cup B = \mathbb{U}$
    $A \cap B = \emptyset$.

Completitud por Cortaduras de Dedekind

Principio de Completitud por Cortaduras de Dedekind: Para toda cortadura $(A,B)$ de $\r$ existe un único $p \in \r$ tal que $\forall x \in A, \forall y \in B$:
$$x \leq p \leq y.$$

Este principio no lo cumplen los números racionales. A continuación veremos la razón:
Consideremos al campo como $\mathbb{U} = \mathbb{Q}$. Proponemos a los conjuntos $A$ y $B$ siguientes:
$$ A = \left\{ x \in \mathbb{Q} : x^{2} \leq 2 \quad \text{o} \quad x < 0 \right\}$$
$$ B = \left\{ y \in \mathbb{Q} : y^{2} > 2 \quad \text{y} \quad y > 0 \right\}$$

Primero debemos probar que son una cortadura de $\mathbb{Q}$:

  • $A \neq \emptyset$ ya que $-1 <0$. Por lo que $-1 \in A$.
    $B \neq \emptyset$ pues $2 <3^{2}$. Así $2 \in B$.
  • Vemos que $A,B \subseteq \mathbb{Q}$ ya que así fueron definidos.
    • Para $x \in A$ observamos que $x^{2} \leq 2$ o $x<0$.
      $\Rightarrow |x| \leq \sqrt{2}$ o $x <0$.
      $\therefore x \in [- \sqrt{2}, \sqrt{2}] \cup (-\infty, 0) = (- \infty, \sqrt{2}) \cap \mathbb{Q}$.
      Por lo que concluimos $A=(- \infty, \sqrt{2}] \cap \mathbb{Q}$ que vemos es un subconjunto de $\mathbb{Q}$.
    • Ahora si $y \in B$ tenemos que $y^{2} > 2$ y $y>0$.
      $\Rightarrow |y| > \sqrt{2}$ y $y >0$.
      $\therefore y \in ((-\infty, -\sqrt{2}) \cup (\sqrt{2},\infty)) \cap (0,\infty) = (\sqrt{2}, \infty) \cap \mathbb{Q}$.
      Así $B = (\sqrt{2}, \infty) \cap \mathbb{Q}$ y vemos que también es un subconjunto de los racionales.
  • Notemos que para toda $x \in A$ y para toda $y \in B$ ocurre:
    $-\sqrt{2} \leq x \leq \sqrt{2}\quad$ o $\quad x<0$, $\sqrt{2}<y\quad$ y $\quad y>0$.
    $\Rightarrow x \leq \sqrt{2}\quad$ o $\quad x<0<y$.
    $\therefore x\leq y$.
  • Además de que:
    • \begin {align*}
      A \cup B&=((- \infty, \sqrt{2}] \cap \mathbb{Q}) \cup ((\sqrt{2}, \infty) \cap \mathbb{Q})\\
      &= ((-\infty, \sqrt{2}] \cup (\sqrt{2}, \infty)) \cap \mathbb{Q}\\
      &= \mathbb{Q}\\
      \end{align*}
    • \begin{align*}
      A \cap B&=((- \infty, \sqrt{2}] \cap \mathbb{Q}) \cap ((\sqrt{2}, \infty) \cap \mathbb{Q})\\
      &=(- \infty, \sqrt{2}] \cap (\sqrt{2}, \infty) \cap \mathbb{Q}\\
      &= \emptyset\\
      \end{align*}

Así probamos que $A$ y $B$ son una cortadura de $\mathbb{Q}$.

Veamos que el único número $p$ que cumple la desigualdad $x \leq p \leq y$ para cualesquiera $x \in A$ y $y \in B$ es $p = \sqrt{2} \notin \mathbb{Q}$.
$\therefore \mathbb{Q}$ no es completo.

$\square$

Notemos que anteriormente afirmamos que $\sqrt{2} \notin \mathbb{Q}$, a continuación, veremos su prueba:
Afirmación: $\sqrt{2}$ es irracional.
Demostración: Procederemos por contradicción. Supongamos que $\sqrt{2}$ es racional, es por ello que podemos expresar dicha raíz como una fracción irreducible:
$$\sqrt{2}=\frac{a}{b}.$$

De este modo, $a$ y $b\in \mathbb{Z}$ no tienen ningún factor en común distinto de $1$.

Ahora bien, elevando al cuadrado la igualdad anterior:
\begin{align*}
2=\frac{a^{2}}{b^{2}} &\Rightarrow 2b^{2}= a^{2}\\
&\Rightarrow a^{2} \text{ es par}\\
&\Rightarrow a \quad\text{es par} \tag{por Lema auxiliar}\\
&\therefore a=2q.
\end{align*}

Sustituyendo $a=2q$ nos queda:
\begin{align*}
2b^{2}= a^{2}&\Rightarrow 2b^{2}= (2q)^{2}\\
&\Rightarrow 2b^{2}= 4q^{2}\\
&\Rightarrow b^{2}= 2q^{2}\\
&\Rightarrow b^{2} \text{ es par}\\
&\Rightarrow b \quad\text{es par}. \tag{por Lema auxiliar}\\
\end{align*}
Concluimos que $2$ es un factor común de $a$ y $b \contradiccion$ lo cual es una contradicción.

$\square$

Lema auxiliar: Si consideramos $p \in \mathbb{Z}$ tenemos que:

  • $ p^{2}$ es par $\Leftrightarrow p$ es par.
  • $ p^{2}$ es impar $\Leftrightarrow p$ es impar.

Equivalencia

Ahora veremos que el Axioma del Supremo y el Principio de Completitud por Cortaduras de Dedekind son equivalentes:

Teorema: Axioma del Supremo $\Leftrightarrow$ Principio de Completitud por Cortaduras de Dedekind
Demostración:
$\Rightarrow ):$ Tomemos $(A,B)$ una cortadura de Dedekind de $\r$ cualquiera, así por definición sabemos que se cumple:
$$x \leq y,$$
para cualquier $x \in A$ y cualquier $y \in B$.

Observemos que $A$ es un conjunto acotado superiormente, entonces aplicando el Axioma del Supremo se sigue que:
$\exists \alpha \in \r$ tal que $\alpha = sup(A).$
Por lo que $\alpha$ cumple ser la menor de las cotas superiores de $A$ y $x \leq \alpha$ para toda $x \in A$.
Ya que para todo $y \in B$ ocurre que $y$ es cota superior de $A$ y $\alpha$ supremo de $A$
$\Rightarrow \alpha \leq y.$
Así concluimos que $\forall x \in A$ y $\forall y \in B$:
$$x \leq \alpha \leq y.$$

$\Leftarrow ):$ Consideremos a un conjunto de reales $C$ no vacío y acotado superiormente. Así tenemos que existe $M \in \r$ cota superior de $C$ por lo que si tomamos:
$$B = \left\{ cotas \quad superiores \quad de \quad C \right\},$$
podemos afirmar que $B \neq \emptyset$. Definamos al conjunto $A = B^{c}$ y hagamos las siguientes observaciones:

  • $A\neq \emptyset$. Si suponemos lo contrario se seguiría:
    $A= \emptyset \Rightarrow A^{c}= (B^{c})^{c} \Rightarrow B= \r$.
    Por lo que $C = \emptyset \quad \contradiccion$ lo que es una contradicción.
    $\therefore A, B$ son no vacíos.
  • $A \cup B= B^{c} \cup B= \r$
    $A \cap B= B^{c} \cap B= \emptyset$
  • Para cualquier $x \in A$ y para cualquier $y \in B$ se cumple la desigualdad $x \leq y$. De lo contrario tendríamos que:
    $\Rightarrow \exists x_{0} \in A$ y $\exists y_{0} \in B$ donde $y_{0} < x_{0}$.
    Como $y_{0}$ es cota superior de $C$, para cualquier $x \in C$ se cumple que:
    $$x \leq y_{0} < x_{0} \Rightarrow x < x_{0}.$$
    $\therefore x_{0}$ es cota superior de $C$.
    Por lo que $x_{0} \in B=A^{c}$ y $x_{0} \in A \quad \contradiccion.$

De todo lo anterior concluimos que los conjuntos $A$ y $B$ son una cortadura de Dedekind de $\r$.

Por el Principio de Completitud por Cortaduras de Dedekind existe un único $p \in \r$ tal que para todo $x \in A$ y para todo $y \in B$ cumple que:
$$x \leq p \leq y.$$
Queremos probar que $p =sup(C)$, es decir:

  1. $p$ es cota superior de $C$.
  2. $p$ es la menor de todas las cotas superiores.

Comenzaremos probando el punto 1 procediendo por contradicción:
Supongamos que $p$ no es una cota superior de $C$, así existe $x’ \in C$ donde $p<x’$.
Aplicando la densidad de los reales se sigue que existe $y’ \in \r$ tal que:
$$p<y'<x’.$$
Por hipótesis toda $x \in A$ cumple $x \leq p$ entonces $x < y’$. Por lo que concluiríamos que $y’ \in B$ por ser cota superior de $C$ y $y'<x$ con $x \in C \quad \contradiccion$.
$\therefore p$ es cota superior de $C$.

Ahora debemos probar que $p$ es la menor de las cotas superiores. Si suponemos que no lo es entonces existe $M \in B$ con $M<p \quad \contradiccion$ lo que contradice que $p \leq y$ para toda $y \in B$.
$\therefore p= sup(C)$.

$\square$

Más adelante

En la siguiente entrada veremos como tema adicional para esta unidad a los Conjuntos infinitos. Para ello daremos las definiciones necesarias y revisaremos teoremas útiles.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Sucesiones de números reales

Por Juan Manuel Naranjo Jurado

Introducción

En la unidad anterior se revisó el concepto de función, sus características y diversas clasificaciones, los conocimientos adquiridos nos ayudarán a dar inicio a esta nueva unidad referente a un tipo especial de funciones que tienen como domino los números naturales y codominio los números reales, éstas son llamadas sucesiones.

En esta entrada nos enfocaremos en entender la definición y estudiar algunos ejemplos que nos permitan familiarizarnos de forma adecuada con este nuevo concepto.

Sucesiones

Es probable que recuerdes ejercicios del tipo «Encuentra el siguiente término de la sucesión 1.1, 4.2, 9.3, 16.4, __, 36.6». Para resolver estos problemas, hacíamos uso de nuestra creatividad con el fin de poder encontrar el patrón que nos permitiera generar cada uno de los números y, para lograrlo, resultaba fundamental establecer una especie de orden: el primer término, luego el segundo, seguido del tercero, etc. En nuestro ejemplo tenemos lo siguiente:

Primer término: 1.1.
Segundo término: 4.2.
Tercer término: 9.3.
Cuarto término: 16.4.
Quinto término: __.
Sexto término: 36.6.

Considerando esto, es que podíamos notar que la sucesión está determinada por $n^2 + \frac{n}{10}$ donde $n$ hace referencia al término $n$-ésimo. Finalmente, calculábamos el término faltante, en nuestro caso el quinto, que sería $5^2+\frac{5}{10} = 25.5$. Sin embargo, ahora estudiaremos las sucesiones desde una perspectiva distinta donde conoceremos desde un inicio esta regla de asignación que nos permite generar la sucesión y más bien nos importará determinar las características que ésta posea.

Definición. Una sucesión de números reales o sucesión en $\RR$ es una función $f$ definida en el conjunto de los números naturales $\mathbb{N}$ con codominio en los reales $\RR$, es decir, $f: \mathbb{N} \to \RR$.

Dada una sucesión $f: \mathbb{N} \to \RR$, los términos de la misma se obtendrán evaluando la función $f$ en elementos de su dominio. Es decir, el primer término de la sucesión es $f(1) = a_1$, el segundo $f(2)=a_2$, y así sucesivamente. De esta manera, identificamos al $n$-ésimo término mediante $a_n$ y denotamos a la sucesión en sí como $\{ a_n \}$.

Es importante destacar que en la definición especificamos que estamos hablando de una sucesión de números reales, pues, en principio, podemos definir funciones de $\mathbb{N}$ a cualquier otro conjunto $A$, sin embargo, en este curso sólo trataremos el caso donde tal conjunto $A$ es el conjunto de los números reales.

Retomando el ejemplo anterior y considerando la definición dada, podemos ser más formales y establecer que la anterior sucesión es una función $f: \mathbb{N} \to \RR$ donde $f(n) = n^2 + \frac{n}{10}$, o bien, podemos denotarla simplemente como $\{ n^2 + \frac{n}{10} \}$.

De esta forma, el primer término de nuestro ejemplo es $a_1 = 1^2+\frac{1}{10} =1.1$, el segundo término es $a_2 = 2^2+\frac{2}{10} =4.2$ y así sucesivamente. De forma más general, el $n$-ésimo término de la sucesión es $a_n = n^2 + \frac{n}{10}$. A continuación mostramos la gráfica de la sucesión:

Ejemplos de sucesiones

Ahora revisaremos algunos ejemplos de sucesiones.

Ejemplo 1. Sea $c \in \mathbb{R}$, la sucesión $\{a_n \}$ generada por $a_n = c$ para todo $n \in \mathbb{N}$, la llamamos sucesión constante. Así, la sucesión constante siempre toma el mismo valor y es de la forma $$\{ c, c, \ldots, c, \ldots \}.$$

Ejemplo 2. La sucesión $\{a_n\}$ generada por $a_n = 2n$ es la sucesión de los números pares positivos. Donde sus términos son $$\{ 2, 4, 6, \ldots, 2k, \ldots \}.$$

Ejemplo 3. Sea $\{a_n\}$ la sucesión generada por $a_n = (-1)^n$. Los términos de la sucesión son $$\{ -1,1,-1,\ldots, -1^k, \ldots \}.$$

Ejemplo 4. Sea $\{a_n\}$ la sucesión generada por $a_n =\frac{1}{n}$. De esta forma, sus términos son $$\left\{ 1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{k}, \ldots \right\}.$$

Ejemplo 5. Sea $\{a_n\}$ la sucesión generada por $a_n = 2^n$. Con lo cual sus términos son $$\{ 2, 4, 8, 16, \ldots, 2^k \ldots \}.$$

Ejemplo 6. Una de las sucesiones más famosas es la sucesión de Fibonacci $\{f_n\}$ la cual se define de forma inductiva, es decir, cada término se define con base en los anteriores.

\begin{align*}
f_1 & = 1, \\
f_2 & = 1, \\
f_{n+1} & = f_{n-1}+f_{n} \quad \forall n \geq 3.
\end{align*}

A modo ilustrativo, calcularemos los primeros 5 elementos de la sucesión $\{f_n\}$.
$$f_1 = 1, \quad f_2 = 1, \quad f_3 = 1+1 = 2, \quad f_4 = 1+2 = 3, \quad f_5 = 2+3 = 5.$$

Ejemplo 7. Sea $\{a_n\}$ una sucesión definida inductivamente de la siguiente forma:

\begin{align*}
a_1 & = 1, \\
a_n & = n \cdot a_{n-1} \quad \forall n \geq 2.
\end{align*}

De esta forma, los primeros 5 términos de la sucesión son $$\{ 1, 2, 6, 24, 120 \}.$$

Al $n$-ésimo término de esta sucesión se le denota comúnmente como $n!$ y su valor está dado por $$n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1.$$ Adicionalmente, se define $0! = 1$.

Operaciones con sucesiones

Las reglas de la suma, la resta, el producto y el cociente de funciones particularmente aplican a las sucesiones, pues éstas también son funciones. Considerando esto, dadas dos sucesiones $\{a_n\}$, $\{b_n\}$ y si $c \in \mathbb{R}$, definimos:

  1. La suma: $\{a_n\} + \{b_n\} = \{a_n + b_n\}.$
  2. La resta: $\{a_n\} – \{b_n\} = \{a_n – b_n\}.$
  3. La multiplicación: $\{a_n\} \cdot \{b_n\} = \{a_n \cdot b_n\}.$
  4. La multiplicación por un escalar: $ c \cdot \{a_n\} = \{ c \cdot a_n \}.$
  5. El cociente: Si además $b_n \neq 0$ para todo $n \in \mathbb{N}$, entonces $$\frac{ \{a_n\} }{ \{b_n\} } = \left\{ \frac{a_n}{b_n} \right\}.$$

A continuación veremos algunos ejemplos.

Ejemplo 8. Sean $\{ a_n \} = \{ n^2 \}$ y $\{ b_n \}= \{ \frac{n}{10} \}$, entonces $\{a_n\} + \{b_n\} = \{ n^2 + \frac{n}{10} \}$. Denotamos a la sucesión generada como $\{ c_n \} = \{ n^2 + \frac{n}{10} \}$. A continuación se calculan los primeros tres términos:

\begin{align*}
c_1 =1^2 + \frac{1}{10} = 1.1, \\ \\
c_2 =2^2 + \frac{2}{10} = 4.2, \\ \\
c_3 =3^2 + \frac{3}{10} = 9.3.
\end{align*}
Así, los términos de la sucesión son: $$\left\{ 1.1, 4.2, 9.3, \ldots, k^2 + \frac{k}{10}, \ldots \right\}.$$

Ejemplo 9. Sean $\{ a_n \} = \{ n \} $ y $\{ b_n \}= \{ n+1 \}$, entonces $\{a_n\} – \{b_n\} = \{ -1 \}$. Denotamos a la sucesión generada como $\{ c_n \} = \{ -1 \}$. Los primeros tres términos son:

\begin{align*}
c_1 = -1, \\ \\
c_2 = -1, \\ \\
c_3 = -1.
\end{align*}
Así, los términos de la sucesión son: $$\{ -1, -1, -1, \ldots, -1, \ldots \}.$$

Ejemplo 10. Sean $\{ a_n \} = \{n-1\} $ y $\{ b_n \}= \{n+1\}$, entonces $\{a_n\} \cdot \{b_n\} = \{n^2-1\}$. Denotamos a la sucesión generada como $\{ c_n \} = \{n^2-1\}$. Los primeros tres términos son:

\begin{align*}
c_1 = 1^2-1 = 0, \\ \\
c_2 = 2^2-1 = 3, \\ \\
c_3 = 3^2-1 = 8.
\end{align*}
Así, los términos de la sucesión son: $$\{ 0, 3, 8, \ldots, k^2-1, \ldots \}.$$

Ejemplo 11. Sean $c = 5 $ y $\{ a_n \}= \{n \}$, entonces $5 \cdot \{a_n\} = \{5n\}$. Denotamos a la sucesión generada como $\{ c_n \} = \{5n\}$. Los primeros tres términos son:

\begin{align*}
c_1 = 5(1) = 5, \\ \\
c_2 = 5(2) = 10, \\ \\
c_3 = 5(3) = 15.
\end{align*}
Así, los términos de la sucesión son: $$\{ 5, 10, 15, \ldots, 5k, \ldots \}.$$

Ejemplo 12. Sean $\{ a_n \} = \{ n \} $ y $\{ b_n \}= \{ (-1)^n \}$, entonces $\frac{ \{a_n\} }{ \{b_n\}} = \left\{ \frac{ n }{ (-1)^n } \right\}$. Denotamos a la sucesión generada como $\{ c_n \} = \left\{ \frac{ n }{ (-1)^n } \right\}$. Los primeros tres términos son:

\begin{align*}
c_1 = \frac{1}{(-1)^1} = -1, \\ \\
c_2 = \frac{2}{(-1)^2} = 2, \\ \\
c_3 = \frac{3}{(-1)^3} = -3.
\end{align*}
Así, los términos de la sucesión son: $$\left\{-1, 2, -3, \ldots, \frac{k}{(-1)^k}, \ldots \right\}.$$

Más adelante…

En la siguiente entrada se hará la revisión del concepto de sucesión convergente. Para este propósito, revisaremos la definición de límite aplicado a sucesiones, que será clave para el estudio de todos los temas subsecuentes en el curso dado que es el antecesor de la definición del límite de una función.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Considera la sucesión de Fibonacci definida en esta entrada. Encuentra $f_8$.
  • Consideremos las sucesiones $\{ a_n \}$ y $\{b_n\}$ donde $a_n = n^2-5n+10$ y $b_n = \frac{1}{n}$. Determina los primeros 8 términos de las siguientes sucesiones:
    • $\{ a_n \} \cdot \{b_n\}.$
    • $\{ a_n \} + \{b_n\}.$
    • $\frac{\{ a_n \}}{\{b_n\}}.$
    • $8 \cdot \{ a_n \} – 10 \cdot \{ \frac{1}{b_n}\}.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Continuidad de la función inversa

Por Juan Manuel Naranjo Jurado

Introducción

Esta entrada será la última referente a las funciones continuas y se hará el estudio de las condiciones necesarias para que, dada una función continua, su inversa también sea continua. Para lograr nuestro objetivo, haremos uso de los conceptos revisados en la entrada anterior e iniciaremos retomando la definición de intervalo y probaremos un teorema que nos permite caracterizarlos.

Intervalos

Anteriormente, se había dado la siguiente definición de intervalos.

Definición: Sean $a,b \in \r$. Definimos los siguientes intervalos en $\RR$ como sigue:

  • Intervalo cerrado
    \[
    [a,b]=\left\{x : a \leq x \leq b\right\}
    \]
  • Intervalo abierto
    \[
    (a,b)=\left\{x : a < x < b\right\}
    \]
  • Abierto por la izquierda / Cerrado por la derecha
    \[
    (a,b]=\left\{x : a < x \leq b\right\}
    \]
  • Abierto por la derecha / Cerrado por la izquierda
    \[
    [a,b)=\left\{x : a \leq x < b\right\}
    \]

Sea $a\in \r$. Para los intervalos que involucran al infinito tenemos las siguientes definiciones:

  • \[
    (-\infty ,a)=\left\{x : x < a \right\}
    \]
  • \[
    (-\infty ,a]=\left\{x : x \leq a \right\}
    \]
  • \[
    (a, \infty) =\left\{x : a < x\right\}
    \]
  • \[
    [a, \infty) =\left\{x : a \leq x\right\}
    \]
  • \[
    (- \infty, \infty)=\r
    \]

Ahora revisaremos un teorema que nos permite caracterizar a los intervalos y éste nos dice que si se toman cualesquiera dos puntos de un intervalo $A$, entonces el intervalo generado por tales puntos está contenido dentro de $A$.

Teorema. Si $A$ es un subconjunto de $\mathbb{R}$ que contiene al menos dos puntos y tiene la propiedad

$$\text{si } x, y \in A \quad \Rightarrow \quad [x,y] \subset A. \tag{1}$$

Entonces $A$ es un intervalo.

Demostración.

La demostración se divide en cuatro casos de acuerdo a si está o no acotado.

  • Caso 1: $A$ está acotado.
    Dado que $A$ está acotado y $A \neq \varnothing$, podemos definir el supremo y el ínfimo. Sean $a = infA$ y $b = supA.$ Entonces $A \subset [a,b]$. Nos enfocaremos en demostrar que $(a,b) \subset A$.

    Si $z \in (a,b)$, es decir, $a<z<b$, entonces $z$ no es cota inferior de $A$, por lo que existe $x \in A$ tal que $x<z$. De la misma forma, $z$ no es una cota superior de $A$, por lo que existe $y \in A$ tal que $z<y.$ Por lo tanto, $z \in [x,y]$ y por $(1)$ se tiene que $z \in A$. Puesto que $z$ es un elemento arbitrario de $(a,b)$, podemos concluir que $(a,b) \subset A$.

    Notemos que si $a \in A$ y $b \in A$, se tiene que $A= [a,b]$ pues $a$ y $b$ son el ínfimo y supremo respectivamente. Si $a \notin A$ y $b \notin A$, entonces $A = (a,b)$. Si $a \notin A$ y $b \in A$, entonces $A = (a,b]$. Finalmente, si $a \in A$ y $b \notin A$, entonces $A = [a,b)$.

  • Caso 2: $A$ está acotado superiormente pero no inferiormente.
    Definimos $b = supA$. Entonces $A \subset (- \infty, b]$. Veremos que $(- \infty, b) \subset A$.

    Si $z \in (- \infty, b)$, es decir $z<b$, entonces no es cota superior, por lo que existe $y \in A$ tal que $z < y$, además dado que $A$ no está acotado inferiormente, existe $x \in A$ tal que $x < z$. De esta forma, gracias a $(1)$ se tiene que $z \in [x,y] \subset A$. Dado que $z$ es un elemento arbitrario de $(- \infty, b)$, entonces $(-\infty, b) \subset A$.

    Notemos que si $b \in A$, entonces $A = (- \infty, b]$ y si $b \notin A$, entonces $A = (- \infty, b)$.

  • Caso 3: $A$ está acotado inferiormente pero no superiormente.
    La prueba es análoga al caso 2.

  • Caso 4: $A$ no está acotado inferiormente ni superiormente.
    La prueba es muy similar a la de los casos anteriores por lo cual se dejará como tarea moral.

$\square$

Notemos que el regreso también es cierto, es decir, si $A$ es un intervalo, entonces cumple $(1)$ y la demostración también quedará como tarea moral.

Continuidad de la función inversa

El siguiente teorema nos indica que una función continua mapea intervalos en intervalos.

Teorema (Preservación de intervalos). Sea $I$ un intervalo y sea $f: I \to \mathbb{R}$ continua en $I$. Entonces el conjunto $f(I)$ es un intervalo.

Demostración.

Sean $y_1$, $y_2 \in f(I)$ tal que $y_1 < y_2$, entonces existen los puntos $x_1$, $x_2$ tal que $y_1 = f(x_1)$ y $y_2 = f(x_2)$. Por el teorema del valor intermedio, se tiene que si $y \in [y_1,y_2]$, entonces existe $x \in I$ tal que $y = f(x) \in f(I)$. Por lo tanto, se tiene que $[y_1,y_2] \subset f(I)$ y por el teorema de caracterización de intervalos, se concluye que $f(I)$ es un intervalo.

$\square$

Ahora veremos que la monotonía también se preserva bajo la función inversa.

Proposición. Si $f: A \to \mathbb{R}$ es una función estrictamente creciente, entonces $f^{-1}: f(A) \to \mathbb{R}$ también es estrictamente creciente. Si $f$ es estrictamente decreciente, $f^{-1}$ también lo es.

Demostración.

Sea $f$ una función estrictamente creciente y sean $y_1$, $y_2 \in f(A)$ tal que $y_1<y_2$ y sean $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$.

Supongamos que $x_2 < x_1$, pero $f$ es creciente lo que implica que $y_2 = f(x_2) < f(x_1) = y_1$ lo cual es una contradicción pues $y_1<y_2$. Por lo tanto, $f^{-1}(y_1)=x_1 < x_2 = f^{-1}(y_2)$. Por lo tanto $f^{-1}$ es estrictamente creciente.

La prueba es análoga para el caso donde $f$ es estrictamente decreciente.

$\square$

Los últimos dos teoremas de la entrada hacen referencia a las condiciones que deben estar presentes para que la inversa de una función continua también sea continua.

Teorema. Si $I$ es un intervalo y $f: I \to \mathbb{R}$ es estrictamente monótona, entonces $f^{-1}$ es continua.

Demostración.

Por la proposición, anterior tenemos que $f^{-1}: f(I) \to \mathbb{R}$ también es estrictamente monótona y sabemos que $f(I)$ es un intervalo. Por el teorema revisado en la entrada anterior, concluimos que $f^{-1}$ también es continua.

$\square$

Teorema. Si $I$ es un intervalo y $f: I \to \mathbb{R}$ es continua e inyectiva, entonces $f^{-1}$ es continua.

Demostración.

Por lo revisado en la entrada anterior, sabemos que si $f$ es continua e inyectiva, entonces es estrictamente monótona y se sigue por el teorema anterior que $f^{-1}$ es continua.

$\square$

Más adelante…

En la siguiente entrada daremos inicio a una nueva unidad y entraremos a uno de los temas más famosos del cálculo: la derivada. Dentro de esta nueva unidad, veremos a profundidad la definición de derivada, así como su interpretación geométrica y sus propiedades. Una vez se conozcan los fundamentos teóricos, se verán aplicaciones que existen en diversos campos tales como la economía, la física, etc.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Prueba el caso 4 para el teorema de preservación de intervalos.
  • Prueba que si $A$ es un intervalo con al menos dos puntos, entonces se cumple que
    $$\text{si } x, y \in A \quad \Rightarrow \quad [x,y] \subset A.$$
  • Sea $I$ un intervalo y sea $f: I \to \mathbb{R}$ una función inyectiva. Menciona qué relación existe entre las siguientes condiciones:
    • $f$ es continua.
    • $f(I)$ es un intervalo.
    • $f$ es estrictamente monótona.
    • $f^{-1}$ es continua.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»