Archivo de la etiqueta: sucesiones de Cauchy

Cálculo Diferencial e Integral I: Sucesiones de Cauchy

Por Juan Manuel Naranjo Jurado

Introducción

En las entradas anteriores vimos las propiedades de una sucesión convergente para lo cual era necesario conocer su límite. En esta ocasión estudiaremos a las sucesiones de Cauchy, éstas cumplen una propiedad particular: dado un valor positivo arbitrario, existe un momento en la sucesión a partir del cual la distancia entre dos términos cualesquiera es menor al valor arbitrario establecido. Además, probaremos la relación entre este tipo de sucesiones y las sucesiones convergentes.

Sucesiones de Cauchy

La definición formal de sucesión de Cauchy se da a continuación.

Definición. Se dice que una sucesión $\{a_n\}$ de números reales es una sucesión de Cauchy si para todo $\varepsilon > 0$ existe un número natural $k$ tal que para todo los números naturales $n$, $m \geq k$ se satisface que $|a_n – a_m| < \varepsilon$.

Notemos que, a diferencia de las sucesiones convergentes, las sucesiones de Cauchy no hablan en ningún momento de un límite. Veremos a continuación un ejemplo.

Ejemplo. La sucesión $\{\frac{1}{n}\}$ es una sucesión de Cauchy.

Demostración.

Sea $\varepsilon > 0$.

Tomemos $k > \frac{2}{\varepsilon}$. Si $n$, $m > k$, entonces $\frac{1}{n} < \frac{1}{k} < \frac{\varepsilon}{2}$. Análogamente se tiene que $\frac{1}{m} < \frac{\varepsilon}{2}$.

Por lo anterior, si $n$, $m > k$, entonces

\begin{align*}
\left\lvert \frac{1}{n}-\frac{1}{m} \right\rvert & \leq \frac{1}{n} + \frac{1}{m} \\
& < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
& = \varepsilon
\end{align*}

$$\therefore \left\lvert \frac{1}{n}-\frac{1}{m} \right\rvert < \varepsilon$$

Se concluye que $\{\frac{1}{n}\}$ es una sucesión de Cauchy.

$\square$

Una de las propiedades naturales de la sucesiones de Cauchy es que son sucesiones acotadas; esto derivado directamente de la definición donde debe existir un punto $k$ a partir de donde cualesquiera dos términos deben distar menos de $\varepsilon$, pues si la sucesión no estuviese acotada implicaría que crece o decrece indefinidamente y, en consecuencia, también comenzaría a crecer mucho la distancia entre, digamos, $n=k+1$ y un valor $m \gg k$. A continuación demostraremos tal propiedad.

Proposición. Toda sucesión de Cauchy está acotada.

Demostración.

Sea $\{a_n\}$ una sucesión de Cauchy. Entonces para $\varepsilon = 1$, existe $k \in \mathbb{N}$ tal que para $n \geq k$, se tiene que $|a_n – a_k| < \varepsilon = 1$. De la desigualdad del triangulo se tiene que

\begin{gather*}
& |a_n|-|a_k| \leq |a_n-a_k| < 1 \\
\Rightarrow & |a_n| \leq 1 + |a_k|
\end{gather*}

Notemos que $1+|a_k|$ es una cota para los términos subsecuentes de $a_k$. Para extender la cota a los primeros $k-1$ términos, consideremos $M = max\{ |a_1|, |a_2|, \cdots, |a_{k-1}|, 1+|a_k|\}$. De esta forma, para todo $n \in \mathbb{N}$ se tiene que $|a_n| < M$. Por tanto, la sucesión está acotada.

$\square$

Es importante resaltar que es distinto que una sucesión sea de Cauchy a que cumpla que la distancia entre dos términos consecutivos sea cada vez menor, y lo veremos en el siguiente ejemplo.

Ejemplo. Sea $\{a_n\}$ tal que $a_n = \sqrt{n}$. Prueba que la sucesión $\{a_n\}$ satisface que

$$\lim_{n \to \infty} |a_{n+1}-a_n| = 0$$

Pero que no es una sucesión de Cauchy.

Demostración.

Notemos que

\begin{align*}
|a_{n+1}-a_n| & = \left\lvert \sqrt{n+1}-\sqrt{n} \right\rvert \\ \\
& = \left( \sqrt{n+1}-\sqrt{n} \right) \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} \\ \\
& = \frac{n+1-n}{\sqrt{n+1}+\sqrt{n}} \\ \\ & = \frac{1}{\sqrt{n+1}+\sqrt{n}}
\end{align*}

Por lo anterior, se sigue que
$$\lim_{n \to \infty} |a_{n+1}-a_n| = \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

Por otro lado, se tiene que la sucesión $\{a_n\}$ no está acotada, por lo cual no puede ser una sucesión de Cauchy.

$\square$

Relación entre sucesiones convergentes y de Cauchy

Dentro de los números reales, que una sucesión sea de Cauchy es equivalente a que sea convergente y a este hecho se le suele llamar Completitud.

Teorema. Si $\{a_n\}$ es una sucesión de números reales convergentes, entonces es de Cauchy.

Demostración

Sea $\varepsilon > 0$

Dado que $\{a_n\}$ es convergente, digamos a $L$, entonces para $\frac{\varepsilon}{2}$ existe un número $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ se satisface que $|a_n – L | < \frac{\varepsilon}{2}$.

Consideremos $k = n_0$. Si $n$, $m \geq k$, entonces

\begin{align*}
|a_n-a_m| & = |a_n-L+L-a_m| \\
& \leq|a_n-L| + |L-a_m| \\
& = |a_n-L| + |a_m – L| \\
& < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
& = \varepsilon
\end{align*}

$$\therefore |a_n-a_m| < \varepsilon$$

Por lo tanto, $\{a_n\}$ es de Cauchy.

$\square$

Teorema. Toda sucesión de Cauchy es convergente.

Demostración.

Sea $\{a_n\}$ una sucesión de Cauchy. Por la proposición revisada anteriormente, $\{a_n\}$ está acotada. Además por el teorema de Bolzano-Weierstrass, existe una subsucesión $\{a_{n_r}\}$ convergente y llamemos $L$ al límite de tal subsucesión. Probaremos que $\{a_n\}$ también converge a $L$.

Sea $\varepsilon > 0$.

Como la sucesión $\{a_n\}$ es de Cauchy, entonces existe $k \in \mathbb{N}$ tal que
$$|a_n-a_m| < \varepsilon \quad \forall n,m \geq k \tag{1}$$

Por otro lado, como $\{a_{n_r} \}$ converge a $L$, existe $n_0 \in \mathbb{N}$ tal que

$$|a_{n_i} – L| < \varepsilon \quad \forall n_i \geq n_0 \tag{2}$$

Consideremos $M = max\{k, n_0\}$. Si $s \geq M \geq n_0$, entonces se cumple $(2)$ y además sabemos que $n_s \geq s \geq M \geq k$, pues $n_i$ es una sucesión creciente de números naturales, por tanto también se cumple $(1)$. De esto se sigue que

\begin{align*}
|a_s-L|& = |a_s-a_{n_s}+a_{n_s}-L| \\
& \leq |a_s-a_{n_s}|+|a_{n_s}-L| \\
& \leq \frac{\varepsilon}{2} +\frac{\varepsilon}{2} \\
& = \varepsilon
\end{align*}

$$\therefore |a_n-L| < \varepsilon \quad \forall n \geq M$$

Se concluye que $\{a_n\}$ es convergente.

$\square$

Tarea moral

  • Da una sucesión acotada que no sea una sucesión de Cauchy.
  • Prueba mediante la definición que la sucesión $\{ \frac{n+1}{n} \}$ es de Cauchy.
  • Demuestra mediante la definición que la sucesión $\{ (-1)^n \}$ no es ce Cauchy.
  • Prueba mediante la definición que si $\{a_n\}$ y $\{b_n\}$ son sucesiones de Cauchy, entonces la sucesión $\{a_n+b_n\}$ también es de Cauchy.
  • Demuestra mediante la definición que si $\{a_n\}$ y $\{b_n\}$ son sucesiones de Cauchy, entonces la sucesión $\{a_n \cdot b_n\}$ también es de Cauchy.

Más adelante…

Uno de los números más famosos en mátematicas y que probablemente has escuchado hablar de él es el número de Euler: $e$. En la siguiente entrada estudiaremos este número a través de sucesiones y probaremos algunas de sus propiedades.

Entradas relacionadas