Cálculo Diferencial e Integral I: Sucesiones convergentes

Introducción

Anteriormente se dio la definición de sucesión y revisamos algunos ejemplos. En esta entrada se definirá la convergencia para una sucesión y se darán varios ejemplos de sucesiones convergentes y no convergentes.

Límite de una sucesión

A continuación daremos la definición del límite de una sucesión:

Definición. Sea $\{ a_n \}$ una sucesión en $\mathbb{R}$. Sea $L \in \mathbb{R}$, decimos que $\{a_n\}$ tiene límite en $L$ si para todo $ \epsilon > 0$ existe un número natural $n_0$ tal que para todo $n \geq n_0$ se satisface $ | a_n – L |< \epsilon$.

Si una sucesión tiene límite en $L$, también decimos que converge a $L$ y lo denotamos como $$\lim_{n\to \infty} a_n = L.$$

En términos más simples, la definición nos indica que una sucesión es convergente a $L$ si a partir de cierto elemento en la sucesión ($n_0$), estamos lo suficientemente cerca ($\epsilon$) de $L$.

Ejemplos de sucesiones convergentes

Ahora continuaremos con algunos ejemplos de sucesiones convergentes. Es importante recalcar que para demostrar que una sucesión converge a $L$, deberemos dar explícitamente $n_0$ que para un $\epsilon > 0$ arbitrario dado se cumpla $| a_n – L |< \epsilon$ para todo $n \geq n_0$.

Ejemplo. Sea $k$ un número real y consideremos la sucesión $ a_n = k$, entonces $$\lim_{n \to \infty} k = k.$$

Demostración.

Sea $\epsilon > 0$ (establecemos el valor arbitrario de un epsilon positivo).
Consideremos $n_0 = 1$ (damos el valor de $n_0 $ explícito).
Si $n \geq n_0$, entonces

\begin{gather*}
|a_n-k| = |k-k| = 0 < \epsilon \\
\therefore \lim_{n \to \infty} k = k
\end{gather*}

$\square$


El ejemplo anterior es uno sencillo, sin embargo, como lo podemos ver en los comentarios entre paréntesis, están presentes los pasos relevantes para demostrar la convergencia. En este caso, dado que nuestra sucesión era un valor constante, el valor de $n_0$ que funcionaba era cualquier número natural, pero, en general, su valor estará definido en términos de epsilon.

Ejemplo. Consideremos la sucesión $\{ \frac{1}{n} \}$, entonces $$\lim_{n \to \infty} \frac{1}{n} = 0.$$

Demostración.

Sea $\epsilon >0$.

Dado que el valor de $\epsilon$ es positivo y, por la propiedad Arquimediana, existe $n_0 \in \mathbb{N}$ tal que $1 < n_0 \cdot \epsilon$, es decir, $\frac{1}{n_0} < \epsilon$. Así, para cualquier $n \geq n_0$ se tiene que $\frac{1}{n} \leq \frac{1}{n_0} < \epsilon $. De lo anterior se sigue que

$| \frac{1}{n} – 0| = \frac{1}{n} < \epsilon$

$\therefore | \frac{1}{n} – 0| < \epsilon$ para todo $n \geq n_0$

$$\therefore \lim_{n \to \infty} = 0$$

$\square$

En este último ejemplo podemos observar cómo se establece $n_0$ en función de $\epsilon$ y la relevancia de la propiedad Arquimediana que estará constantemente presente al momento de demostrar convergencia mediante su definición.


Ejemplo. $$\lim_{n \to \infty} \frac{8n-5}{3n} = \frac{8}{3}$$

Demostración.

Sea $\epsilon > 0$.
Notemos

$$\left\lvert \frac{8n-5}{3n} – \frac{8}{3} \right\rvert = \left\lvert \frac{8n-5-8n}{3n} \right\rvert = \left\lvert \frac{-5}{3n} \right\rvert = \frac{5}{3n}$$

\begin{align*}
\therefore \left\lvert \frac{8n-5}{3n} – \frac{8}{3} \right\rvert = \frac{5}{3n} \tag{1}
\end{align*}

Consideremos $n_0 \cdot \epsilon > \frac{5}{3}$, que sabemos que existe gracias a la propiedad arquimediana.

$$\Rightarrow \epsilon > \frac{5}{3n_0}$$

Si $n \geq n_0$, entonces tenemos

\begin{align*}
\left\lvert \frac{8n-5}{3n} – \frac{8}{3} \right\rvert =& \frac{5}{3n}, \text{ por (1)} \\
\leq & \frac{5}{3n_0}, \text{ pues }n \geq n_0 \\
<& \epsilon
\end{align*}

$$\therefore \left\lvert \frac{8n-5}{3n} – \frac{8}{3} \right\rvert < \epsilon$$

$$\therefore \lim_{n \to \infty} \frac{8n-5}{3n} = \frac{8}{3}$$

$\square$

Ejemplo. $$\lim_{n \to \infty} \left( \sqrt{n+1}-\sqrt{n} \right) = 0$$

Demostración.

Sea $\epsilon > 0$. Primero veamos que

\begin{align*}
\sqrt{n+1}-\sqrt{n} =& (\sqrt{n+1}-\sqrt{n}) \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} \\ \\
=& \frac{\sqrt{n+1} ^ 2 – \sqrt{n}^2}{\sqrt{n+1}+\sqrt{n}} \\ \\
=& \frac{n+1 – n}{\sqrt{n-1}+\sqrt{n}} \\ \\
=&\frac{1}{\sqrt{n-1}+\sqrt{n}} \\ \\
\leq & \frac{1}{\sqrt{n}}
\end{align*}


$$\therefore \sqrt{n-1}-\sqrt{n} \leq \frac{1}{\sqrt{n}}$$

Consideremos $n_0 > \frac{1}{\epsilon^2} \Rightarrow \frac{1}{\sqrt{n_0}} < \epsilon$. Entonces tenemos

\begin{align*}
\left\lvert \sqrt{n-1}-\sqrt{n} – 0 \right\rvert =& \frac{1}{\sqrt{n-1}+\sqrt{n}} \text{, por la observación anterior} \\
\leq & \frac{1}{\sqrt{n}} \\
\leq & \frac{1}{\sqrt{n_0}}, \text{pues } n \geq n_0 \\
< & \epsilon
\end{align*}

$\therefore |\sqrt{n-1}-\sqrt{n} – 0| < \epsilon$

$$\therefore \lim_{n \to \infty} \left(\sqrt{n+1}-\sqrt{n} \right)= 0$$

$\square$

Los dos ejemplos de arriba hacen uso de manipulaciones algebraicas que nos permiten simplificar nuestro problema; esta técnica de simplificación de expresiones, cuyo fin es llevarlas a otras más sencillas, es ampliamente usada para demostrar la convergencia de sucesiones.

Ejemplos de sucesiones no convergentes

Después de haber revisado ejemplos de sucesiones convergentes, vale la pena conocer sucesiones que no convergen, es decir, que su límite no existe.

Ejemplo. Consideremos la sucesión $a_n = (-1)^n$. El límite de $\{a_n\}$ no existe.

Demostración.

Procederemos a hacer esta demostración por contradicción. Supongamos que existe $L \in \mathbb{R}$ tal que $$\lim_{n \to \infty} (-1)^n = L.$$

Consideremos $\epsilon = 1/2 > 0$. Por definición, existe $n_0 \in \mathbb{N}$ tal que si $n\geq n_0$ entonces $|(-1)^n-L| < \frac{1}{2}$

Tomemos $2n_0 > n_0$ y $2n_0+1>n_0$, entonces
\begin{gather*}
|(-1)^{2n_0}-L| < \frac{1}{2} \Rightarrow |1-L|< \frac{1}{2} \tag{1} \\
|(-1)^{2n_0+1}-L| < \frac{1}{2} \Rightarrow |-1-L| = |1+L|< \frac{1}{2} \tag{2}
\end{gather*}

Y notemos que

\begin{align*}
2 = |1+1| =& |1-L+L+1| \\
\leq & |1-L| + |1+L| \\
< & \frac{1}{2} + \frac{1}{2} \text{, por (1) y (2)}
\end{align*}

$\Rightarrow 2<1 \Rightarrow\!\Leftarrow$

Lo cual es una contradicción y lo indicamos con el símbolo $\Rightarrow\!\Leftarrow$.
Por tanto, podemos concluir que tal límite no existe.

$\square$

Ahora veremos ejemplos de sucesiones que divergen a infinito y, para ello, presentaremos la siguiente definición.

Definición. Sea $\{a_n\}$ una sucesión en $\mathbb{R}$. Decimos que $\{a_n\}$ diverge a infinito si $\forall M \in \mathbb{R}$ existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ entonces $M < a_n$.

La definición anterior nos indica que una sucesión diverge a infinito si para cualquier número real ($M$), existe un punto ($n_0$) en el que todos los valores subsecuentes en la sucesión son mayores que $M$. Cuando una sucesión $\{ a_n \}$ diverja a infinito lo denotaremos como $$\lim_{n \to \infty} a_n = \infty.$$

Ejemplo. La sucesión $a_n = n$ diverge a infinito.

Demostración.

Sea $M \in \mathbb{N}$. Sabemos que $\mathbb{N}$ no está acotado superiormente, entonces existe $n_0 \in \mathbb{N}$ tal que $M< n_0$. De esta forma, si $n \geq n_0$, se tiene que $M<n$.

$\square$

Ejemplo. $$\lim_{n \to \infty} n^2 = \infty$$

Demostración.

Procederemos a hacer la prueba por contradicción. Supongamos entonces que para todo $n\in \mathbb{N}$ se tiene que $n^2 \leq M$ para algún $M \in \mathbb{R}$.

$\Rightarrow \sqrt{n^2} \leq \sqrt{M}$

$\Rightarrow n \leq \sqrt{M} \Rightarrow\!\Leftarrow$

Lo cual es una contradicción pues sabemos que los números naturales no están acotados superiormente.

$\therefore n^2$ diverge al infinito

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Prueba que el límite de una sucesión convergente es único.
  2. Demuestra lo siguiente:
    a) $$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$
    b) $$\lim_{n \to \infty} \sqrt{n} = \infty$$
    c) $$\lim_{n \to \infty} \sqrt{12+ \frac{1}{n}} = \sqrt{12}$$
  3. Sea $\{ a_n \}$ una sucesión en $\mathbb{R}$ y sea $L \in \mathbb{R}$. Prueba que $$\lim_{n \to \infty} a_n = L \iff \lim_{n \to \infty} a_n – L = 0.$$
  4. Una sucesión también puede ser divergente a $-\infty$. Propón una definición análoga a la divergencia al infinito y prueba que $$\lim_{n \to \infty} – \sqrt{n} = – \infty.$$

Más adelante…

Se han revisado las definiciones de convergencia y divergencia a infinito, hemos visto diversos ejemplos de ambas definiciones. En las siguientes entradas se revisarán criterios para la convergencia de sucesiones así como sus propiedades y teoremas con lo cual podremos determinar si una sucesión es convergente o no de manera más rápida.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.