Archivo de la etiqueta: Cálculo I

Cálculo Diferencial e Integral: Límites de funciones trigonométricas

Por Juan Manuel Naranjo Jurado

Introducción

En las entradas anteriores nos enfocamos en desarrollar el concepto de límite y revisamos diversos tipos de funciones, sin embargo, evitamos un tipo particular: las funciones trigonométricas. En esta entrada centraremos nuestra atención en la revisión de estos límites haciendo uso de toda la teoría revisada hasta este punto.

Límite de funciones trigonométricas cuando $x$ tiende a $x_0$

En los primeros ejemplos podrás visualizar la gráfica de la función con la finalidad de tener cierta intuición respecto a los límites, pero, en caso de requerirlo, puedes repasar las funciones trigonométricas.

Ejemplo 1. Prueba que $$\lim_{x \to 0} sen(x) = sen(0).$$

Demostración.

Para probar este límite, procederemos a calcular los límites laterales.

Sea $x \in (0, \pi / 2 )$. Usaremos que $0 < sen(x) < x$ si $x \in (0, \pi / 2 )$.

Además, $$\lim_{x \to 0} = 0 \qquad \text{y} \qquad \lim_{x \to 0} x = 0.$$

Por el teorema del sándwich, podemos concluir que $$\lim_{x \to 0^+} sen(x) = 0 = sen(0). \tag{1}$$

Si $x \in (- \pi / 2, 0)$, entonces $-x \in (0, \pi /2)$. De esta forma, se obtiene que

$$ 0 < sen(-x) < -x.$$

Como $sen(-x) = -sen(x)$, se sigue que $$0 < -sen(x) < -x.$$

Por lo tanto $$ x < sen(x) < 0$$

Nuevamente por el teorema del sándwich, se sigue que $$\lim_{x \to 0^-} sen(x) = 0 = sen(0). \tag{2}$$

De $(1)$ y $(2)$ se concluye que $$\lim_{x \to 0} sen(x) = sen(0).$$

$\square$

Ejemplo 2. Prueba que $$\lim_{x \to 0} cos(x) = cos(0).$$

Demostración.

Como $$ cos^2(x)+sen^2(x) = 1,$$ se sigue que $$|cos(x)| = \sqrt{1-sen^2(x)}.$$

Consideremos $x \in (-\pi/2, \pi/2)$, entonces $cos(x) > 0$, y de la expresión anterior se sigue que $$cos(x) = \sqrt{1-sen^2(x)}.$$

De esta manera, se tiene que

\begin{align*}
\lim_{x \to 0} cos(x) & = \lim_{x \to 0} \sqrt{1-sen^2(x)} \\
& = \sqrt{1-0} \\
& = 1 \\
& = cos(0).
\end{align*}

Por lo tanto

$$\lim_{x \to 0} cos(x) = cos(0).$$

$\square$

Ejemplo 3. Prueba que el siguiente límite no existe $$\lim_{x \to 0} sen \left( \frac{1}{x} \right).$$

Demostración.

Notemos que por la relación entre el límite de una función y el de una sucesión, basta dar dos sucesiones $\{a_n\}$, $\{b_n\}$ tal que converjan a $x_0 = 0$ y $a_n$, $b_n \neq 0$ para todo $n \in \mathbb{N}$, pero que las sucesiones obtenidas de evaluar la función en los términos de ambas sucesiones, $\{f(a_n)\}$, $\{f(b_n)\}$ converjan a valores distintos.

Definimos $f(x) = sen(\frac{1}{x})$ y consideremos las sucesiones $a_n = (\pi n) ^{-1} \quad$ y $b_n = (\frac{1}{2} \pi + 2 \pi n)^{-1},$ donde $a_n$, $b_n \neq 0$ para todo $n \in \mathbb{N}.$

Veamos que
\begin{align*}
\lim_{n \to \infty} a_n = & \lim_{n \to \infty} (\pi n) ^{-1} \\
= & \lim_{n \to \infty} \frac{1}{\pi n} \\
= & 0.
\end{align*}
$$\therefore \lim_{n \to \infty} a_n = 0.$$
Además,
\begin{align*}
\lim_{n \to \infty} b_n = & \lim_{n \to \infty} \left( \frac{1}{2} \pi + 2 \pi n \right)^{-1}\\ \\
= & \lim_{n \to \infty} \frac{1}{\frac{1}{2} \pi + 2 \pi n} \\ \\
= & \lim_{n \to \infty} \frac{1}{\frac{\pi + 4 \pi n}{2}} \\ \\
= & \lim_{n \to \infty} \frac{2}{\pi + 4 \pi n} \\ \\
= & 0.
\end{align*}
$$\therefore \lim_{n \to \infty} b_n = 0.$$
Es decir, las sucesiones $\{a_n\}$ y $\{b_n\}$ tienden a cero. Y notemos que $f(a_n) = sen(n \pi ) = 0$ y $f(b_n) = sen(\frac{1}{2} \pi + 2 \pi n) = 1$ para todo $n \in \mathbb{N}.$

De esta forma $$\lim_{n \to \infty} f(a_n) \neq \lim_{n \to \infty} f(b_n).$$
Por tanto, podemos concluir que el límite no existe.

$\square$

Ejemplo 4. Prueba que $$\lim_{x \to 0} x sen \left( \frac{1}{x} \right) = 0.$$

Demostración.

Haremos la demostración de este límite mediante la definición épsilon-delta.

Sea $\varepsilon > 0$. Consideremos $\delta = \varepsilon.$
Si $0<|x-0| < \delta$, entonces
\begin{gather*}
& |x| < \delta = \varepsilon. \\
\Rightarrow & |x|< \varepsilon.
\end{gather*}
Además, sabemos que $-1 < sen \left( \frac{1}{x} \right) < 1$ para cualquier $x \neq 0.$ Entonces

\begin{align*}
|f(x)-0| = & \left|x sen \left( \frac{1}{x} \right) \right| \\
= & |x|\left|sen \left( \frac{1}{x} \right) \right| \\
\leq & \delta \cdot 1 \\
= & \varepsilon.
\end{align*}
$$\therefore \lim_{x \to 0} x sen \left( \frac{1}{x} \right) = 0.$$

$\square$

El siguiente ejemplo es un límite que nos ayudará en diversas ocasiones, así que vale la pena ponerle particular atención.

Ejemplo 5. Prueba que $$\lim_{x \to 0 } \frac{sen(x)}{x} = 1.$$

Demostración.

Como nos interesa revisar qué sucede cuando $x \to 0$. Podemos considerar que $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ con $x\neq 0.$

De esta forma, se tiene que

  • Área $\triangle ABC = \frac{sen(x)cos(x)}{2}$.
  • Área del sector circular $ADC = \frac{xr^2}{2} = \frac{x}{2}$.
  • Área $\triangle ADE = \frac{1 \cdot tan(x)}{2} = \frac{sen(x)}{2cos(x)}$.

Podemos notar que Área $\triangle ABC <$ Área del sector circular $ADC <$Área $\triangle ADE$.

Como $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ con $x\neq 0$, entonces $sen(x) \neq 0$ y $cos(x) \neq 0$. Así, se sigue que

\begin{gather*}
\frac{sen(x)cos(x)}{2} < \frac{x}{2} < \frac{sen(x)}{2cos(x)}.
\end{gather*}

De donde se obtiene que $$cos(x) < \frac{x}{sen(x)} < \frac{1}{cos(x)}.$$

Y se sigue que $$ cos(x) < \frac{x}{sen(x)} \qquad \text{ y } \qquad \frac{x}{sen(x)} < \frac{1}{cos(x)}.$$

Es decir, $$ \frac{sen(x)}{x} < \frac{1}{cos(x)} \qquad \text{ y } \qquad cos(x) < \frac{sen(x)}{x}. $$

$$ \therefore cos(x) < \frac{sen(x)}{x} < \frac{1}{cos(x)}.$$

Además, $\lim\limits_{x \to 0} cos(x) = 1$ y $\lim\limits_{x \to 0} \frac{1}{cos(x)} = 1$. Por el teorema del del sándwich se concluye que

$$\lim_{x \to 0 } \frac{sen(x)}{x} = 1.$$

$\square$

Ejemplo 6. Determina el siguiente límite $$\lim_{x \to 0} \frac{1-cos(x) }{x}.$$

Si $0< |x| < \pi$, entonces

\begin{align*}
\frac{1-cos(x)}{x} = & \frac{1-cos(x)}{x} \cdot \frac{1+cos(x)}{1+cos(x)} \\ \\
= & \frac{1-cos^2(x)}{x (1+cos(x) )} \\ \\
= & \frac{sen^2(x)}{x(1+cos(x))} \\ \\
= & \frac{sen(x)}{x} \frac{sen(x)}{1+cos(x)}.
\end{align*}

Así,
\begin{align*}
\lim_{x \to 0} \frac{1-cos(x) }{x} = & \lim_{x \to 0}\frac{sen(x)}{x} \cdot \frac{sen(x)}{1+cos(x)} \\
= & \lim_{x \to 0} \frac{sen(x)}{x} \cdot \lim_{x \to 0} \frac{sen(x)}{1+cos(x)} \\
= & 1 \cdot \frac{0}{2} \\
= & 0.
\end{align*}

$$\therefore \lim_{x \to 0} \frac{1-cos(x) }{x} = 0.$$

Ejemplo 7. Calcula el siguiente límite $$\lim_{x \to 0} \frac{x+sen(x)}{x^2-sen(x)}.$$

\begin{align*}
\lim_{x \to 0} \frac{x+sen(x)}{x^2-sen(x)} = & \lim_{x \to 0} \frac{x+sen(x)}{x^2-sen(x)} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\ \\
= & \lim_{x \to 0} \frac{1+\frac{sen(x)}{x}}{x-\frac{sen(x)}{x}} \\ \\
= & \frac{1+1}{0-1} \\ \\
= & -2.
\end{align*}
$$\therefore \lim_{x \to 0} \frac{x+sen(x)}{x^2-sen(x)} = -2.$$

Ejemplo 8. Calcula $$\lim_{x \to 0} \frac{sec(x) -1}{x}.$$

\begin{align*}
\lim_{x \to 0} \frac{sec(x) -1}{x} = & \lim_{x \to 0} \frac{\frac{1}{cos(x)} -1}{x} \\ \\
= & \lim_{x \to 0} \frac{\frac{1- cos(x)}{cos(x)}}{x} \\ \\
= & \lim_{x \to 0} \frac{1- cos(x)}{x cos(x)} \\ \\
= & \lim_{x \to 0} \frac{1}{cos(x)} \frac{1- cos(x)}{x} \\ \\
= & 1 \cdot 0 \\ \\
= & 0.
\end{align*}
$$\therefore \lim_{x \to 0} \frac{sec(x) -1}{x} = 0.$$

Límite de funciones trigonométricas cuando $x$ tiende a infinito

Ahora procederemos a revisar algunos ejemplos de funciones trigonométricas cuando $x \to \infty$, o bien, cuando $x \to – \infty.$

Ejemplo 9. Calcula el límite $$\lim_{x \to \infty} \frac{sen(x)}{x}.$$

Sabemos que $-1 \leq sen(x) \leq 1.$ De esta forma, si $x \neq 0$, se tiene que $$ -\frac{1}{x} \leq \frac{sen(x)}{x} \leq \frac{1}{x}.$$

Además, $$ \lim_{x \to \infty} -\frac{1}{x} = 0 = \lim_{x \to \infty} \frac{1}{x}.$$

Por el teorema del sándwich, se concluye que
$$ \lim_{x \to \infty} sen(x) = 0.$$

Ejemplo 10. Calcula el límite $$\lim_{x \to \infty} \frac{x sen(x)}{x^2+5}.$$
\begin{align*}
\lim_{x \to \infty} \frac{x sen(x)}{x^2+5} = & \lim_{x \to \infty} \frac{x sen(x)}{x^2+5} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{x sen(x)}{x^2}}{\frac{x^2+5}{x^2}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{sen(x)}{x}}{1+\frac{5}{x^2}} \\ \\
= & \frac{0}{1} \text{, por lo visto en el ejemplo anterior }\\ \\
= & 0.
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{x sen(x)}{x^2+5} = 0.$$

Ejemplo 11. Determina si existe el siguiente límite $$\lim_{x \to \infty} \frac{x^2(1+sen^2(x))}{(x+sen(x))^2}.$$

El límite no existe. Considera las sucesiones generadas por $a_n = \pi n \quad$ y $\quad b_n = \frac{1}{2} \pi + 2 \pi n \quad$ donde $a_n$, $b_n \rightarrow \infty$ cuando $n \rightarrow \infty.$ Notemos que
\begin{align*}
\lim_{n \to \infty} f(a_n) = & \lim_{n \to \infty} \frac{(\pi n)^2(1+sen^2(\pi n))}{(\pi n+sen(\pi n))^2} \\ \\
= & \lim_{n \to \infty} \frac{(\pi n)^2(1+0)}{(\pi n+0)^2} \\ \\
= & \lim_{n \to \infty} \frac{(\pi n)^2}{(\pi n)^2} \\ \\
= & \lim_{n \to \infty} 1 \\ \\
= & 1.
\end{align*}
$$ \therefore \lim_{n \to \infty} f(a_n) = 1.$$
Por otro lado,
\begin{align*}
\lim_{n \to \infty} f(b_n) = & \lim_{n \to \infty} \frac{(\frac{1}{2} \pi + 2 \pi n)^2(1+sen^2(\frac{1}{2} \pi + 2 \pi n))}{(\frac{1}{2} \pi + 2 \pi n+sen(\frac{1}{2} \pi + 2 \pi n))^2} \\ \\
= & \lim_{n \to \infty} \frac{(\frac{1}{2} \pi + 2 \pi n)^2(1+1)}{(\frac{1}{2} \pi + 2 \pi n+1)^2} \\ \\
= & \lim_{n \to \infty} \frac{2(\frac{1}{2} \pi + 2 \pi n)^2}{(\frac{1}{2} \pi + 2 \pi n+1)^2} \\ \\
= & 2.
\end{align*}
$$ \therefore \lim_{n \to \infty} f(b_n) = 2.$$

Como $$\lim_{n \to \infty} f(a_n) \neq \lim_{n \to \infty} f(b_n).$$
Podemos concluir que el límite $\lim_\limits{x \to \infty} \frac{x^2(1+sen^2(x))}{(x+sen(x))^2}$ no existe.

Ejemplo 12. Determina el siguiente límite $$\lim_{x \to -\infty} \frac{3x^2-sen(5x)}{x^2+2}.$$

Recordemos que $-1 < sen(5x) < 1$, de donde se sigue que $-1 < -sen(5x) < 1$, así
\begin{gather*}
& 3x^2-1 < 3x^2-sen(5x) < 3x^2+1.
\end{gather*}

Se sigue que
\begin{gather*}
\frac{3x^2-1}{x^2+2} < \frac{3x^2-sen(5x)}{x^2+2} < \frac{3x^2+1}{x^2+2} \text{, pues } x^2+2 >0.
\end{gather*}

Y notemos que

\begin{align*}
\lim_{x \to -\infty} \frac{3x^2+1}{x^2+2} = & \lim_{x \to -\infty} \frac{\frac{3x^2+1}{x^2}}{\frac{x^2+2}{x^2}} \\ \\
= & \lim_{x \to -\infty} \frac{3+\frac{1}{x^2}}{1+\frac{2}{x^2}} \\ \\
= & \frac{3}{1} \\ \\
=& 3.
\end{align*}

De forma similar, se obtiene que $$\lim_{x \to -\infty} \frac{3x^2-1}{x^2+2}= 3.$$

Por lo que se tiene que $$\lim_{x \to -\infty} \frac{3x^2+1}{x^2+2} = 3 = \lim_{x \to -\infty} \frac{3x^2-1}{x^2+2}.$$ Usando el teorema del sándwich podemos concluir que
$$\lim_{x \to -\infty} \frac{3x^2-sen(5x)}{x^2+2} = 3.$$


Más adelante…

En la siguiente entrada revisaremos el concepto de asíntotas con lo que nos será posible analizar un comportamiento particular que llegan a tener las funciones, el cual es aproximarse a una recta en determinado momento; y, con esto, estaremos finalizando la unidad referente al límite de una función.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Halla los siguientes límites, justifica en caso de no alguno no exista.

  • $$\lim_{x \to 0} \frac{x^2 (3+sen(x))}{(x+sen(x))^2}.$$
  • $$\lim_{x \to 1} \frac{sen(x^2-1)}{x-1}.$$
  • $$\lim_{x \to \infty} x^2 sen \left(\frac{1}{x} \right).$$
  • $$\lim_{x \to \infty} \frac{x + sen^3(x)}{5x+6}.$$
  • $$\lim_{x \to 0} \frac{tan^2(x)+2x}{x + x^2}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Límites en el infinito

Por Juan Manuel Naranjo Jurado

Introducción

Previamente se revisó el concepto de límite de una función, así como el de límites laterales. En la revisión de estos temas nos habíamos enfocado en revisar el límite de una función $f$ en un punto $x_0$. Ahora ampliaremos el concepto estudiando $f$ para el caso cuando $x$ tiende a infinito.

Límite en el infinito

La intuición detrás de la definición de límite en el infinito es que $f$ tiene límite $L$ cuando $x$ tiende a infinito si para valores lo suficientemente grandes de $x$ nos acercamos arbitrariamente a $L.$

Definición. Sea $f: A \rightarrow \mathbb{R}$. Decimos que $f$ tiende al límite $L \in \mathbb{R}$ cuando $x$ tiende a infinito si para cualquier $\varepsilon > 0$ existe $M \in \mathbb{R}$, tal que para cualquier $x>M$, se tiene que $|f(x)-L|<\varepsilon$ y lo denotamos $$\lim_{x \to \infty} f(x) = L.$$

Ejemplo 1. Prueba que $$\lim_{x \to \infty} \frac{1}{x} = 0.$$
Demostración.

Sea $\varepsilon > 0$ y tomemos $M = \frac{1}{\varepsilon}$. De esta forma, para todo $x > M$ se tiene que $x > \frac{1}{\varepsilon}$, y por lo tanto $-\varepsilon < 0 <\frac{1}{x} < \varepsilon$, es decir, $|\frac{1}{x}-0|< \varepsilon.$
$$\therefore \lim_{x \to \infty} \frac{1}{x} = 0.$$

$\square$

Podemos observar que la definición es bastante natural una vez hemos entendido el concepto de límite, por lo cual procederemos directamente a revisar algunas de sus propiedades.

Propiedades de los límites en el infinito

Al igual que la definición revisada para el límite de una función en un punto, el límite de una función cuando $x$ tiende a infinito también es único.

Proposición. El límite de una función cuando $x$ tiende a infinito es único, es decir, si $f$ tiende a $L$ cuando $x \rightarrow \infty$ y $f$ tiende a $L’$ cuando $x \rightarrow \infty$, entonces $L = L’.$

La demostración es muy similar a la realizada en la entrada de definición formal del límite, por lo cual se omitirá, pero de ser necesario puedes realizarla para repasar los conceptos.

Análogamente a las entradas anteriores, tenemos una relación entre el límite al infinito de una función y el límite de una sucesión.

Teorema. Sea $f: A \rightarrow \mathbb{R}$. Los siguientes enunciados son equivalentes.

  1. $$\lim_{x \to \infty} f(x) = L.$$
  2. Para cualquier sucesión $\{a_n\}$ en $A$ que diverge a infinito se tiene que la sucesión $\{f(a_n)\}$ converge a $L.$

Notemos que para que el límite en el infinito tenga sentido, se debe cumplir que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}.$

Demostración.

$1) \Rightarrow 2)]$ Sea $\varepsilon >0$. Supongamos que $$\lim_{x \to \infty} f(x) = L.$$
Y sea $\{ a_n \}$ en $A$ que diverge a infinito.

Por hipótesis $f$ tiende a $L$ cuando $x$ tiende a infinito, entonces existe $M \in \mathbb{R}$ tal que si $x > M$ se tiene que $|f(x)-L| < \varepsilon.$

Además, como $\{a_n\}$ diverge a infinito, entonces para $M$ existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ se tiene que $a_n > M.$ Por lo tanto, $|f(a_n)-L| < \varepsilon.$
$$\therefore \lim_{n \to \infty} f(a_n) = L.$$


$1) \Leftarrow 2)]$ Realizaremos esta demostración por contrapositiva, es decir, probaremos que si $$\lim\limits_{x \to \infty} f(x) \neq L,$$

entonces existe $\{a_n\}$ en $A$ tal que $$\lim\limits_{n \to \infty} a_n = \infty \qquad \text{ y } \qquad \lim\limits_{n \to \infty} f(a_n) \neq L.$$

Supongamos que $\lim\limits_{x \to \infty} f(x) \neq L$. Entonces existe $\varepsilon > 0$ tal que para todo $M_n > a$ existe $x’_n > M_n$ tal que $|f(x’_n) -L| \geq \varepsilon.$

De esta forma, es posible generar la sucesión $\{ x’_n \}$ en $A.$ Primero veremos que esta sucesión diverge a infinito.

Sea $\alpha \in \mathbb{R}$. Entonces existe $M_{n_0} \in \mathbb{R}$ tal que $M_{n_0} > \alpha$. Además, $x’_{n_0} > M_{n_0} > \alpha$, y por lo tanto para todo $n \geq n_0$ se sigue que $x’_n > M_n \geq M_{n_0} > \alpha$. Es decir, $x’_n > \alpha$ para todo $n \geq n_0$.

$$\therefore \lim_{n \to \infty} x’_n = \infty.$$

Además, se tiene que $|f(x’_n)-L| \geq \varepsilon$ para todo $n \in \mathbb{N}$.

Consideremos $\{a_n\} = \{x’_n\}$, entonces

$$\lim\limits_{n \to \infty} a_n = \infty \qquad \text{ y } \qquad \lim\limits_{n \to \infty} f(a_n) \neq L.$$

Por lo tanto, concluimos que $2) \Rightarrow 1)$

$\square$

Después de este teorema, nuevamente logramos obtener las mismas propiedades que conocemos del límite de una sucesión.

Proposición. Sean $f: A \rightarrow \mathbb{R}$, $g: A \rightarrow \mathbb{R}$ con $A \subset \mathbb{R}$ tal que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}$. Si además

$$\lim_{x \to \infty} f(x) = L \quad \text{ y } \quad \lim_{x \to \infty} g(x) = T$$

entonces

  1. $$\lim_{x \to \infty} c \cdot f(x) = cL.$$
  2. $$\lim_{x \to \infty} (f+g)(x) = L+T.$$
  3. $$\lim_{x \to \infty} (f-g)(x) = L-T.$$
  4. $$\lim_{x \to \infty} (f \cdot g)(x) = LT.$$
  5. Si $T \neq 0$ y $g(x) \neq 0$ para $x > a$, entonces $$\lim_{x \to \infty} \frac{f}{g}(x) = \frac{L}{T}.$$

Ahora veremos una proposición que nos será útil para el cálculo de límites.

Proposición. Para todo $k \in \mathbb{N}$ se tiene que $$\lim_{x \to \infty} \frac{1}{x^k} = 0.$$

Demostración.

Procederemos a realizar esta demostración mediante inducción.
Caso base: $k = 1$.
En el ejemplo anterior se probó mediante la definición que $$\lim_{x \to \infty} \frac{1}{x^1} = \lim_{x \to \infty} \frac{1}{x} = 0.$$
Hipótesis de inducción: $$\lim_{x \to \infty} \frac{1}{x^k} = 0.$$
Ahora veamos que también se cumple para $k+1$.

\begin{align*}
\lim_{x \to \infty} \frac{1}{x^{k+1}} = & \lim_{x \to \infty} \frac{1}{x^k} \cdot \frac{1}{x^1} \\ \\
= & \lim_{x \to \infty} \frac{1}{x^k} \lim_{x \to \infty} \frac{1}{x^1} \\ \\
= & 0 \cdot 0 = 0.
\end{align*}

\begin{gather*}
\therefore \lim_{x \to \infty} \frac{1}{x^{k+1}} = 0. \\ \\
\therefore \lim_{x \to \infty} \frac{1}{x^k} = 0 \text{, } \forall k \in \mathbb{N}.
\end{gather*}

$\square$

Revisaremos un par de ejemplos donde aplicaremos las propiedades enunciadas.

Ejemplo 2. Determina $$\lim_{x \to \infty} \frac{8x+5}{x^3+10}.$$

Notemos que
\begin{align*}
\lim_{x \to \infty} \frac{8x+5}{x^3+10} = & \lim_{x \to \infty} \frac{8x+5}{x^3+10} \cdot \frac{\frac{1}{x^3}}{\frac{1}{x^3}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{8x}{x^3} + \frac{5}{x^3}}{\frac{x^3}{x^3}+\frac{10}{x^3}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{8}{x^2} + \frac{5}{x^3}}{1+\frac{10}{x^3}} \\ \\
= & \frac{\lim\limits_{x \to \infty} \frac{8}{x^2} + \frac{5}{x^3}}{\lim\limits_{x \to \infty} 1+\frac{10}{x^3}} \\ \\
= & \frac{0 + 0}{1+0} \\ \\
= & \frac{0}{1} \\ \\
= & 0.
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{8x+5}{x^3+10} = 0.$$

Ejemplo 3. Calcula el siguiente límite $$\lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x}.$$

Como consideraremos que $x \rightarrow \infty$, podemos suponer, particularmente, que $x>0$, entonces

\begin{align*}
\frac{1}{\sqrt{x^2-2x}-x} = & \frac{1}{\sqrt{x^2-2x}-x} \cdot \frac{\sqrt{x^2-2x}+x}{\sqrt{x^2-2x}+x} \\ \\
= & \frac{\sqrt{x^2-2x}+x}{\left( \sqrt{x^2-2x} \right)^2 – x^2}\\ \\
= & \frac{\sqrt{x^2-2x}+x}{x^2-2x – x^2} \\ \\
= & \frac{\sqrt{x^2-2x}+x}{-2x} \\ \\
= & -\frac{\sqrt{x^2-2x}}{2x} – \frac{x}{2x} \\ \\
= & -\frac{\sqrt{x^2-2x}}{\sqrt{4x^2}} – \frac{1}{2} \text{, como $x$ es positivo, $\sqrt{4x^2} = |2x| = 2x$ } \\ \\
= & -\sqrt{\frac{x^2-2x}{4x^2}} – \frac{1}{2} \\ \\
= & -\sqrt{\frac{x^2}{4x^2} – \frac{2x}{4x^2}} – \frac{1}{2} \\ \\
= & -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2}.
\end{align*}
$$\Rightarrow \frac{1}{\sqrt{x^2-2x}-x} = -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2}.$$

Entonces tenemos que
\begin{align*}
\lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x} = & \lim_{x \to \infty} \left( -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2} \right) \\
= & -\sqrt{\frac{1}{4} – 0} – \frac{1}{2} \\
= & -\frac{1}{2} -\frac{1}{2} \\
= & -1.
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x} = -1.$$

A continuación enunciaremos el teorema del sándwich para este tipo de límites.

Proposición. Sean $f$, $g$, $h: A \rightarrow \mathbb{R}$ con $A \subset \mathbb{R}$ tal que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}$. Si existe $M_1 \in \mathbb{R}$ tal que para todo $x >M_1$ se tiene que $$f(x) \leq g(x) \leq h(x) \quad \text{ y } \quad \lim_{x \to \infty} f(x) = L = \lim_{x \to \infty} h(x).$$

Entonces $$ \lim_{x \to \infty} g(x) = L.$$

Nuevamente, omitiremos la demostración pues es análoga a la revisada en una entrada anterior.

Extensión del límite en el infinito

Así como tenemos el límite en el infinito, existe una definición análoga que considera el límite de una función cuando $x$ tiende a $- \infty$.

Definición. Sean $A \subseteq \mathbb{R}$ y $f: A \rightarrow \mathbb{R}$. Decimos que $f$ tiende al límite $L \in \mathbb{R}$ cuando $x$ tiende a $- \infty$ si para cualquier $\varepsilon > 0$ existe $m \in \mathbb{R}$, tal que para cualquier $x<m$, se tiene que $|f(x)-L|<\varepsilon$ y lo denotamos $$\lim_{x \to -\infty} f(x) = L.$$

La definición nos indica que $f$ tiene límite $L$ cuando $x$ tiende a $-\infty$ si para valores lo suficientemente pequeños de $x$ nos acercamos arbitrariamente a $L$.

Esta extensión de límite tiene propiedades análogas revisadas en esta entrada.

Más adelante…

En la siguiente entrada revisaremos una nueva variante del límite de una función: los límites infinitos. Es decir, veremos el caso donde el límite de una función es infinito.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demostrar que si $f: A \rightarrow \mathbb{R}$ es tal que $$\lim_{x \to \infty} x f(x) = L$$ con $L \in \mathbb{R}$, entonces $$\lim_{x \to \infty} f(x) = 0.$$
  • Sean $f$ y $g$ dos funciones definidas en $(a, \infty)$ tales que $$\lim_{x \to \infty} f(x) = L \quad \text{ y } \quad \lim_{x \to \infty} g(x) = \infty.$$
    Entonces se tiene que $$\lim_{x \to \infty} f(g(x)) = L.$$
  • Prueba que $$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(-x).$$
  • Prueba que $$\lim_{x \to 0^-} f(\frac{1}{x}) = \lim_{x \to -\infty} f(x).$$
  • Calcula los siguientes límites
    $i$) $$\lim_{x \to \infty} \frac{\sqrt{x+1}}{x} \text{, definido para } x >0.$$
    $ii$) $$\lim_{x \to \infty} \frac{\sqrt{x}-x}{\sqrt{x}+x} \text{, definido para } x >0.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Límites laterales

Por Juan Manuel Naranjo Jurado

Introducción

En las entradas anteriores hemos trabajado con la definición de límite y revisamos sus propiedades. En esta ocasión, daremos la definición de límite por la derecha y límite por la izquierda, que en conjunto son llamados límites laterales. De igual forma, revisaremos algunos ejemplos y su relación con la definición vista anteriormente.

Límites laterales

Las definiciones que veremos a continuación se basan en restringir la forma en que nos acercamos a $x_0.$ El límite por la derecha se enfoca en acercarnos por la derecha, es decir, pediremos que $x > x_0,$ lo cual se traducirá en que debe cumplirse que $0<x-x_0 < \delta$. Por otro lado, para el límite por la izquierda debe cumplirse que $x < x_0,$ de esta forma se tendrá que $0<x_0-x< \delta.$ Primero daremos la definición de límite por la derecha.

Definición. Sean $A \subset \mathbb{R}$ y $f: A \rightarrow \mathbb{R}.$ Se dice que $L \in \mathbb{R}$ es límite por la derecha de $f$ en $x_0,$ si para todo $\varepsilon >0$ existe $\delta > 0$ tal que si $0<x-x_0<\delta$ entonces $|f(x)-L| < \varepsilon.$ Cuando $L$ es el límite de $f$ en el punto $x_0$ por la derecha, lo denotamos $$\lim_{x \to x_0+} f(x) = L.$$

Análogamente, tenemos la definición de límite por la izquierda.

Definición. Sean $A \subset \mathbb{R}$ y $f: A \rightarrow \mathbb{R}.$ Se dice que $L \in \mathbb{R}$ es límite por la izquierda de $f$ en $x_0,$ si para todo $\varepsilon >0$ existe $\delta > 0$ tal que si $0<x_0 – x<\delta$ entonces $|f(x)-L| < \varepsilon.$ Cuando $L$ es el límite de $f$ en el punto $x_0$ por la izquierda, lo denotamos $$\lim_{x \to x_0-} f(x) = L.$$

Propiedades de los límites laterales

De forma similar al teorema que vimos para los límites, existe una relación entre el límite lateral de una función y el límite de una sucesión, basta agregar a los supuestos la condición de que la sucesión sea mayor que $x_0$ para todo $n \in \mathbb{N}$ en el caso de límite por la derecha y que sea menor que $x_0$ para todo $n \in \mathbb{N}$ en el caso de límite por la izquierda.

Teorema. Sea $A \subset \mathbb{R}.$ Definimos la función $f:A \rightarrow \mathbb{R}.$ Entonces, dado un $x_0,$ los siguientes enunciados son equivalentes.

  1. $$\lim_{x \to x_0+} f(x) = L.$$
  2. Para toda sucesión $\{ a_n \}$ en $A$ que converge a $x_0$ y tal que $a_n > x_0$ para todo $n\in \mathbb{N},$ la sucesión $\{f(a_n)\}$ converge a $L.$

El teorema de límite por la izquierda es similar al anterior. Además, la demostración es totalmente análoga a la revisada en una entrada anterior por lo cual quedará como tarea moral. También recordemos que este teorema nos ayuda a determinar las propiedades que tienen los límites laterales debido a la herencia que nos brinda el límite de una sucesión; es gracias a ello que podremos hacer uso de tales propiedades en los siguientes ejemplos.

Ejemplo 1. Sea $f: \mathbb{R} \rightarrow \mathbb{R},$ definida de la siguiente forma

$$f(x) =
\begin{cases}
x^3+1 & \quad \text{si } x<-1 \\
x^2+1& \quad \text{si } x \geq -1. \\
\end{cases}
$$

Determina los límites laterales en $x_0 = -1.$

Primero mostraremos la gráfica de la función:

Calculando el límite por la izquierda, tenemos
$$\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} x^3+1 = 0.$$

Por otro lado, el límite por la derecha
$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} x^2+1= 2.$$

Por lo tanto
$$\lim_{x \to 0^-} f(x) = 0 \quad \text{ y } \quad \lim_{x \to 0^+} f(x) = 2.$$

Ejemplo 2. Sea $f: \mathbb{R} \setminus \{0 \} \rightarrow \mathbb{R}.$ Calcula los límites laterales en $x_0 = 0$ de

$$f(x) = \frac{|x|}{x}.$$

La gráfica de la función es la siguiente:

Calculando el límite por la izquierda, tenemos
\begin{align*}
\lim_{x \to 0^-} f(x) = & \lim_{x \to 0^-} \frac{|x|}{x} \\
= & \lim_{x \to 0^-} \frac{-x}{x} \text{, pues $x$ < 0} \\
= & \lim_{x \to 0^-} -1 \\
= & -1.
\end{align*}
Por otro lado, el límite por la derecha
\begin{align*}
\lim_{x \to 0^+} f(x) = & \lim_{x \to 0^+} \frac{|x|}{x} \\
= & \lim_{x \to 0^+} \frac{x}{x} \text{, pues $x$ > 0} \\
= & \lim_{x \to 0^+} 1 \\
= & 1.
\end{align*}
Por lo tanto
$$\lim_{x \to 0^-} f(x) = -1 \quad \text{ y } \quad \lim_{x \to 0^+} f(x) = 1.$$

De los ejemplos revisados, el primero tiene la propiedad de que sus límites laterales son iguales mientras que para el segundo y el tercero tales límites son distintos en $x_0.$

Relación entre el límite de una función y sus límites laterales

Parece inmediato inferir que, considerando un punto $x_0$ dado, si los límites por la izquierda y por la derecha existen y son iguales, entonces el límite de la función sí existe en tal punto. De la misma manera, resulta natural que si el límite existe, entonces los límites laterales también existen y son iguales. Probaremos esta equivalencia, pero para hacerlo, primero demostraremos la siguiente proposición.

Proposición. Sean $x,$ $x_0$ en $\mathbb{R}$ y $\delta >0.$ Entonces $0<|x-x_0|< \delta$ si y solo si $0<x-x_0<\delta \quad$ ó $\quad 0<x_0-x<\delta.$

Demostración.
Supongamos que $0<|x-x_0|< \delta$.

Caso 1: $x-x_0 > 0$.
Entonces $|x-x_0| = x-x_0$, así
\begin{gather*}
0<|x-x_0|< \delta \Leftrightarrow 0< x-x_0 < \delta.
\end{gather*}

Caso 2: $x- x_0 < 0$.
Entonces $|x-x_0| = x_0-x$, así
\begin{gather*}
0<|x-x_0| < \delta \Leftrightarrow 0< x_0-x < \delta.
\end{gather*}

$$\therefore 0<|x-x_0|< \delta \Leftrightarrow 0<x-x_0<\delta \quad \text{ ó } \quad 0<x_0-x<\delta.$$

$\square$

Teorema. El límite de una función $f$ en el punto $x_0$ existe y es igual a $L$ si y solo si los límites laterales existen y son iguales a $L$, es decir

$$\lim_{x \to x_0} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to x_0^+} f(x) = L = \lim_{x \to x_0^-} f(x).$$

Demostración.

$\Rightarrow]$ Supongamos que $$\lim_{x \to x_0} f(x) = L.$$
Sea $\varepsilon > 0$. Como $f$ converge a $L$ en $x_0$, existe $\delta > 0$ tal que si $0<|x-x_0|< \delta$ se tiene que $|f(x)-L| < \varepsilon.$

Si $0<x-x_0 < \delta$, entonces $0<|x-x_0|< \delta$ por la proposición anterior. Se sigue que
\begin{gather*}
|f(x)-L| < \varepsilon. \\
\therefore \lim_{x \to x_0^+} f(x) = L.
\end{gather*}

Si $0<x_0-x < \delta$, entonces $0<|x-x_0|< \delta$ por la proposición anterior. Se sigue que
\begin{gather*}
|f(x)-L| < \varepsilon. \\
\therefore \lim_{x \to x_0^-} f(x) = L.
\end{gather*}

$\Leftarrow]$ Supongamos que $$\lim_{x \to x_0^+} f(x) = L = \lim_{x \to x_0^-} f(x)$$
Sea $\varepsilon > 0.$

Como $\lim\limits_{x \to x_0^+} f(x) = L$, existe $\delta_1$ tal que si $0<x-x_0<\delta_1$ entonces $|f(x)-L| < \varepsilon.$

Como $\lim\limits_{x \to x_0^-} f(x) = L$, existe $\delta_2$ tal que si $0<x_0-x<\delta_2$ entonces $|f(x)-L| < \varepsilon.$

Consideremos $\delta = min \{ \delta_1, \delta_2\}.$ Por la proposición, si $0<|x-x_0|< \delta$, entonces $0<x-x_0<\delta$ ó $0<x_0-x<\delta.$

Para el primer caso, tenemos que $0<x-x_0<\delta \leq \delta_1$, entonces $|f(x)-L| < \varepsilon.$
Para el segundo caso, se tiene que $0<x_0-x<\delta \leq \delta_2$, entonces $|f(x)-L| < \varepsilon.$

Por lo tanto $$\lim_{x \to x_0} f(x) = L.$$

$$\therefore \lim_{x \to x_0} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to x_0^+} f(x) = L = \lim_{x \to x_0^-} f(x).$$

$\square$

Observación. Ya que hemos demostrado este teorema, podemos notar que si los límites laterales de una función son distintos en un punto $x_0$, entonces no existe el límite de la función en tal punto.

Finalizaremos esta entrada revisando los siguientes ejemplos.

Ejemplo 3. Determina si existe el límite en $x_0 = 0$ para la siguiente función $$f(x) = x \sqrt{\frac{1}{4x^2}-16}.$$

Veamos primero qué sucede con el límite por la izquierda
\begin{align*}
\lim_{x \to 0^-} f(x) = & \lim_{x \to 0^-} x \sqrt{\frac{1}{4x^2}-16} \\ \\
= & \lim_{x \to 0^-} x \sqrt{\frac{1-64x^2}{4x^2}} \\ \\
= & \lim_{x \to 0^-} \frac{ x \sqrt{1-64x^2} }{ \sqrt{4x^2} } \\ \\
= & \lim_{x \to 0^-} \frac{ x \sqrt{1-64x^2} }{ 2|x|} \\ \\
= & \lim_{x \to 0^-} \frac{ x \sqrt{1-64x^2} }{ -2x} \text{, pues $x$ < 0} \\ \\
= & \lim_{x \to 0^-} – \frac{\sqrt{1-64x^2} }{2} \\ \\
= & – \frac{1}{2}.
\end{align*}

De forma similar, tenemos que
\begin{align*}
\lim_{x \to 0^+} f(x) = & \lim_{x \to 0^+} x \sqrt{\frac{1}{4x^2}-16} \\ \\
= & \lim_{x \to 0^+} x \sqrt{\frac{1-64x^2}{4x^2}} \\ \\
= & \lim_{x \to 0^+} \frac{ x \sqrt{1-64x^2} }{ 2x} \text{, pues $x$ > 0} \\ \\
= & \lim_{x \to 0^+} \frac{\sqrt{1-64x^2} }{2} \\ \\
= & \frac{1}{2}.
\end{align*}
$$\therefore \lim_{x \to 0^-} f(x) = -\frac{1}{2} \quad \text{ y } \quad \lim_{x \to 0^+} f(x) = \frac{1}{2}.$$

Como los límites laterales son distintos, podemos concluir que el límite de la función $f$ no existe en el punto $x_0 = 0.$

Ejemplo 4. Sea $f: \mathbb{R} \rightarrow \mathbb{R}$, definida de la siguiente forma
$$f(x) =
\begin{cases}
x^2 & \quad \text{si } x<5 \\
2x+15 & \quad \text{si } x \geq 5. \\
\end{cases}
$$
Determina si el límite existe en $x_0 = 5.$

Iniciemos calculando el límite por la izquierda.
$$\lim_{x \to 5^-} f(x) = \lim_{x \to 5^-} x^2 = 25.$$

Por otro lado, el límite por la derecha
$$\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} 2x+15 = 25.$$

Por lo tanto
$$\lim_{x \to 0^-} f(x) = 25 \quad \text{ y } \quad \lim_{x \to 0^+} f(x) = 25.$$

Como los límites laterales existen y son iguales, podemos concluir que
$$\lim_{x \to 0} f(x) = 25.$$

Más adelante…

¿Qué sucede cuando en lugar de acercarnos a un punto en particular $x_0$, hacemos que $x$ crezca indefinidamente? Esto y otras ampliaciones del concepto del límite serán revisadas en la siguiente entrada con lo cual estaremos listos para calcular todo tipo de límites y, con ello, podremos conocer el comportamiento que toman las funciones tanto en un punto específico como «en el infinito».

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que
    $i$) $\lim_\limits{x \to 0^+} f(x) = \lim_\limits{x \to 0^-} f(-x).$
    $ii$) $\lim_\limits{x \to 0} f(|x|) = \lim_\limits{x \to 0^+} f(x).$
  • Usando la definición épsilon-delta de límite por la derecha, prueba que $\lim_{x \to 8^+} \sqrt{x-8} = 0.$
  • Calcula el límite en $x_0 = 5$ de la función
    $$f(x) =
    \begin{cases}
    \frac{x^2-12x+35}{x-5} & \quad \text{si } x < 5 \\
    \frac{x-5}{1- \sqrt{x-4} } & \quad \text{si } x \geq 5.
    \end{cases}
    $$
  • Usando límites laterales, determina si existe $$\lim_{x \to 0} \frac{3x + |x|}{7x-5|x|}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Propiedades de orden de los números reales

Por Karen González Cárdenas

Introducción

Comenzaremos a revisar un conjunto de propiedades muy particular que nos permitirán ordenar a los números reales. De acuerdo a este orden podremos decir para un par de números reales, quién es mayor o menor que otro. Así a la lista de propiedades vista previamente le agregaremos las siguientes.

Noción de orden en $\r$

O1.-Existe un subconjunto $P\subseteq \r$ tal que para todo $a\in\r$ ocurre una y sólo una de las siguientes afirmaciones:

  • $a=0$,
  • $a\in P$,
  • $-a\in P \text{.}$

O2.-Si $a,b \in P$ entonces $a+b \in P$.

O3.-Si $a,b \in P$ entonces $a\cdot b \in P$.

Los elementos de $P$ son llamados números reales positivos.

Definición: Decimos que:

  • $a>b \quad$ si $\quad a-b \in P$.
  • $a<b \quad$ si $\quad b>a$.
  • $a\geq b \quad$ si $\quad a-b \in P \quad$ o $\quad a=b$.
  • $a\leq b \quad$ si $\quad b-a \in P\quad$ o $\quad a=b$.

Tricotomía

Proposición (Tricotomía): Para cualesquiera $a,b \in \r$, tenemos que cumple una y sólo una de las siguientes afirmaciones:

  1. $a=b$
  2. $a>b$
  3. $b>a$

Demostración:

Sean $a,b\in\r$. Como por la cerradura de la suma S1 tenemos que: $$a+(-b)= a-b\in\r$$

Por O1 se cumple una y sólo una de las siguientes afirmaciones:

  • $a-b=0$,
  • $a-b\in P$,
  • $-(a-b)\in P$.

Aplicando las definiciones anteriores nos quedaría:

  • $a-b=0 \Rightarrow a=b$,
  • $a-b\in P \Rightarrow a>b$,
  • $-(a-b)\in P\Rightarrow b-a\in P \Rightarrow b>a \text{.}$

$\square$

Leyes de los signos

Definición: Diremos que $a$ es positivo si $a\in P$ y que es negativo si $-a\in P$.

Proposición (Leyes de los signos): Sean $a,b\in\r$. Se cumplen las siguientes afirmaciones:

  1. Si $a,b >0$ entonces $a\cdot b >0$.
  2. Si $a,b < 0$ entonces $a\cdot b >0$.
  3. Si $a>0$, $b<0$ entonces $a\cdot b < 0$.
  4. Si $a<0$, $b>0$ entonces $a\cdot b < 0$.

Demostración:

  1. Consideremos $a>0$ y $b>0$. Así tenemos que $a\in P$ y $b\in P$ entonces por O3 $a\cdot b \in P$.
    $$\therefore \quad a\cdot b > 0$$
  2. Ahora tomemos $a< 0$ y $b<0$. Por lo que $-a\in P$ y $-b\in P$ entonces por O3 $(-a)\cdot( -b) \in P$.
    $$\therefore \quad a\cdot b > 0$$

$\square$

Algunos resultados importantes

Proposición: Sean $a,b,c,d \in \r$. Tenemos que se cumplen los siguientes resultados:

  1. Si $a>b$ entonces $a+c>b+c$.
  2. Si $a<b$ y $c<0$ entonces $ac>bc$.
  3. Si $a<b$ y $c>0$ entonces $ac<bc$.
  4. Si $a<b$ y $c<d$ entonces $a+c<b+d$.
  5. Si $a<b$ y $c>d$ entonces $a-c<b-d$.
  6. Si $a<b$ entonces $-b<-a$.

Demostración:
Demostraremos los puntos 1,3,4 y 5, mientras que dejaremos como ejercicios al lector los puntos 2 y 6.

  1. Como $a>b$ esto significa que $a-b \in P$.
    Así se sigue que:
    \begin{align*}
    a-b &= a +0 -b\\
    &= a + (c -c)-b\\
    &= (a +c) – (c+b) \quad\text{.}\\
    \end{align*}
    De lo anterior concluimos que $(a +c) – (c+b) \in P$, es decir, $a +c > c+b$.
  2. Tarea moral.
  3. Por hipótesis tenemos que $a<b$ y $c>0$ por lo que ocurre: $b-a \in P$ y $c \in P$.
    Por O3 afirmamos que $c (b-a) \in P$. Observemos que: $c (b-a) = cb – ca = bc – ac$.
    $$\therefore \quad bc – ac \in P\text{.}$$
    $$\therefore \quad bc>ac \text{.}$$
  4. Ya que $a<b$ y $c<d$ se sigue que $b-a \in P$ y $d-c \in P$. Así por O2 tenemos:
    $$(b-a)+(d-c) \in P\text{.}$$
    Notemos que:
    \begin{align*}
    (b-a)+(d-c) &= b-a+d-c\\
    &= b+d -a-c\\
    &= (b+d) – (a+c)\quad\text{.}\\
    \end{align*}
    $$\therefore \quad (b+d) – (a+c) \in P\quad\text{.}$$
    $$\therefore \quad b+d > a+c\quad\text{.}$$
  5. Tenemos que $a<b$ y $c>d$ $\Rightarrow b-a \in P$ y $c-d \in P$.
    Por O2 se sigue que $(b-a) + (c-d) \in P$. Y como tenemos lo siguiente:
    \begin{align*}
    (b-a) + (c-d)&= b-a + c-d\\
    &= (b-d) + (-a +c)\\
    &= (b-d) – (a-c)\quad\text{.}\\
    \end{align*}
    Así concluimos que: $(b-d) – (a-c)\in P$.
    $$ \therefore b-d > a-c\quad\text{.}$$
  6. Tarea moral.

$\square$

Transitividad

Proposición (Transitividad): Para $a,b \in \r$ se cumplen las siguientes propiedades:

  1. Si $a>b$ y $b>c \Rightarrow a>c$.
  2. Si $a< b$ y $b<c \Rightarrow a<c$.

Demostración:

  1. Cómo $a>b$ y $b>c$ sabemos que $a-b \in P$ y $b-c \in P$.
    Entonces tenemos por O2 $(a-b)+(b-c)\in P$. Y como:
    $$(a-b)+(b-c) = a+(-b+b)-c = a-c \quad\text{.}$$
    Así $a-c \in P$ y por lo tanto $a>c$.
  2. Ya que $b>a$ y $c>b$. Aplicando el punto anterior se sigue que:
    $$c> a \Rightarrow a < c \quad\text{.}$$

$\square$

El cuadrado de un número real

Proposición: Para todo $a\in \r$ se cumple lo siguiente:

$$a^{2} \geq 0 \text{.}$$

Demostración: Tomemos $a\in \r$. Por la propiedad O1 debemos considerar los siguientes tres casos.

  • Caso $a =0$:
    Como $a=0$, al multiplicar por $a$ en ambos lados de la igualdad tenemos:
    \begin{align*}
    &\Rightarrow a\cdot a = 0\cdot a\\
    &\Rightarrow a\cdot a = 0\cdot 0\\
    &\Rightarrow a^{2} = 0 \quad \text{.}\\
    \end{align*}
    Concluimos así $a^{2} \geq 0$.
  • Caso $a>0$
    Así $a\in P$ y por O3 tenemos que $a \cdot a \in P$. Por lo que $a^{2} \in P$, es decir, $a^{2}> 0$. Se concluye $a^{2} \geq 0$.
  • Caso $a< 0$
    Ahora tenemos que $-a\in P$ y por O3 que $-a \cdot -a \in P$. Así $a^{2}= (-a)(-a) \in P$, por lo que $a^{2} \geq 0$.

De los casos anteriores probamos que $a^{2} \geq 0$ para todo $a\in \r$

$\square$

Más adelante

Ya que hemos definido las propiedades de orden y varios de sus resultados más importantes. En la siguiente entrada comenzaremos por definir a los intervalos en los reales y a resolver desigualdades apoyándonos en todo lo visto en esta entrada.

Tarea moral

Demuestra los puntos 3 y 4 de las Leyes de los signos.

  • Si $a>0$, $b<0$ entonces $a\cdot b < 0$.
    • Sugerencia: Prueba $a\cdot (-b)$ es inverso aditivo de $ab$, es decir, $ab + a\cdot (-b) =0$
  • Si $a<0$, $b>0$ entonces $a\cdot b < 0$.
    • Sugerencia: Aplica o prueba el resultado $(-a)(b)=-(ab)$.

Prueba los puntos 2 y 6 de la sección Algunos resultados importantes:

  • Si $a<b$ y $c<0$ entonces $ac>bc$.
  • Si $a<b$ entonces $-b<-a$.

Muestre que para $a,b \in \r$ se cumplen las siguientes propiedades:

  • Si $a>1$ entonces $a^{2} > a$.
  • Si $0<a<1$ entonces $a^{2} < a$.
  • Consideremos $0<a<b$, demostrar que se cumple la siguiente desigualdad:
    $$a< \sqrt{ab}< \frac{a+b}{2} <b$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Propiedades algebraicas de los números reales (Parte 2)

Por Karen González Cárdenas

Introducción

Continuaremos revisando resultados derivados de las Propiedades básicas de los números reales vistas en la entrada anterior.

Resultados relacionados a la multiplicación

Proposición. Demostraremos lo siguiente:

  1. Sean $a,b \in\RR$. Si $ab=0 \Rightarrow a=0 $ ó $b=0$.
  2. Sea $a\in \RR, a\neq 0$. Si $ax=a$, entonces $x=1$.
  3. Sean $a,b,c \in \RR$ con $a \neq 0$. Si $ab = ac \Rightarrow b=c$.

Demostración:

  1. Procederemos a demostrar por contradicción. Así suponemos que $ab=0$, $a\neq 0$ y $b\neq 0$. Entonces por la propiedad M5 existen $a^{-1},b^{-1}\in\RR$ tales que $a\cdot a^{-1}=1$ y $b\cdot b^{-1}=1$.
    Y como $ab=0$ se sigue:
    \begin{align*}
    &\Rightarrow (ab)\cdot b^{-1}=0\cdot b^{-1}\tag{por multiplicar $b^{-1}$}\\
    &\Rightarrow a (b\cdot b^{-1}) = 0\cdot b^{-1}\tag{por M3}\\
    &\Rightarrow a (1) = 0\cdot b^{-1}\tag{por M5}\\
    &\Rightarrow a = 0\cdot b^{-1}\tag{por M4}\\
    &\Rightarrow a = b^{-1}\cdot 0 \tag{por M2}\\
    &\Rightarrow a = 0 \contradiccion \tag{por resultado $a\cdot 0=0$}\\
    \end{align*}
    Lo anterior es una contradicción, pues supusimos que $a\neq 0$.
    $\therefore \quad a=0 \quad \text{o}\quad b=0$.

    Observación: Utilizaremos el símbolo $\contradiccion$ para referirnos a una contradicción en las pruebas.

    Otra alternativa de demostración para este punto 1 es la siguiente:
    Vamos a suponer que $ab=0$ y $a\neq 0$. Por M5 sabemos que existe $a^{-1}\in\RR$ inverso multiplicativo de $a$, así tenemos que:
    \begin{align*}
    &\Rightarrow a^{-1}\cdot (ab)=a^{-1}\cdot 0 \tag{por multiplicar $a^{-1}$}\\
    &\Rightarrow (a^{-1}\cdot a)b=a^{-1}\cdot 0 \tag{por M3}\\
    &\Rightarrow 1\cdot b=a^{-1}\cdot 0 \tag{por M5}\\
    &\Rightarrow b=a^{-1}\cdot 0 \tag{por M4}\\
    &\Rightarrow b = 0 \tag{por resultado $a\cdot 0=0$}\\
    \end{align*}
    Análogamente, si consideramos $b\neq 0$ obtendríamos que $a=0$.
    $\therefore a=0 $ ó $b=0$
  2. Como por hipótesis tenemos que $ax=a$.
    \begin{align*}
    &\Rightarrow ax + (-a)=a + (-a)\tag{por sumar $-a$}\\
    &\Rightarrow ax + (-a) = 0\tag{por S5}\\
    &\Rightarrow ax + (-1)(a)=0\tag{por $-a = (-1)(a)$}\\
    &\Rightarrow ax +(a)(-1)=0\tag{por M2}\\
    &\Rightarrow a (x + (-1))=0\tag{por D}\\
    \end{align*}

    Por el punto anterior 1 tenemos que $a=0$ ó $x + (-1)=0$. Pero como por hipótesis tenemos que $a\neq 0$ entonces $x + (-1)=0$.

    Como ya vimos que el inverso aditivo es único $\Rightarrow x$ es el inverso aditivo de $-1$, que por el resultado $-(-a)=a$ usando $a=1$, sabemos que es 1.
    $$\therefore \quad x=1$$
  3. Como por hipótesis tenemos que $a\neq 0$ entonces existe $a^{-1}\in\RR$ por M5.
    Así multiplicando por $a^{-1}$ en ambos lados de la igualdad $ab=ac$ tenemos:
    \begin{align*}
    &\Rightarrow a^{-1}(ab)=a^{-1}(ac)\\
    &\Rightarrow (a^{-1}a)b=(a^{-1}a)c\tag{por M3}\\
    &\Rightarrow 1\cdot b= 1\cdot c\tag{por M5}\\
    &\Rightarrow b=c\tag{por M4}\\
    \end{align*}
    $$\therefore \quad b=c$$

$\square$

Como vimos en las pruebas anteriores, conforme vayamos probando más propiedades los resultados que obtendremos se volverán más interesantes. A continuación demostraremos algunos con los que seguramente ya estás familiarizado.

Algunos productos notables

Notación: Definimos $x-y:=x + (-y)$.

Proposición: Para $x,y \in \RR$ se cumple lo siguiente:

  1. Diferencia de cuadrados: $x^{2} – y^{2} =(x – y)(x+y)$ .
  2. Si $x^{2} = y^{2}$ entonces $x=y \quad$ o $\quad x=-y$ .
  3. Diferencia de cubos: $x^{3} – y^{3}=(x-y)(x^{2} +xy+ y^{2})$ .
  4. Suma de cubos: $x^{3} + y^{3}=(x-y)(x^{2} -xy+ y^{2})$ .

Demostración:

  1. Partiremos de $(x – y)(x+y)$, así obtenemos lo siguiente:
    \begin{align*}
    (x – y)(x+y)&= (x-y)x + (x-y)y\tag{por D}\\
    &=x(x-y)+y(x-y)\tag{por M2}\\
    &=x(x+(-y))+y(x+(-y))\\
    &=x\cdot x + x\cdot (-y)+y\cdot x+y\cdot (-y)\tag{por D}\\
    &= x^{2} – xy+yx-y^{2}\tag{por $-xy=x(-y)$}\\
    &= x^{2} – xy+xy-y^{2}\tag{por M2}\\
    &= x^{2} +0-y^{2}\tag{por S5}\\
    &= x^{2} -y^{2}\tag{por S4}\\
    \therefore \quad(x – y)(x+y)&=x^{2} -y^{2}
    \end{align*}
  2. Sabemos que $x^{2} =y^{2}$. Veamos que si sumamos $-y^{2}$ en ambos lados obtenemos:
    $$x^{2} – y^{2}=y^{2}- y^{2} \Rightarrow x^{2} – y^{2}=0$$
    Aplicando el punto anterior se sigue que:
    $$(x – y)(x+y)=0$$
    Recordando la proposición vista al principio de la entrada decimos que: $x-y=0$, o bien, $x+y=0$.
    Por un lado tenemos que al sumar $y$ en $x-y=0$:
    \begin{align*}
    (x-y)+y&=0+y\\
    x+((-y)+y)&=y\tag{por S3 y S4}\\
    x&=y\tag{por S5}\\
    \end{align*}
    $$\therefore \quad x=y$$

    Y por otro tenemos que al sumar $-y$ en $x+y=0$:
    \begin{align*}
    (x+y)-y&=0-y\\
    x+(y+(-y))&=-y\tag{por S3 y S4}\\
    x&=-y\tag{por S5}\\
    \end{align*}
    $$\therefore \quad x=-y$$
    De lo anterior concluimos que $x=y$, ó $x=-y$.

    Los incisos 3 y 4 se dejarán como ejercicios en la Tarea moral.

$\square$

Propiedades relacionadas a los inversos multiplicativos

Notación: Denotaremos al inverso multiplicativo de $a\in\RR$ como $a^{-1}=\frac{1}{a}$. Consecuentemente, definimos $\frac{a}{b}:= a \cdot b^{-1}$.

Proposición: Para $a,b,c,d \in \RR$ se cumple lo siguiente:

  1. Para $a,b\neq 0$, $$(ab)^{-1} = a^{-1}b^{-1}\quad \text{.}$$
  2. Para $b,c\neq 0$, $$\frac{a}{b}=\frac{ac}{bc}\quad \text{.}$$
  3. Para $b,d \neq 0$, $$\frac{a}{b} + \frac{c}{d} =\frac{ad+bc}{bd}\quad \text{.}$$
  4. Para $b,d \neq 0$, $$\frac{a}{b} \cdot \frac{c}{d}=\frac{ac}{bd}\quad \text{.}$$
  5. Para $b,c,d \neq 0$, $$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}\quad \text{.}$$
  6. Para $b,d \neq 0$, $$\frac{a}{b}=\frac{c}{d} \Rightarrow ad=bc \quad \text{.}$$

Demostración:

  1. Observemos que por la propiedad de cerradura M1, $ab\in\RR$ y $ab\neq 0$. Así por M5 se sigue que: $$(ab)(ab)^{-1}=1 \tag {1}\quad \text{.}$$
    De este modo, lo que queremos probar es: $$(ab)(a^{-1}b^{-1})=1\quad \text{.}$$
    Comenzando por el lado izquierdo de la igualdad tenemos:
    \begin{align*}
    (ab)(a^{-1}b^{-1})&=a(b(a^{-1}b^{-1}))\tag{por M3}\\
    &=a(b(b^{-1}a^{-1}))\tag{por M2}\\
    &=a((bb^{-1})a^{-1})\tag{por M3}\\
    &=a((1)a^{-1})\tag{por M5}\\
    &=aa^{-1}\tag{por M4}\\
    &=1 \quad \text{.}\tag{por M5}
    \end{align*}
    Concluimos que $(ab)(a^{-1}b^{-1})=1 \tag{2}$. Al igualar con $(1)$ nos queda: $$(ab)(ab)^{-1}=(ab)(a^{-1}b^{-1})\quad\text{.}$$ Y aplicando el punto 3 de la primera sección de esta entrada tenemos: $$(ab)^{-1}=a^{-1}b^{-1}\quad\text{.}$$
  2. Recordemos que por la definición $\frac{a}{b}=ab^{-1}$. Por lo que tendríamos:
    \begin{align*}
    \frac{ac}{bc} &=(ac)(bc)^{-1}\\
    &=(ac)(b^{-1}c^{-1})\tag{ por el punto anterior}\\
    &=((ac)b^{-1})c^{-1}\tag{por M3}\\
    &=(a(cb^{-1}))c^{-1}\tag{por M3}\\
    &=(a(b^{-1}c))c^{-1}\tag{por M2}\\
    &=(ab^{-1})c)c^{-1}\tag{por M3}\\
    &=(ab^{-1})(cc^{-1})\tag{por M3}\\
    &=(ab^{-1})(1)\tag{por M5}\\
    &=ab^{-1} \quad \text{.}\tag{por M4}\\
    \end{align*}
    $$\therefore \quad \frac{a}{b}=\frac{ac}{bc}\quad \text{.}$$
  3. La propiedad 3 queda como ejercicio para nuestro lector.
  4. Procedamos a demostrar la propiedad 4, comenzaremos por $$\frac{ac}{bd}=\frac{ac}{bd}\quad\text{.}$$
    Así por definición tenemos lo siguiente:
    \begin{align*}
    \frac{ac}{bd}&=(ac)(bd)^{-1}\\
    &= (ac)(b^{-1}d^{-1})\tag{por el primer punto}\\
    &= ((ac)b^{-1})d^{-1}\tag{por M3}\\
    &=(a(cb^{-1}))d^{-1}\tag{por M3}\\
    &=(a(b^{-1}c))d^{-1}\tag{por M2}\\
    &=((ab^{-1})c)d^{-1}\tag{por M3}\\
    &=(ab^{-1})(cd^{-1})\tag{por M3}\\
    &=\frac{a}{b}\cdot \frac{c}{d}\quad\text{.}
    \end{align*}
    $$\therefore \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{ac}{bd}\quad\text{.}$$
  5. La propiedad 5 queda como ejercicio para nuestro lector.
  6. Sean $b,d \neq 0$. Supongamos que: $$\frac{a}{b}=\frac{c}{d}\quad\text{.}$$
    $P.d.$ $ad = bc$.
    Ya que $$\frac{a}{b}=\frac{c}{d}\quad\text{,}$$ por definición tenemos $ab^{-1}=cd^{-1}$.
    Multiplicando por $b$ se sigue que:
    \begin{align*}
    &\Rightarrow(ab^{-1})b =(cd^{-1})b\\
    &\Rightarrow a(b^{-1}b) =c(d^{-1}b)\tag{por M3}\\
    &\Rightarrow a(1) =c(bd^{-1})\tag{por M5 y M2}\\
    &\Rightarrow a =(cb)d^{-1}\quad\text{.}\tag{por M4 y M3}\\
    \end{align*}

    Ahora multiplicaremos la igualdad anterior por $d$:
    \begin{align*}
    &\Rightarrow ad =((cb)d^{-1})d\\
    &\Rightarrow ad =(cb)(d^{-1}d)\tag{por M3}\\
    &\Rightarrow ad =(cb)(1)\tag{por M5}\\
    &\Rightarrow ad =cb\tag{por M4}\\
    &\Rightarrow ad =bc\quad\text{.}\tag{por M2}\\
    \end{align*}

$\square$

Más adelante

Durante las últimas dos entradas vimos las propiedades relacionadas con la suma y la multiplicación de los números reales. Sin embargo, no son las únicas propiedades que este conjunto de números cumple. En la siguiente entrada comenzaremos a ver las propiedades de orden de los números reales y algunas de sus consecuencias.

Tarea moral

Prueba los puntos 3 y 4 de la sección «Algunos productos notables».

  • Diferencia de cubos: $x^{3} – y^{3}=(x-y)(x^{2} +xy+ y^{2})$
  • Suma de cubos: $x^{3} + y^{3}=(x+y)(x^{2} -xy+ y^{2})$
    Sugerencia: Utiliza el punto anterior «Diferencia de cubos» y prueba que $y^{3}=-(-y)^{3}$.

Prueba los puntos 3 y 5 de la sección anterior:

  • Para $b,d \neq 0$, $$\frac{a}{b} + \frac{c}{d} =\frac{ad+bc}{bd}\quad\text{.}$$
  • Para $b,c,d \neq 0$, $$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}\quad\text{.}$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»