Archivo de la etiqueta: álgebra lineal

Álgebra Superior I: Producto de matrices con vectores

Por Eduardo García Caballero

Introducción

Anteriormente conocimos dos operaciones que podemos realizar utilizando vectores o matrices: la suma entre vectores/matrices y el producto escalar. Como recordarás, estas operaciones involucran exclusivamente vectores o exclusivamente matrices. En esta entrada veremos una operación que involucra a ambos objetos matemáticos a la vez: el producto de una matriz por un vector.

Definición de producto de matrices con vectores

Una condición indispensable para poder realizar el producto matriz-vector es que la cantidad de columnas de la matriz sea la misma que la cantidad de entradas del vector. Basándonos en esto, podríamos multiplicar
(31225)(π4)o(1729132)(3235),
pero no podríamos realizar la operación
(1729132)(π4).

Como te habrás podido dar cuenta, en este tipo de producto es usual representar los vectores en su forma de “vector vertical” o “vector columna”.

El resultado de multiplicar una matriz por un vector será un nuevo vector, cuyo tamaño corresponde a la cantidad de filas de la matriz original.

Para obtener este nuevo vector, se sigue un algoritmo especial, el cual conocerás en entradas futuras. Sin embargo, a continuación te presentamos las fórmulas que definen a algunos casos especiales de esta operación, lo cual te permitirá obtener el producto en casos con una cantidad pequeña de entradas.

  • Producto de una matriz de tamaño 2×2 por un vector de tamaño 2:

(a11a12a21a22)(u1u2)=(a11u1+a12u2a21u1+a22u2).

  • Producto de una matriz de tamaño 3×2 por un vector de tamaño 2:

(a11a12a21a22a31a32)(u1u2)=(a11u1+a12u2a21u1+a22u2a31u1+a32u2).

  • Producto de una matriz de tamaño 2×3 por un vector de tamaño 3:

(a11a12a13a21a22a23)(u1u2u3)=(a11u1+a12u2+a13u3a21u1+a22u2+a23u3).

  • Producto de una matriz de tamaño 3×3 por un vector de tamaño 3:

(a11a12a13a21a22a23a31a32a33)(u1u2u3)=(a11u1+a12u2+a13u3a21u1+a22u2+a23u3a31u1+a32u2+a33u3).

¿Observas algún patrón en estas fórmulas?

Veamos algunos ejemplos numéricos de cómo usar estas fórmulas:

(31221)(134)=((3)(13)+(12)(4)(2)(13)+(1)(4))=(1+223+4)=(1103)

(1729132)(3235)=((1)(3)+(7)(23)+(2)(5)(9)(3)+(13)(23)+(2)(5))=(5+15233313).

Breve exploración geométrica

Como probablemente hayas visto en tu curso de Geometría Analítica I, el producto de matrices por vectores se puede emplear para representar distintas transformaciones de vectores en el plano y en el espacio.

Si multiplicamos una matriz diagonal por un vector, entonces el resultado corresponderá a “redimensionar” el vector en sus distintas direcciones. Por ejemplo, observamos que el producto
(3002)(33)=(96)
corresponde a redimensionar el vector original al triple de manera horizontal y al doble de manera vertical.

Por otra parte, multiplicar por una matriz de la forma
(cos(θ)sin(θ)sin(θ)cos(θ))
ocasiona que el vector rote un ángulo θ en sentido contrario a las manecillas del reloj; por ejemplo,
(cos(30º)sin(30º)sin(30º)cos(30º))(54)=(32121232)(54)=((32)(5)+(12)(4)(12)(5)+(32)(4))=(53425+432).

Propiedades algebraicas del producto de una matriz por un vector

A continuación, exploraremos algunas de las propiedades que cumple el producto matriz-vector. Estas propiedades las deduciremos para matrices de 2×3 por vectores de tamaño 3, pero la deducción para otros tamaños de matrices y vectores se realiza de manera análoga.

Primeramente, observemos que para matrices A y B de tamaño 2×3, y para un vector u, se cumple que
(A+B)u=((a11a12a13a21a22a23)+(b11b12b13b21b22b23))(u1u2u3)=(a11+b11a12+b12a13+b13a21+b21a22+b22a23+b23)(u1u2u3)=((a11+b11)u1+(a12+b12)u2+(a13+b13)u3(a21+b21)u1+(a22+b22)u2+(a23+b23)u3)=(a11u1+b11u1+a12u2+b12u2+a13u3+b13u3a21u1+b21u1+a22u2+b22u2+a23u3+b23u3)=(a11u1+a12u2+a13u3a21u1+a22u2+a23u3)+(b11u1+b12u2+b13u3b21u1+b22u2+b23u3)=(a11a12a13a21a22a23)(u1u2u3)+(b11b12b13b21b22b23)(u1u2u3)=Au+Bu,
es decir, el producto matriz-vector se distribuye sobre la suma de matrices (esto también se conoce como que el producto matriz-vector abre sumas).

Por otra parte, podemos probar que el producto matriz-vector se distribuye sobre la suma de vectores; es decir, si A es una matriz de 2×3, y u y v son vectores de tamaño 3, entonces
A(u+v)=Au+Av.

Además, veamos que si A es una matriz de 2×3, r es un escalar, y u un vector de tamaño 3, entonces
A(ru)=(a11a12a13a21a22a23)(r(u1u2u3))=(a11a12a13a21a22a23)(ru1ru2ru3)=(a11ru1+a12ru2+a13ru3a21ru1+a22ru2+a23ru3)=(r(a11u1)+r(a12u2)+r(a13u3)r(a21u1)+r(a22u2)+r(a23u3))=r(a11u1+a12u2+a13u3a21u1+a22u2+a23u3)=r((a11a12a13a21a22a23)(u1u2u3))=r(Au)
y, más aún,
A(ru)=(a11a12a13a21a22a23)(r(u1u2u3))=(a11a12a13a21a22a23)(ru1ru2ru3)=(a11ru1+a12ru2+a13ru3a21ru1+a22ru2+a23ru3)=((ra11)u1+(ra12)u2+(ra13)u3(ra21)u1+(ra22)u2+(ra23)u3)=((ra11ra12ra13ra21ra22ra23)(u1u2u3))=(r(a11a12a13a21a22a23))(u1u2u3)=(rA)u.

Por lo tanto A(ru)=r(Au)=(rA)u. Esta propiedad se conoce como que el producto matriz-vector saca escalares.

Como el producto de matrices por vectores abre sumas y saca escalares, se dice que es lineal. Un hecho bastante interesante, cuya demostración se dejará hasta los cursos de álgebra lineal, es que el regreso de esta afirmación también se cumple: ¡A cualquier transformación lineal se le puede asociar una matriz A de modo que aplicar la transformación a un vector v es lo mismo que hacer el producto Av!

Otras propiedades de este producto

En entradas anteriores definimos algunos vectores y matrices especiales.

Como recordarás, definimos la matriz identidad de tamaño 3×3 como
I3=(100010001).

Observemos que al multiplicar I3 por el vector
(u1u2u3)
obtendremos
I3u=(100010001)(u1u2u3)=(1u1+0u2+0u30u1+1u2+0u30u1+0u2+1u3)=(u1u2u3)=u.
Como su nombre lo sugiere, la matriz In tiene la propiedad de ser neutro al multiplicarlo por un vector de tamaño n (de hecho, como veremos en la siguiente entrada, ¡la matriz In también cumple esta propiedad en otras operaciones!).

Por otra parte, recordemos que definimos el vector canónico ei de tamaño n como el vector en el que su i-ésima entrada es 1 y sus demás entradas son 0. Como ejemplo, veamos que
Ae1=(a11a12a13a21a22a23)(100)=(1a11+0a12+0a131a21+0a22+0a23)=(a11a21),
donde este resultado corresponde a al primera columna de la matriz.

De manera análoga, podemos ver que
Ae2=(a12a22)yAe3=(a13a23)
corresponden a la segunda y tercera columna de la matriz, respectivamente.

En general, para matrices de tamaño m×n y el vector ei de tamaño n, el resultado de Aei corresponde al vector cuyas entradas son las que aparecen en la i-ésima columna de la matriz.

Más adelante…

En esta entrada conocimos el producto de matrices con vectores, exploramos su interpretación geométrica y revisamos algunas de las propiedades algebraicas que cumple. Esta operación se añade a las que aprendimos en entradas anteriores, ampliando nuestra colección de herramientas.

En la siguiente entrada descubriremos una operación que nos permitirá sacar aún más poder a las operaciones que hemos conocido hasta ahora: el producto de matrices.

Tarea moral

  1. Obtén el resultado de las siguientes multipicaciones:

(123101)(456),

(25312)(42).

  1. Considera la matriz A=(3445). Realiza la siguiente operación: A(A(A(A(23)))).
  2. ¿Cuál matriz permite rotar un vector en el plano 45º? ¿Cuál 60º?
  3. Deduce las propiedades del producto matriz-vector para matrices de 3×2 y vectores de tamaño 2.
  4. Una matriz desconocida A de 3×3 cumple que Ae1=(201), que Ae2=(511) y que Ae3=(111). ¿Cuánto es A(234)?

Entradas relacionadas

Álgebra Superior I: Producto de matrices con matrices

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido varias operaciones que involucran escalares, vectores y matrices. En esta entrada aprenderemos sobre una de las operaciones más importantes en el álgebra lineal: el producto de matrices con matrices.

Definición de producto de matrices

Para poder efectuar el producto de dos matrices, hay que asegurarnos de que el número de columnas de la primera matriz sea igual al número de filas de la segunda matriz.

El resultado de una matriz A de tamaño m×n por una matriz B de tamaño n× será la matriz C=AB de tamaño m×, donde la entrada cij de C está dada por la fórmula
cij=ai1b1j+ai2b2j++ainbnj.

A primera vista esta fórmula puede parecer complicada, sin embargo, practicando con algunos ejemplos verás que es muy fácil de implementar.

  • Producto de matrices de tamaño 2×2:

Sean
A=(1357)yB=(2468).

Como estamos multiplicando una matriz de tamaño 2×2 por una matriz de tamaño 2×2, sabemos que el resultado será otra matriz de tamaño 2×2. Ahora, iremos calculando una por una sus entradas.

Sea C=AB. Para calcular la entrada c11 observamos la primera fila de A y la primera columna de B, las cuales son
A=(1357)yB=(2468),
de modo que c11=(1)(2)+(3)(6)=20:
AB=(20285276).

Para la entrada c12, nos fijamos en la primera columna de A y en la segunda columna de B, que son
A=(1357)yB=(2468),
obteniendo c12=(1)(4)+(3)(8)=28:
AB=(20285276).

De manera similar, observemos la segunda fila de A y la primera columna de B,
A=(1357),B=(2468),
obteniendo c21=(5)(2)+(7)(6)=52, mientras que la segunda fila de A y la segunda columna de B son
A=(1357),B=(2468),
obteniendo c22=(5)(4)+(7)(8)=76.

Por lo tanto,
AB=(20285276).

En general, el resultado del producto de las matrices
A=(a11a12a21a22)yB=(b11b12b21b22)
es
AB=(a11a12a21a22)(b11b12b21b22)=(a11b11+a12b21a11b12+a12b22a21b11+a22b21a21b12+a22b22).

  • Producto de matriz de 3×2 por matriz de 2×2:

Supongamos que
A=(351043)yB=(7852).

En este caso, como estamos multiplicando una matriz de tamaño 3×2 por una matriz de tamaño 2×2, la matriz resultante tendrá tamaño 3×2.

Podemos obtener sus entradas de manera similar al caso anterior. Si C=AB, entonces la entrada c12 la podemos encontrar revisando la primera fila de A y la segunda columna de B,
A=(351043),B=(7852).
de modo que c12=(3)(8)+(5)(2)=34. Por su parte, para obtener la entrada c31 nos fijamos en la tercera fila de A y la primera columna de B,
A=(351043),B=(7852).
obteniendo c31=(4)(7)+(3)(5)=43.

¿Podrías comprobar que
AB=(4634784338)?

Así, para el caso general de matrices de 3×2 por 2×2, obtendremos
(a11a12a21a22a31a32)(b11b12b21b22)=(a11b11+a12b21a11b12+a12b22a21b11+a22b21a21b12+a22b22a31b11+a32b21a31b12+a32b22).

  • Producto de matriz de 4×2 por matriz de 2×3:

¿Podrías verificar que la siguiente fórmula es correcta?
(a11a12a21a22a31a32a41a42)(b11b12b13b21b22b23)=(a11b11+a12b21a11b12+a12b22a11b13+a12b23a21b11+a22b21a21b12+a22b22a21b13+a22b23a31b11+a32b21a31b12+a32b22a31b13+a32b23a41b11+a42b21a41b12+a42b22a41b13+a42b23).

Propiedades del producto de matrices

A continuación revisaremos algunas de las propiedades que cumple la multiplicación de matrices. Para demostrar las siguientes propiedades, consideraremos la matriz A de tamaño 3×2 y las matrices B y C de tamaño 2×2, aunque se pueden probar para matrices de cualesquier otro tamaño entre las cuales se puedan efectuar las operaciones.

Veamos que si efectuamos la multiplicación de una matriz de tamaño m×n por una matriz de tamaño n×1 siguiendo el algoritmo descrito anteriormente, el resultado coincide con el de multiplicar la matriz de tamaño m×n por un vector de tamaño n. Por ejemplo, si multiplicamos A por una matriz U de tamaño 2×1, obtendremos
(a11a12a21a22a31a32)(u11u12)=(a11u11+a12u21a21u11+a22u21a31u11+a32u21).

Esta es una observación importante pues todo lo que demostremos para el producto de matrices también lo tendremos para el producto de matriz por vector.

Veamos que la multiplicación de matrices es asociativa:

(AB)C=((a11a12a21a22a31a32)(b11b12b21b22))(c11c12c21c22)=(a11b11+a12b21a11b12+a12b22a21b11+a22b21a21b12+a22b22a31b11+a32b21a31b12+a32b22)(c11c12c21c22)=((a11b11+a12b21)c11+(a11b12+a12b22)c21(a11b11+a12b21)c12+(a11b12+a12b22)c22(a21b11+a22b21)c11+(a21b12+a22b22)c21(a21b11+a22b21)c12+(a21b12+a22b22)c22(a31b11+a32b21)c11+(a31b12+a32b22)c21(a31b11+a32b21)c12+(a31b12+a32b22)c22)=(a11(b11c11+b12c21)+a12(b21c11+b22c21)a11(b11c12+b12c22)+a12(b21c12+b22c22)a21(b11c11+b12c21)+a22(b21c11+b22c21)a21(b11c12+b12c22)+a22(b21c12+b22c22)a31(b11c11+b12c21)+a32(b21c11+b22c21)a31(b11c12+b12c22)+a32(b21c12+b22c22))=(a11a12a21a22a31a32)(b11c11+b12c21b11c12+b12c22b21c11+b22c21b21c12+b22c22)=(a11a12a21a22a31a32)((b11b12b21b22)(c11c12c21c22))=A(BC).

De manera muy similar, si u es un vector de tamaño 2, podemos ver que se cumple que A(Bu)=(AB)u. ¿Puedes demostrarlo? Hazlo por lo menos para matrices A y B ambas de 2×2.

Quizás tengas la impresión de que hay que hacer demasiadas cuentas y que sería sumamente difícil demostrar estas propiedades para matrices más grandes. Sin embargo, en cursos posteriores verás cómo trabajar apropiadamente con la notación para poder hacer estas demostraciones más fácilmente.

El producto de matrices es asociativo. Sin embargo, no es conmutativo. Por ejemplo, consideremos las matrices
E=(5730)yF=(1291).


Veamos que
EF=(68336)(174863)=FE.

En términos de combinar el producto de matrices con otras operaciones, tenemos que el producto de matrices por la izquierda se distribuye sobre la suma de matrices:
A(B+C)=(a11a12a21a22a31a32)((b11b12b21b22)+(c11c12c21c22))=(a11a12a21a22a31a32)(b11+c11b12+c12b21+c21b22+c22)=(a11(b11+c11)+a12(b21+c21)a11(b12+c21)+a12(b22+c22)a21(b11+c11)+a22(b21+c21)a21(b12+c21)+a22(b22+c22)a31(b11+c11)+a32(b21+c21)a31(b12+c21)+a32(b22+c22))=(a11b11+a11c11+a12b21+a12c21a11b12+a11c11+a12b22+a12c22a21b11+a21c11+a22b21+a22c21a21b12+a21c12+a22b22+a22c22a31b11+a31c11+a32b21+a32c21a31b12+a31c12+a32b22+a32c22)=(a11b11+a12b21a11b12+a12b22a21b11+a22b21a21b12+a22b22a31b11+a32b21a31b12+a32b22)+(a11c11+a12c21a11c12+a12c22a21c11+a22c21a21c12+a22c22a31c11+a32c21a31c12+a32c22)=(a11a12a21a22a31a32)(b11b12b21b22)+(a11a12a21a22a31a32)(c11c12c21c22)=AB+AC.

El producto también se distribuye sobre la suma cuando la suma aparece a la izquierda. ¿Podrías probar que si D es una matriz de tamaño 3×2, entonces se cumple (A+D)B=AB+DB?

En entradas anteriores vimos que In tiene la propiedad de ser neutro al multiplicarla por un vector de tamaño n. Resulta que In también tiene esta propiedad al multiplicarla por la izquierda por una matriz de tamaño n×m. Por ejemplo, veamos que al multiplicar I3 por la izquierda por A, obtenemos
I3A=(100010001)(a11a12a21a22a31a32)=(1a11+0a21+0a311a12+0a22+0a320a11+1a21+0a310a12+1a22+0a320a11+0a21+1a310a12+0a22+1a32)=(a11a12a21a22a31a32)=A.

¿Podrías probar que AI2=A (es decir, que I2 es neutro por la derecha para A)?

Habiendo visto que el producto de matrices es asociativo, conmutativo y tiene neutros, probablemente te estarás preguntando si existen inversos en la multiplicación de matrices. Este cuestionamiento lo dejaremos para la siguiente entrada.

Relación con la composición de transformaciones

Como vimos en la entrada anterior, una forma de visualzar el producto de una matriz A por un vector u es como una transformación que envía el vector u a un único vector Au.

Teniendo en mente esto, veamos que la propiedad de que A(Bu)=(AB)u resulta aún más interesante. Para esto, veamos que el siguiente ejemplo: sean
A=(0211),B=(1230),yu=(12).

Si multiplicamos B por u, vemos que corresponde a la transformación que envía u=(12) al vector Bu=(53).

Ahora, si multiplicamos A por el vector Bu, vemos que corresponde a la transformación que envía Bu al vector A(Bu)=(68) (Acabamos de obtener el resultado de aplicar a u la composición de las transformaciones B y A).

Por otra parte, si realizamos la multiplicación
AB=(0211)(1230)=(6042),
la transformación asociada a AB envía u al vector (AB)u=(68).

¡La composición de las transformaciones asociadas a B y A aplicada al vector u coincide con la transformación asociada a la matriz AB aplicada al mismo vector!

Si probamos esto para un vector arbitrario, nos daremos cuenta de que en todos los casos se cumple lo mismo. En realidad, esto no es una coincidencia: como aprenderás en tus cursos de álgebra lineal, la composición de transformaciones lineales está directamente asociada al producto de matrices.

Potencias de matrices

Podemos ver que si una matriz A es cuadrada, al tener el mismo número de filas que de columnas, entonces podemos realizar la multiplicaciones AA, AAA, AAAA, etc., que por asociatividad no importa en qué orden multipliquemos. Esto nos sugiere que podemos cacular potencias de matrices.

Para una matriz cuadrada A, definiremos de manera recursiva la potencia An:

  • Definimos A0=I.
  • Dada An, con n un número natural, definimos An+1=AnA.

Por ejemplo, si
A=(2134),
calculemos A3 empleando la definición recursiva. Para esto, iremos calculando una por una las potencias de A, hasta llegar a A3:
A0=I=(1001),A1=A0A=(1001)(2134)=(2134),A2=A1A=(2134)(2134)=((2)(2)+(1)(3)(2)(1)+(1)(4)(3)(2)+(4)(3)(3)(1)+(4)(4))=(761819),A3=A2A=(761819)(2134)=((7)(2)+(6)(3)(7)(1)+(6)(4)(18)(2)+(19)(3)(18)(1)+(19)(4))=(32319394).

Prueba calcular algunas potencias de la matriz (2003). ¿Notas algún patrón especial?

Más adelante…

En esta entrada aprendimos sobre el producto de matrices con matrices y conocimos algunas de sus propiedades. En la siguiente entrada abordaremos la pregunta sobre si existen los inversos en la multiplicación de matrices.

Tarea moral

  1. Realiza el producto de matrices (123012113)(111111111).
  2. Considera la matriz A=(3445). Realiza las siguientes operaciones por separado, sin usar la asociatividad del producto de matrices. ¿Cuál de las dos operaciones te resultó más fácil de hacer?
    • A(A(A(A(23)))).
    • (((AA)A)A)(23).
  3. Completa las pruebas faltantes de las propiedades de la multiplicación de matrices.
  4. Demuestra la siguiente ley de exponentes para matrices: AmAn=Am+n.
  5. Prueba que si
    A=(a1100a22),
    y k es un entero mayor o igual que 0, entonces
    Ak=(a11k00a22k)
    (Sugerencia: realizarlo por inducción sobre k, utilizando la definición recursiva).
  6. Encuentra matrices A y B de 2×2 para las cuales A2B2(A+B)(AB).

Entradas relacionadas

Álgebra Superior I: Matrices invertibles

Por Eduardo García Caballero

Introducción

En la entrada anterior definimos el producto de matrices con matrices y exploramos algunas de sus propiedades, siendo varias de estas familiares: el producto de matrices es asociativo, conmutativo y tiene elemento neutro. En esta entrada exploraremos una pregunta que quedó abierta: ¿el producto de matrices cumple con tener inversos?

Definición de matrices invertibles

Diremos que una matriz cuadrada A es invertible si y sólo si tiene inverso multiplicativo; es decir, si existe una matriz B tal que AB=BA=I.

Observemos para que la definción anterior tenga sentido, es indispensable que A sea cuadrada, pues veamos que si A es de tamaño m×n, entonces para que los productos AB y BA estén definidos, B tendrá que ser de tamaño n×m. Así, AB será de tamaño m×n y BA de tamaño n×n, y como AB=BA, entonces m=n, y, por tanto, AB=BA=In (y con ello también observamos que B tiene que ser cuadrada de tamaño n×n).

Un ejemplo de una matriz de 2×2 que es invertible es
A=(1235)
que tiene como inversa a la matriz
B=(5231),
pues
AB=(1235)(5231)=((1)(5)+(2)(3)(1)(2)+(2)(1)(3)(5)+(5)(3)(3)(2)+(5)(1))=(1001)=I2
y
BA=(5231)(1235)=((5)(1)+(2)(3)(5)(2)+(2)(5)(3)(1)+(1)(3)(3)(2)+(1)(5))=(1001)=I2.
Por lo tanto,
AB=BA=I2.

Algo que seguramente te preguntarás es si cualquier matriz cuadrada tiene un inverso multiplicativo. A diferencia de otros tipos de operaciones con inversos, el producto de matrices no siempre cumple con tenerlos: un ejemplo de esto es la matriz
A=(2100)
la cual, al multiplicarla por cualquier matriz
B=(abcd)
por la derecha, nos da como resultado
AB=(2100)(abcd)=(2a+c2b+,d00),
y como en cualquier caso obtenemos que su entrada en la posición (2,2) es 0, tenemos que AB es distinta a I2, pues la entrada en la posición (2,2) de esta última es 1.

Propiedades de matrices invertibles

A continuación exploraremos algunas de las propiedades que cumplen las matrices invertibles.

Primeramente, veamos que si una matriz A de n×n es invertible, entonces su inversa será única. Para demostrar esto, supongamos que B y C son ambas inversas multiplicativas de A; es decir, AB=BA=In y AC=CA=In. Entonces,
AB=ACB(AB)=B(AC)(BA)B=(BA)CInB=InCB=C.

Como la matriz inversa de A es única, usualmente la denotamos como A1.

Por otra parte, veamos que si A y B son matrices invertibles, con inversas A1 y B1, respectivamente, entonces, si podemos multiplicar A y B (es decir, si A y B son del mismo tamaño), entonces AB es invertible, pues se cumple que
(AB)(B1A1)=A(BB1)A1=AInA1=AA1=In,
y también que
(B1A1)(AB)=B1(A1A)B=B1InB=B1B=In,
es decir, B1A1 es la matriz inversa de AB, lo cual denotamos como (AB)1=B1A1.

Finalmente, recordando la interpretación geométrica que dimos a la multiplicación de matrices por vectores, y la propiedad de que A(Bu)=(AB)u, entonces notamos que
A1(Au)=(A1A)u=Iu=u.

Como la transformación correspondiente a A envía el vector u al vector Au, y como el resultado de aplicar (A1A)u deja al vector u en su lugar, esto nos dice que la transformación correspondiente a A1 es aquella que regresa el vector Au a su posición original.

En la siguiente imagen se visualiza esta propiedad para el caso en el que
A=(3142)yu=(12).

Formula para inversa de matrices de 2×2

Más arriba vimos que hay matrices que sí tienen inversa, mientras que otras no tienen. Para el caso de matrices de 2×2, tendremos que
A=(abcd)
es invertible si y sólo si se cumple que adbc0.

En dado caso, la inversa de A será la matriz
A1=1adbc(dbca)=(dadbcbadbccadbcaadbc).

Por ejemplo, veamos que si
A=(abcd)=(1223),
entonces adbc=(1)(3)(2)(2)=3(4)=70, por lo que podemos garantizar que A tiene matriz inversa, la cual es
A1=1adbc(dbca)=17(3221)=(3/72/72/71/7).

Verificamos que
AA1=(1223)(3/72/72/71/7)=((1)(3/7)+(2)(2/7)(1)(2/7)+(2)(1/7)(2)(3/7)+(3)(2/7)(2)(2/7)+(3)(1/7))=(1001)=I2
y
A1A=(3/72/72/71/7)(1223)=((3/7)(1)+(2/7)(2)(3/7)(2)+(2/7)(3)(2/7)(1)+(1/7)(2)(2/7)(2)+(1/7)(3))=(1001)=I2.

De manera similar, veamos que la matriz
(3412)
es invertible pues (3)(2)(4)(1)=20. ¿Puedes calcular su inversa?

Por el contrario, veamos que en la matriz
(6432)
tenemos que (6)(2)(4)(3)=1212=0, y, por tanto, no es invertible.

Para el caso de matrices de mayor tamaño, también existen condiciones y fórmulas para calcular sus inversas, sin embargo, estas no resultan tan sencillas. Será necesario que comprendamos más propiedades de las matrices para poder obtenerlas.

Más adelante…

En esta entrada conocimos una propiedad más que cumplen las matrices respecto a su producto, que es la de tener inverso multiplicativas; también vimos las condiciones bajo las cuales una matriz de 2×2 puede tener inverso, y revisamos su fórmula.

En la siguiente entrada, conoceremos una nueva operación, la cual se distinguirá de todas las que hemos visto hasta ahora, pues esta operación involucra a una única matriz a la vez.

Tarea moral

  1. ¿Para qué valores de a se cumple que
    (5a22a)
    es invertible?
  2. Muestra que si A, B y C son matrices invertibles del mismo tamaño, entonces
    (ABC)1=C1B1A1.
  3. Muestra que si A es una matriz invertible y k es un entero positivo, entonces Ak también es invertible y (Ak)1=(A1)k.
  4. ¿Por qué la matriz
    (340720000)
    no es invertible?
  5. Muestra que en efecto el criterio que dimos para que una matriz A=(abcd) tenga inversa es suficiente y necesario. Para la parte de que es suficiente, tendrás que ver que si adbc0, la matriz propuesta en la entrada siempre funciona como inversa. Para ver que es necesario, supón que adbc=0. En este caso, ad=bc y podrás encontrar a partir de a,b,c,d a dos vectores distintos u y v tales que Au=Av. Esto mostrará que la transformación asociada a A no es inyectiva y por tanto no podrá tener inversa, así que A tampoco tendrá inversa.

Entradas relacionadas

Álgebra Superior I: Transposición de matrices, matrices simétricas y antisimétricas

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido operaciones involucran a dos objetos a la vez, entre los que pueden estar escalares, vectores, o matrices. En esta entrada, exploraremos una operación que se aplica a una matriz a la vez: la transposición de matrices. Esta operación preserva el contenido de la matriz, pero modifica sus dimensiones y el orden de sus entradas de una manera particular. Además, exploraremos algunas matrices que cumplen propiedades especiales bajo esta operación.

Definición de transposición de matrices

Una forma intuitiva de comprender en concepto de transposición de una matriz es como aquella operación que refleja a una matriz por su diagonal. Por ejemplo, consideremos la matriz
A=(72123)
en la cual hemos destacado los elementos de su diagonal. Su matriz transpuesta, la cual denotaremos como AT, será
AT=(71223).

En el caso de una matriz que no sea cuadrada, la transposición también intercambia el número de filas y el de columnas. Por ejemplo,
B=(34π0-16)
es una matriz de 2×3, mientras que su matriz transpuesta
BT=(304-1π6)
es de tamaño 3×2.

Para dar una definición formal de la propiedad de transposición, consideremos a la matriz A de tamaño m×n. Diremos que la matriz traspuesta de A es la matriz AT de tamaño n×m, donde la entrada de AT en la posición (i,j) es
(AT)ij=aji,
para todo 1in y 1jm.

Por ejemplo, para el caso de
C=(c11c12c21c22c31c32),
su matriz traspuesta es
CT=((CT)11(CT)12(CT)13(CT)21(CT)22(CT)23)=(c11c21c31c12c22c32),
mientras que la matriz transpuesta de
D=(d11d12d13d21d22d23d31d32d33)
es
DT=((DT)11(DT)12(DT)13(DT)21(DT)22(DT)23(DT)31(DT)32(DT)33)=(d11d21d31d12d22d32d13d23d33).

Como puedes observar, empleando la definición de matriz traspuesta, se sigue cumpliendo que la transposición se puede ver como la operación de reflejar una matriz con respecto a su diagonal.

Propiedades de transposición de matrices

A continuación, demostraremos algunas propiedades que cumplen las matrices
A=(a11a12a21a22a31a32)yB=(b11b12b21b22)
(Las demostraciones para cualesquiera otros tamaños de matrices se desarrollan de manera análoga).

Veamos qué sucede al realizar dos veces seguidas la trasposición de A. Observamos que
AT=((AT)11(AT)12(AT)13(AT)11(AT)22(AT)23)=(a11a21a31a12a22a32),
y, entonces,
(AT)T=(((AT)T)11((AT)T)12((AT)T)21((AT)T)22((AT)T)31((AT)T)32)=((AT)11(AT)21(AT)12(AT)22(AT)13(AT)23)=(a11a12a21a22a31a32)=A.

En general, al transponer dos veces seguidas una matriz obtendremos como resultado la matriz original: (AT)T=A.

Por otra parte, observemos que
AB=(a11b11+a12b21a11b12+a12b22a21b11+a22b21a21b12+a22b22a31b11+a32b21a31b12+a32b22),
de modo que
(AB)T=(a11b11+a12b21a21b11+a22b21a31b11+a32b21a11b12+a12b22a21b12+a22b22a31b12+a32b22).
Por su parte, veamos que
BTAT=(b11b21b12b22)(a11a21a31a12a22a32)=(b11a11+b21a12b11a21+b21a22b11a31+b21a32b12a11+b22a12b12a21+b22a22b12a31+b22a32)=(a11b11+a12b21a21b11+a22b21a31b11+a32b21a11b12+a12b22a21b12+a22b22a31b12+a32b22).
Por lo tanto,
(AB)T=BTAT.

Finalmente, supongamos que C=(abcd) es invertible. Entonces se cumple que adbc0, y C tiene como inversa a
C1=(dadbcbadbccadbcaadbc),
Por lo tanto,
(C1)T=(dadbccadbcbadbcaadbc).

Por su parte, observemos que CT=(acbd) cumple que adcb=adbc0, con lo cual garantizamos que es también invertible —la transpuesta de una matriz invertible es también invertible—. Más aún, veamos que
(CT)1=1adbc(dcba)=(dadbccadbcbadbcaadbc).
Por lo tanto, (C1)T=(CT)1la inversa de una matriz traspuesta corresponde a la traspuesta de la inversa de la orginal—.

Matrices simétricas y antisimétricas

Ahora que conocemos la definición de matriz transpuesta y algunas de sus propiedades, observemos que existen matrices que se comportan de manera especial bajo esta operación.

Por ejemplo, veamos que si
A=(4909121012),
entonces,
AT=(4909121012)=A.

A una matriz A que cumple que AT=A se le denomina matriz simétrica. Otros ejemplos de matrices simétricas son
(4005)y(81210323π).
Una observación importante es que las matrices simétricas únicamente pueden ser cuadradas.

Por otra parte, veamos que la matriz
B=(055505550)
tiene como transpuesta a
BT=(055505550)=B.

A una matriz A que cumple que AT=A se le denomina matriz antisimétrica. Otros ejemplos de matrices antisimétricas son
(0220)y(012103230).
Al igual que sucede con las matrices simétricas, las matrices antisimétricas sólo pueden ser cuadradas.

Otra propiedad importante de las matrices antisimétricas es que todos los elementos de su diagonal tienen valor 0. ¿Puedes probar por qué sucede esto?

Más adelante…

Con las operaciones entre vectores y matrices que hemos visto hasta ahora podemos obtener varios resultados aplicables a distintas áreas de las matemáticas. En la siguiente entrada abordaremos un tema que, a primera vista, parece no relacionarse mucho con los conceptos que hemos aprendido hasta ahora, pero que, en realidad, resulta ser uno de los temas con mayor aplicación de los conceptos de vectores y matrices: los sistemas de ecuaciones lineales.

Tarea moral

  1. Sea A una matriz de 2×2 con entradas reales. Muestra AAT siempre es una matriz simétrica y que las entradas en la diagonal de AAT siempre son números mayores o iguales a cero.
  2. Prueba que los elementos de la diagonal de una matriz antisimétrica tienen valor 0.
  3. Muestra que si una matriz es simétrica e invertible, entonces su inversa también es simétrica. ¿Es cierto lo mismo para las antisimétricas?
  4. ¿Existe alguna matriz que sea al mismo tiempo simétrica y antisimétrica?
  5. Prueba que cualquier matriz A se puede escribir como A=B+C, con B simétrica y C antisimétrica.

Entradas relacionadas

Álgebra Superior I: Determinante de matrices y propiedades

Por Eduardo García Caballero

Introducción

Uno de los conceptos más importantes en el álgebra lineal es la operación conocida como determinante. Si bien este concepto se extiende a distintos objetos, en esta entrada lo revisaremos como una operación que se puede aplicar a matrices cuadradas. Como veremos, el determinante está muy conectado con otros conceptos que hemos platicado sobre matrices

Definición para matrices de 2×2

A modo de introducción, comenzaremos hablando de determinantes para matrices de 2×2. Aunque este caso es sencillo, podremos explorar algunas de las propiedades que tienen los determinantes, las cuales se cumplirán de manera más genera. Así, comencemos con la siguiente definición.

Definición. Para una matriz A=(abcd), definimos su determinante como
det(A)=adbc.

Basándonos en esta definición, podemos calcular los determinantes
det(9352)=9235=3
y
det(43129)=4(9)(3)12=0.

Otra notación que podemos encontrar para determinantes es la notación de barras. Lo que se hace es que la matriz se encierra en barras verticales, en vez de paréntesis. Así, los determinantes anteriores también se pueden escribir como
|9352|=3y|43129|=0.

Primeras propiedades del determinante

El determinante de una matriz de 2×2 ayuda a detectar cuándo una matriz es invertible. De hecho, esto es algo que vimos previamente, en la entrada de matrices invertibles. En ella, dijimos que una matriz A=(abcd) es invertible si y sólo si se cumple que adbc0. ¡Aquí aparece el determinante! Podemos reescribir el resultado de la siguiente manera.

Teorema. Una matriz de la forma A=(abcd) es invertible si y sólo si det(A)0. Cuando el determinante es distinto de cero, la inversa es A1=1det(A)(dbca).

Otra propiedad muy importante que cumple el determinante para matrices de 2×2 es la de ser multiplicativo; es decir, para matrices A y B se cumple que det(AB)=det(A)det(B). La demostración de esto se basa directamente en las definiciones de determinante y de producto de matrices. Hagamos las cuentas a continuación para matrices A=(a11a12a21a22) y B=(b11b12b21b22).

Tenemos que:
det(AB)=det((a11a12a21a22)(b11b12b21b22))=det(a11b11+a12b21a11b12+a12b22a21b11+a22b21a21b12+a22b22)=(a11b11+a12b21)(a21b12+a22b22)(a11b12+a12b22)(a21b11+a22b21)=a11a22b11b22a12a21b11b22a11a22b12b21+a12a21b12b21=(a11a22a12a21)(b11b22b12b21)=det(a11a12a21a22)det(b11b12b21b22)=det(A)det(B).

Interpretación geométrica del determinante de 2×2

El determinante también tiene una interpretación geométrica muy interesante. Si tenemos una matriz de 2×2, entonces podemos pensar a cada una de las columnas de esta matriz como un vector en el plano. Resulta que el determinante es igual al área del paralelogramo formado por estos vectores.

Por ejemplo, si consideramos la matriz
(4213),
podemos ver que el vector asociado a su primera columna es el vector (4,1), mientras que el vector asociado a su segunda columna es (2,3):

Así, el paralelogramo ABDC de la figura anterior formado por estos dos vectores tiene área igual a
det(4213)=4321=10.

No daremos la demostración de este hecho, pues se necesita hablar más sobre la geometría del plano. Sin embargo, las ideas necesarias para este resultado pueden consultarse en un curso de Geometría Analítica I.

Definición recursiva

También nos interesa hablar de determinantes de matrices más grandes. De hecho, nos interesa hablar del determinante de cualquier matriz cuadrada. La definición formal requiere de varios conocimientos de Álgebra Lineal I. Sin embargo, por el momento podemos platicar de cómo se obtienen los determinantes de matrices recursivamente. Con esto queremos decir que para calcular el determinante de matrices de 3×3, necesitaremos calcular varios de matrices de 2×2. Así mismo, para calcular el de matrices de 4×4 requeriremos calcular varios de matrices de 3×3 (que a su vez requieren varios de 2×2).

Para explicar cómo es esta relación de poner determinantes de matrices grandes en términos de matrices más pequeñas, primeramente definiremos la función sign, la cual asigna a cada pareja de enteros positivos (i,j) el valor
sign(i,j)=(1)i+j.
A partir de la función sign podemos hacer una matriz cuya entrada aij es sign(i,j). Para visualizarla más fácilmente, podemos pensar que a la entrada a11 (la cual se encuentra en la esquina superior izquierda) le asigna el signo “+”, y posteriormente va alternando los signos del resto de entradas. Por ejemplo, los signos correspondientes a las entradas de la matriz de 3×3
(a11a12a13a21a22a23a31a32a33)
serían
(+++++),
mientras que los signos correspondientes a las entradas de la matriz de 4×4
(a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44)
serían
(++++++++).

Ya que entendimos cómo se construyen estas matrices, el cálculo de determinantes se realiza como sigue.

Estrategia. Realizaremos el cálculo de determinante de una matriz de n×n descomponiéndola para realizar el cálculo de determinantes de matrices de (n1)×(n1). Eventualmente llegaremos al calcular únicamente determinantes de matrices de 2×2, para las cuales ya tenemos una fórmula. Para esto, haremos los siguientes pasos repetidamente.

  1. Seleccionaremos una fila o columna arbitraria de la matriz original (como en este paso no importa cuál fila o columna seleccionemos, buscaremos una que simplifique las operaciones que realizaremos; generalmente nos convendrá seleccionar una fila o columna que cuente en su mayoría con ceros).
  2. Para cada entrada aij en la fila o columna seleccionada, calculamos el valor de
    sign(i,j)aijdet(Aij),
    donde Aij es el la matriz que resulta de quitar la fila i y la columna j a la matriz original.
  3. El determinante de la matriz será la suma de todos los términos calculados en el paso anterior.

Veamos algunos ejemplos de cómo se utiliza la estrategia recién descrita.

Ejemplo con matriz de 3×3

Consideremos la matriz de 3×3
(311612432).

A primera vista no hay alguna fila o columna que parezca simplificar los cálculos, por lo cual podemos proceder con cualquiera de estas; nosotros seleccionaremos la primera fila.
(31-1612432).

Para cada término de la primera fila, calculamos el producto
sign(i,j)aijdet(Ai,j),
obteniendo
sign(1,1)(a11)det(A11)=+(3)det(◼◼◼◼12◼32)=+(3)det(1232)=+(3)[(1)(2)(2)(3)]=+(3)(4)=12,sign(1,2)(a12)det(A12)=(1)det(◼◼◼6◼24◼2)=(1)det(6242)=(1)[(6)(2)(2)(4)]=(1)(4)=4,sign(1,3)(a13)det(A13)=+(1)det(◼◼◼61◼43◼)=+(1)det(6143)=+(1)[(6)(3)(1)(4)]=+(1)(14)=14.

Finalmente, el determinante de nuestra matriz original será la suma de los términos calculados; es decir,
(311612431)=(12)+(4)+(14)=6.

Ejemplo con matriz de 4×4

En el siguiente ejemplo veremos cómo el escoger una fila o columna en específico nos puede ayudar a simplificar mucho los cálculos.

Consideremos la matriz
(4022132520231041).

Observemos que el valor de tres de las entradas de la segunda columna es 0. Por esta razón, seleccionaremos esta columna para descomponer la matriz:
(4022132520231041).

El siguiente paso será calcular el producto
sign(i,j)aijdet(Aij),
para cada entrada de esta columna. Sin embargo, por la elección de columna que hicimos, podemos ver que el valor de aij es 0 para tres de las entradas, y por tanto también lo es para el producto que deseamos calcular. De este modo, únicamente nos restaría calcular el producto
sign(2,2)a22det(A22)=+(3)det(4◼22◼◼◼◼2◼231◼41)=+(3)det(422223141).
Se queda como ejercicio al lector concluir que el resultado de este último producto es 30.

De este modo, obtenemos que
det(4022132520231041)=0+30+0+0=30.

Aunque esta definición recursiva nos permite calcular el determinante de una matriz cuadrada de cualquier tamaño, rápidamente se vuelve un método muy poco práctico (para obtener el determinante de una matriz de 6×6 tendríamos que calcular hasta 60 determinantes de matrices de 2×2). En el curso de Álgebra Lineal I se aprende otra definición de determinante a través de permutaciones, de las cuales se desprenden varios métodos más eficientes para calcular determinante. Hablaremos un poco de estos métodos en la siguiente entrada.

Las propiedades de 2×2 también se valen para n×n

Las propiedades que enunciamos para matrices de 2×2 también se valen para determinantes de matrices más grandes. Todo lo siguiente es cierto, sin embargo, en este curso no contamos con las herramientas para demostrar todo con la formalidad apropiada:

  • El determinante es multiplicativo: Si A y B son matrices de n×n, entonces det(AB)=det(A)det(B).
  • El determinante detecta matrices invertibles: Una matriz A de n×n es invertible si y sólo si su determinante es distinto de 0.
  • El determinante tiene que ver con un volumen: Los vectores columna de una matriz A de n×n hacen un paralelepípedo n-dimensional cuyo volumen n-dimensional es justo detA.

Más adelante…

En esta entrada conocimos el concepto de determinante de matrices, vimos cómo calcularlo para matrices de distintos tamaños y revisamos cómo se interpreta cuando consideramos las matrices como transformaciones de flechas en el plano. En la siguiente entrada enunciaremos y aprenderemos a usar algunas de las propiedades que cumplen los determinantes.

Tarea moral

  1. Calcula los determinantes de las siguientes matrices:
    • (5839),(101119),(31381329)
    • (152318025),(184053001),(111222333)
    • (5712301022225110),(12345678910111213141516)
  2. Demuestra que para una matriz A y un entero positivo n se cumple que det(An)=det(A)n.
  3. Sea A una matriz de 3×3. Muestra que det(A)=det(AT).
  4. Sea A una matriz invertible de 2×2. Demuestra que det(A)=det(A1)1.
  5. ¿Qué le sucede al determinante de una matriz A cuando intercambias dos filas? Haz algunos experimentos para hacer una conjetura, y demuéstrala.

Entradas relacionadas