Nota 15. Relaciones de equivalencia y particiones.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota veremos cómo las relaciones de equivalencia generan particiones y finalmente concluiremos que toda relación de equivalencia tiene asociada una partición y viceversa, toda partición tiene asociada una única relación de equivalencia, con esto concluiremos esta primera unidad de conjuntos y funciones.

Teorema

Sea $A$ un conjunto, $\mathcal R$ una relación de equivalencia en $A$, entonces $\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Demostración

Sea $A$ un conjunto, $\mathcal R$ una relación de equivalencia en $A$

Por demostrar que:

$\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Vamos a mostrar que el conjunto $\set{\overline{x}\mid x\in A}$ cumple la definición de partición.

i) Por demostrar que $\overline{x}\neq \emptyset$, $\forall x\in A$.

Sea $x\in A$, como $\mathcal R$ es reflexiva $x\sim x$, así $x\in \overline{x}$ y entonces $\overline{x}\neq \emptyset$.

ii) Por demostrar que si $x,y\in A$ son tales que $\overline{x}\neq \overline{y} $, entonces $\overline{x}\cap \overline{y}=\emptyset$.

En la nota anterior mostramos que: $x\sim y\Longrightarrow \overline{x}=\overline{y}$, que es equivalente a: $\overline{x}\neq \overline{y} \Longrightarrow x\nsim y $ (llamada la contrapositiva de la implicación ). También mostramos que $x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset$, así tenemos que:

$ \overline{x}\neq \overline{y} \Longrightarrow x\nsim y $

y

$x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset$

Por lo tanto se sigue que:

$\overline{x}\neq \overline{y} \Longrightarrow x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset $.

Así tenemos lo que queríamos mostrar pues si $\overline{x}\neq \overline{y}$, entonces $\overline{x}\cap \overline{y}=\emptyset $.

iii) Por demostrar que $\bigcup\limits_{x\in A} \overline{x}=A$

Prueba por doble contención

$\subseteq$ primera contención.

Sea $z\in \bigcup\limits_{x\in A} \overline{x}$, entonces $z\in \overline{x}=\set{y\in A\mid y\sim x}$ para alguna $x\in A$, en particular $z\in A$, y por lo tanto $ \bigcup\limits_{x\in A}\subseteq A$.

$\supseteq$ segunda contención.

Sea $z\in A$, como $\mathcal R$ es reflexiva $z\sim z$ así $z\in \overline{z}$, concluimos que $z\in \bigcup\limits_{x\in A} \overline{x}$.

Como se cumplen las tres condiciones para que sea una partición entonces $\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Ejemplos

1. $A=\set{1,2,3,4,5}$

$\mathcal R=\set{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (1,5), (5,1) (2,5), (5,2) , (3,4),(4,3)}$

$\overline{1}=\set{1,2,5}$

$\overline{3}=\set{3,4}$

$\set{ \overline{1}, \overline{3}}=\set{ \set{1,2,5}, \set{3,4}} $

2. $A=\set{1,2,3,4,5}$

$\mathcal R$ una relación de equivalencia en $A$. Si la partición en $A$ inducida por $\mathcal R$ es:

$ \set{ \set{3}, \set{2,4}, \set{1,5} } $

¿Quién es $\mathcal R$?

$\mathcal R=\set{ (3,3), (2,2), (2,4), (4,4), (4,2), (1,1), (1,5), (5,5), (5,1) }$

Es una relación de equivalencia que induce la partición $\set{ \overline{3}, \overline{2}, \overline{1} }=\set{ \set{3}, \set{2,4}, \set{1,5} } $.

Teorema

Sea $A$ un conjunto, consideremos:

$\mathcal R_A=\set{r\mid r \, \,es \, \, una \, \, relación \, \, de \, \, equivalencia }$

$\mathcal P_A=\set{p\mid p \, \,es \, \, una \, \, partición \, \, de \, \, A }$

Afirmación: Existe una biyección entre $\mathcal R_A$ y $\mathcal P_A$

Demostración

Sea $A$ un conjunto, consideremos:

$\mathcal R_A=\set{r\mid r \, \,es \, \, una \, \, relación \, \, de \, \, equivalencia }$

$\mathcal P_A=\set{p\mid p \, \,es \, \, una \, \, partición \, \, de \, \, A }$

Definimos:

$\psi: \mathcal R_A\to \mathcal P_A$ con

$\psi(r)=\set{\overline{x}^r\mid x\in A}\, \, \, \forall r\in \mathcal R_A$

donde $ \overline{x}^r =\set{y\in A\mid (y,x)\in r} $, es decir $\psi(r)$ es la colección de clases de equivalencia dadas por la relación $r$.

Veamos que $\psi$ es inyectiva.

Sean $r,\rho\in \mathcal R_A$ tales que $\psi(r)=\psi(\rho)$.

Por demostrar que $r=\rho$.

La prueba se hará por doble contención

$\subseteq$ primera contención.

Sea $(a,b)\in r$ entonces por simetría $(b,a)\in r$ y entonces $b\in \overline{a}^r$.

Por otro lado $ \overline{a}^r\in \set{ \overline{x}^r\mid x\in A }=\psi(r)$ que por hipótesis es igual $\psi(\rho)= \set{ \overline{x}^{\rho}\mid x\in A }$ , de manera que $ \overline{a}^r = \overline{c}^{\rho}$ para alguna $c\in A$, como $b\in \overline{a}^r$ entonces $b\in \overline{c}^{\rho}$, así $(b,c)\in \rho$, por simetría $(c,b)\in \rho$. También $a\in \overline{a}^r= \overline{c}^{\rho}$ así $(a,c)\in \rho$. Como $(a,c)\in \rho$ y $(c,b)\in \rho$, por transitividad $(a,b)\in \rho$ y así $r\subseteq \rho$.

$\supseteq$ Segunda contención. Es análoga y por lo tanto $r=\rho$ y así la función $\psi: \mathcal R_A\to \mathcal P_A$ es inyectiva.

Veamos ahora que $\psi$ es suprayectiva.

Sea $p=\set{A_i\mid i\in I}$ una partición de $A$.

Definimos $r$ una relación en $A$ como:

$(x,y)\in r$ si y sólo si existe $i\in I$ tal que $(x,y)\in A_i$.

Ésta es una relación de equivalencia (demuéstralo).

Por demostrar que $\psi(r)=p$, es decir que $\set{\overline{x}^r\mid x\in A}=p$

La prueba es por doble contención.

$\subseteq$ primera contención.

Sea $\overline{a}^r\in \set{ \overline{x}^r\mid x\in A }$.

Por demostrar que $\overline{a}^r\in p$.

Como $A= \bigcup\limits_{i\in I}A_i$ entonces $a\in A_j$ para alguna $j\in I$. De hecho como $p$ es una partición, $A_j$ es el único elemento de $p$ al que pertenece $a$.

Pero

$\overline{a}^r=\set{b\in A\mid (b,a)\in r}=\set{b\in A\mid \exists i\in I \,\, tal \,\, que \,\, b,a\in A_i}=\set{b\in A\mid b\in A_j}=A_j\in p,$ y por lo tanto $\overline{a}^r\in p,$ y así $\psi(r)\subseteq p$.

$\supseteq$ segunda contención.

Sea $A_j\in p$ con $j\in I$. Sabemos que $A_j\neq \emptyset$, consideremos $a\in A_j$, como acabamos de ver en la primera contención , $A_j=\overline{a}^r\in \set{\overline{x}^r\mid x\in A}=\psi(r)$ y así $p\subseteq \psi(r)$.

Como se cumplen las dos contenciones $p=\psi(r)$. Y de esta forma dada una partición $p$ existe una relación de equivalencia que bajo $psi$ da por resultado $p$ y por lo tanto $\psi$ es suprayectiva.

Como $\psi$ es suprayectiva e inyectiva $\psi$ es biyectiva.

$\square$

Tarea Moral

  1. Encuentra todas las posibles particiones de $\set{3,6,7,9}$, y para cada una de ellas encuentra la relación de equivalencia asociada.
  2. Considera la relación $\mathcal R$ en $\mathbb Z$, dada por: $(a,b)\in \mathcal R$ si y sólo si $4$ divide a $b-a$. Verifica que las distintas clases de equivalencia forman una partición de $\mathbb Z$.
  3. Sea $A=\set{1,2,3,4,5}$ y considera la relación dada por:
    $R=\set{(1,1),(2,3),(3,3),(4,4),(5,5),(2,4),(4,2),(2,5),(5,2),(4,5),(5,4)}$
    Encuentra la partición asociada.

Más adelante

Con esta nota hemos terminado la unidad 1 del curso de álgebra superior I. En las siguiente nota pasaremos a la unidad 2 donde haremos un estudio de los números naturales a partir de la definición conjuntista.

Enlaces relacionados

Página principal del curso.

Nota anterior. Nota 14 Familias de conjuntos y particiones.

Nota siguiente. Nota 16. Los números naturales.

Álgebra Moderna I: Producto de subconjuntos y Clases Laterales

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Antes de comenzar conviene que recordemos que estamos trabajando con grupos. Un conjunto con una operación da lugar a un grupo si cumple ciertas condiciones, entre ellas tener un neutro y ser cerrado bajo su operación. Ahora nos interesamos por los subconjuntos cualquiera del grupo, no necesariamente subgrupos. Esta entrada está dedicada al estudio del producto de dichos subconjuntos.

La primera parte comienza definiendo a nuestro producto y lo ilustramos con unos ejemplos. La segunda parte pretende responder a la pregunta ¿cuándo es el producto de dos subconjuntos un subgrupo? En la tercera parte, nos imaginamos un caso particular, ¿qué pasa cuando uno de los subconjuntos elegidos es unitario? Es decir, estamos multiplicando un subgrupo de $G$ por un solo elemento de $G$.

Producto de $S$ con $T$

Definición. Sea $G$ un grupo, $S,T$ subconjuntos no vacíos de $G$. El producto de $S$ con $T$ es el conjunto

$$ST = \{st|s\in S, t\in T\}.$$

El orden de los elementos de $ST$ es importante, recordemos que $G$ no es necesariamente abeliano. Más adelante analizaremos más al respecto.

Nota: Cuando escribimos $st$ nos referimos a la operación que pertenece al grupo $(G, \cdot)$. Por ejemplo, si tomamos a $\z$, la operación sería la suma $+$ usual.

Tomamos dos subgrupos $S$ y $T$ de $G$. Si multiplicamos sus elementos, el resultado queda en $G$

Ejemplos.

  1. Tomemos las permutaciones de $S_3 = \{(1), (1\;2), (1 \;3), (2 \; 3), (1 \; 2 \; 3), (1\;3\;2)\}$. Consideramos a $S$ como $S=\{(1\;2)\}$ y a $T$ como $T=\{(1\;2\;3), (1\;3\;2)\}$. Entonces, su producto queda
    \begin{align*}
    ST &= \{(1\;2) (1\;2\;3), (1\;2)(1\;3\;2)\}\\
    &= \{(2\;3), (1\;3)\}.
    \end{align*}
  2. Si consideramos $(\z, +)$, podemos tomar a $S$ y a $T$ como
    \begin{align*}
    S &= 2\z = \{2n|n\in \z\},\\
    T &= 3\z = \{3m|m\in\z\}.
    \end{align*}
    En este caso, el producto se denota como $S+T$ y este conjunto es
    \begin{align*}
    S+T = 2\z + 3\z = \{2n+3m|n,m\in\z\} = \z.
    \end{align*}
    Donde la última igualdad se da porque $(2,3) = 1$ (es decir, $2$ y $3$ son primos relativos).

¿Cuándo es el producto un subgrupo de $G$?

Vamos a ver qué pasa ahora a la hora de multiplicar subgrupos. Durante la demostración del siguiente teorema, observaremos que en general, el producto no es un subgrupo debido a un detalle de la conmutatividad de los elementos. El siguiente se trata de un resultado clásico que aparece por ejemplo en el texto de Dummit mencionado en la bibliografía, Proposición 14:

Teorema. Sea $G$ un grupo, $H$, $K$ subgrupos de $G$. Entonces,
\begin{align*}
HK \leq G \; \text{ si y sólo si } \; HK = KH.
\end{align*}

Demostración.
Sea $G$ un grupo, $H,K$ subgrupos de $G$.

$|\Rightarrow)$ Supongamos que $HK \leq G$.
P.D. $KH=HK$

Procedemos por doble contención.
$\subseteq]$
Sea $x\in KH$, entonces existen $k \in K$ y $h \in H$ tales que $x = kh$.

Como $HK$ es subgrupo de $G$, entonces $h^{-1}k^{-1} \in HK$, así
\begin{align*}
x^{-1} = (kh)^{-1} = h^{-1}k^{-1} \in HK.
\end{align*}

Entonces, $x^{-1} \in HK$, y como $HK$ es subgrupo, $x \in HK$. Por lo tanto $KH \subseteq HK$.

$\supseteq]$
Sea $x \in HK$.

Observación: Si intentamos hacer lo mismo de antes, tomaríamos $h \in H$ y $k \in K$ tales que $x = hk$, así $x^{-1} = k^{-1}h^{-1}$ ya que en el inverso se invierte el orden, es decir $x^{-1} \in KH$. Pero como no sabemos nada de $KH$, nos atoramos aquí. Por lo tanto, tomaremos un camino un tanto diferente.

Sabemos que $HK\leq G$, entonces sabemos que $x^{-1} \in HK$. Entonces existen $h \in H$ y $k\in K$ tales que $x^{-1}=hk$. Así,

\begin{align*}
&x = (x^{-1})^{-1} = (hk)^{-1} = k^{-1}h^{-1} \in KH
\end{align*}
Por lo tanto $HK \subseteq KH$.

Así, $HK = KH$.

$\Leftarrow|)$ Supongamos que $HK = KH$.
P.D. $HK \leq G$.

Observemos primero que $e = ee \in HK$.

Ahora consideremos $x,y \in HK$, entonces
\begin{align*}
x = hk && h, \overline{h} \in H \\
y = \bar{h} \bar{k} && k,\overline{k} \in K.
\end{align*}

Entonces
\begin{align*}
xy^{-1} = (hk)(\bar{h} \bar{k})^{-1} &= (hk)(\bar{k}^{-1} \bar{h}^{-1})\\
&= h \left( (k\bar{k}^{-1})\bar{h}^{-1} \right).
\end{align*}

Pero
\begin{align*}
&(k\bar{k}^{-1}) \bar{h}^{-1} \in KH = HK &\text{Por la hipótesis} \\
\Rightarrow &\,(k \bar{k}^{-1})\bar{h}^{-1} =\hat{h}\hat{k} & \text{ con } \hat{h}\in H,\hat{k}\in K.
\end{align*}

Sustituyendo los valores $$xy^{-1} = h(\hat{h}\hat{k}) = (h\hat{h})\hat{k} \in HK.$$

Por lo tanto $HK \leq G$.

$\blacksquare$

Del teorema anterior se sigue este corolario:

Corolario. Sea $G$ un grupo abeliano, $H,K$ subgrupos de $G$. Tenemos que $HK$ es un subgrupo de $G$.

Clases Laterales

Ahora, tomemos $T = \{a\}$ con $a \in G$. De esta manera $TH = \{a\}H$, pero para simplificar la notación, usaremos $\{a\}H = aH$. A este caso específico, lo llamaremos clase lateral. A continuación lo definiremos de una manera más formal.

Definición. Sean $G$ un grupo, $H$ un subgrupo de $G$, $a\in G$.
La clase lateral izquierda de $H$ en $G$ con representante $a$ es
$$ aH = \{ah | h\in H\}. $$
La clase lateral derecha de $H$ en $G$ con representante $a$ es
$$Ha = \{ha|h\in H\}.$$

Ambas clases son análogas, aunque como veremos más adelante no necesariamente iguales, y para fines prácticos trabajaremos sólo con una, pero es importante definir ambas.

Ejemplos.

  1. Sean $G = S_n\, ,$ $H =A_n\, ,$ con $n\geq 2$.
    \begin{align*}
    (1\;2)\;A_n &= \{ (1\;2)\alpha \,|\, \alpha\in A_n\} \\
    & = \{\beta \in S_n \,| \, sgn\,\beta = -1\}.
    \end{align*}
  2. Sea $G=\r^2$ con la suma usual,
    \begin{align*}
    H &= \{(x,x) \,|\, x\in\r\}\\
    &\text{y }(a,b) \in\r^2 \\
    \text{Entonces, } \\
    (a,b) + H &= \{(a,b) +(x,x) \,|\, x\in \r\},
    \end{align*} que geométricamente es la diagonal trasladada por el vector $(a,b).$
Representación de $(a,b) + H$.

Tarea moral

  1. Prueba o da un contraejemplo: Si $G$ es un grupo y $S$ y $T$ son subconjuntos de $G$ tales que $ST$ es un subgrupo de $G$, entonces $S$ y $T$ son subgrupos de $G$.
  2. Sea $D_{2(6)} = \{\text{id}, a, \dots, a^5, b, ab, \dots, a^5b \}$ el grupo diédrico formado por las simetrías de un hexágono, con $a$ la rotación de $\frac{\pi}{3}$ y $b$ la reflexión con respecto al eje $x$. Calcula las clases laterales izquierdas y derechas de $\left< a \right>$ en $D_{2(6)}$.
  3. En cada inciso calcula $HK$ y determina si es un subgrupo de $S_4$.
    1. $H = \{(1), (1\;2)\}$ y $K = \{(1), (1\;3)\}$.
    2. $H = \{(1), (1\;2)\}$ y $K = \{(1), (3\;4)\}$.

Más adelante…

En la siguiente entrada definiremos una relación de equivalencia y, al tratar de describir las clases de equivalencias inducidas, podremos relacionar las clases laterales con los elementos de $H$. Además, continuaremos respondiendo a las preguntas: ¿qué relación existe entre el número de elementos de las clases laterales derechas e izquierdas? y ¿qué es el índice de $H$ en $G$?

Entradas relacionadas

Teoría de los Conjuntos I: Construcción de los números naturales

Por Gabriela Hernández Aguilar

Introducción

Hasta ahora solo hemos usado los conjuntos $0$, $1$, $2$, $3$ y $4$ que definimos en la entrada de axioma del par y axioma de unión, pero es momento de hablar de números naturales de manera más general y rigurosa. En esta entrada comenzaremos a hacer esto, enunciando algunas propiedades conjuntistas que esperamos que tengan los números naturales. Sin embargo, no dejaremos de lado la noción intuitiva que ya tenemos.

Construcción

Al principio del curso hablamos acerca de los primeros axiomas de la teoría de los conjuntos. A partir de ellos obtuvimos un conjunto $\emptyset$ que no tiene elementos, y además probamos que era el único conjunto con esta propiedad. Por comodidad, a este conjunto también le pusimos el «nombre» o «etiqueta» $0$. Después, aplicamos el axioma del par para a partir de $0$ conseguir al conjunto $\{\emptyset\}$ al que llamamos $1$. En los ejercicios, hablamos de cómo a partir de los axiomas se pueden construir también a $2:=1\cup \{1\}= \set{\emptyset, \set{\emptyset}}$, a $3:=2\cup \{2\}=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$, y también a $4:=3\cup \{3\}$.

Por supuesto, también se pueden construir otros conjuntos que no «siguien este patrón», por ejemplo, aplicando dos veces el axioma del par se puede construir al conjunto $\set{\set{\emptyset}}$.

Si nos fijamos en la cantidad de elementos que tienen los conjuntos $0,1,2,3,4$, notamos que las etiquetas son muy precisas y coinciden con nuestra intuición, pues por ejemplo el $0$ es el vacío que tiene cero elementos, el $1$ es $\{\emptyset\}$ que tiene un sólo elemento que es $\emptyset$, etc. De hecho, parte del ejercicio de la entrada mencionada pedía ver que $4=\{0,1,2,3\}$, que en efecto tiene cuatro elementos. Pero puede haber otros conjuntos distintos que también tengan la misma cantidad que estos conjuntos. Por ejemplo, el conjunto $\set{\set{\emptyset}}$ también tiene un elemento (tiene sólo a $\set{\emptyset}$), pero no es el mismo conjunto que $1$.

Parte de lo que queremos lograr al construir los números naturales formalmente es asociar a cada «número que usamos para contar» un conjunto con esa cantidad de elementos. Lo mencionado arriba debe dejarnos la idea de que puede haber muchas maneras de hacer esto. Por ejemplo, una posible manera sería formalizar la siguiente construcción:

\begin{align*}
0 &-\emptyset\\
1&-\set{\set{\emptyset}}\\
2&-\set{\emptyset, \set{\set{\emptyset}}}\\
3&-\set{\emptyset, \set{\set{\emptyset}}, \set{\emptyset, \set{\set{\emptyset}}}}\\
\vdots
\end{align*}

Otra posible manera sería formalizar la siguiente construcción, que se parece más a cómo hemos estado utilizando las etiquetas $0,1,2,3,4$:

\begin{align*}
0 &-\emptyset\\
1&-\set{\emptyset}\\
2&-\set{\emptyset, \set{\emptyset}}\\
3&-\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}\\
\vdots
\end{align*}

Debido a que hay muchas maneras de lograr nuestro objetivo, podemos poner algunas condiciones adicionales. Hablaremos de ellas en el transcurso de estas entradas. Estas propiedades adicionales que requeriremos nos llevarán a que la construcción apropiada es la segunda presentada aquí arriba.

Conjuntos transitivos

Para definir formalmente a los números naturales comenzaremos definiendo una de las características que tendrá cada uno de los números naturales.

Definición. Sea $x$ un conjunto. Decimos que $x$ es un conjunto transitivo si para cualquier $y\in x$ se cumple que $y\subseteq x$.

Observa que si $x$ es transitivo en la definición que acabamos de dar, entonces si $z\in y$ y $y\in x$, entonces $z\in x$.

Ejemplo.

Nos gustaría que cada número natural sea transitivo y nos gustaría que $0$, como lo definimos, sea número natural. En efecto lo es pues, en este caso, $0=\emptyset$ y entonces por vacuidad se cumple que si $y\in \emptyset$, se tiene que $y\subseteq \emptyset$.

$\square$

Ejemplo.

También el conjunto que definimos como $1$ es transitivo. Recordemos que $1=\set{\emptyset}$. El único elemento de $1$ es $y=\emptyset$, así que para ver que $x$ es transitivo basta ver que $\emptyset\subseteq \set{\emptyset}$, lo cuál sabemos que es cierto. Por lo tanto, $1$ es un conjunto transitivo.

$\square$

Ejemplo.

Sea $x=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que $x$ no es transitivo. En efecto, se tiene que $\set{\set{\emptyset}}\in x$ pero $\set{\set{\emptyset}}\not\subseteq x$ dado que $\set{\emptyset}\in \set{\set{\emptyset}}$ pero $\set{\emptyset}\notin x$. Por lo tanto, $\set{\emptyset, \set{\set{\emptyset}}}$ no es un conjunto transitivo.

$\square$

Equivalencias de conjuntos transitivos

A continuación veremos algunas equivalencias para que conjunto sea transitivo.

Proposición. Sea $x$ un conjunto. Entonces, $x$ es un conjunto transitivo si y sólo si $x\subseteq \mathcal{P}(x)$.

Demostración.

Comencemos suponiendo que $x$ es transitivo. Veremos que $x\subseteq \mathcal{P}(x)$. Sea $y\in x$. Como $x$ es un conjunto transitivo, se tiene que $y\subseteq x$ y por lo tanto, $y\in \mathcal{P}(x)$. Así, $x\subseteq \mathcal{P}(x)$.

Ahora, supongamos que $x\subseteq \mathcal{P}(x)$ y veamos que $x$ es un conjunto transitivo. Sea $y\in x$. Tenemos que $y\in \mathcal{P}(x)$ y así, $y\subseteq x$. Por lo tanto, $x$ es un conjunto transitivo.

$\square$

Otra equivalencia que tendrás que demostrar como parte de los ejercicios es la siguiente.

Proposición. Un conjunto $x$ es transitivo si y sólo si $\bigcup x\subseteq x$.

Otros resultados para conjuntos transitivos

Para concluir esta entrada veremos algunos resultados para conjuntos transitivos, esta vez con respecto a la intersección y la unión.

Proposición. Si $x$ y $y$ son conjuntos transitivos, entonces $x\cap y$ es un conjunto transitivo.

Demostración.

Sean $x$ y $y$ conjuntos transitivos. Veamos que $x\cap y$ es un conjunto transitivo, es decir, para cada $z\in x\cap y$ se cumple que $z\subseteq x\cap y$.

  1. Como $x$ es un conjunto transitivo, entonces para cualquier $z\in x$ se cumple que $z\subseteq x$.
  2. Como $y$ es un conjunto transitivo, entonces para cualquier $z\in y$ se cumple que $z\subseteq y$.

De $1$ y $2$ podemos concluir que para cualquier $z\in x\cap y$ se satisface que $z\subseteq x\cap y$. Por lo tanto, $x\cap y$ es transitivo.

$\square$

Hay una segunda demostración de la proposición anterior, usando álgebra de conjuntos y la primera caracterización de la sección anterior.

Demostración. Como $x$ y $y$ son transitivos, tenemos que $x\subseteq \mathcal{P}(x)$ y $y\subseteq \mathcal{P}(y)$. Así, por propiedades que hemos demostrados de intersección, $$x\cap y \subseteq \mathcal{P}(x) \cap \mathcal{P}(y) \subseteq \mathcal{P}(x\cap y).$$

Así, $x\cap y \subseteq \mathcal{P}(x\cap y)$ y por lo tanto $x\cap y$ es transitivo.

$\square$

La transitividad también se preserva al unir conjuntos.

Proposición. Si $x$ y $y$ son conjuntos transitivos, entonces $x\cup y$ es un conjunto transitivo.

Demostración.

Sean $x$ y $y$ conjuntos transitivos. Veamos que $x\cup y$ es un conjunto transitivo, es decir, para cada $z\in x\cup y$ se cumple que $z\subseteq x\cup y$.

  1. Como $x$ es un conjunto transitivo, entonces para cualquier $z\in x$ se cumple que $z\subseteq x$.
  2. Como $y$ es un conjunto transitivo, entonces para cualquier $z\in y$ se cumple que $z\subseteq y$.

De $1$ y $2$ podemos concluir que para cualquier $z\in x\cup y$ se satisface que $z\subseteq x\cup y$. Por lo tanto, $x\cup y$ es transitivo.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitira reforzar el concepto de conjunto transitivo.

  1. ¿Cuáles de los siguientes conjuntos son transitivos?
    1. $\set{\emptyset, \set{\emptyset}}$,
    2. $\set{\set{\emptyset}}$,
    3. $\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$.
  2. Verifica que, por definición, cada uno de los conjuntos $0,1,2,3,4$ que ya definimos son transitivos.
  3. Demuestra que $(\set{\emptyset, \set{\emptyset}, \set{\emptyset,\set{\emptyset}}}, \in)$ es un conjunto totalmente ordenado.
  4. Demuestra que $x=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ tiene elemento máximo y elemento mínimo en el orden $\in_x$.
  5. Demuestra la segunda equivalencia de la sección de conjuntos transitivos, es decir, que $x$ es transitivo si y sólo si $\bigcup x\subseteq x$.
  6. Si $x$ y $y$ son conjuntos transitivos, ¿será cierto que $x\setminus y$ siempre es un conjunto transitivo?, ¿será cierto que $x\triangle y$ siempre es un conjunto transitivo? Da una demostración o encuentra un contraejemplo en cada caso.

Más adelante…

En la siguiente entrada daremos la definición formal y rigurosa de qué es un número natural. Además demostraremos algunas de sus propiedades.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Buenos órdenes

Por Gabriela Hernández Aguilar

Introducción.

En esta entrada trataremos con un tipo particular de conjuntos ordenados, en donde será de mucha importancia el concepto de mínimo. Puedes recordar la definición de mínimo en la entrada Teoría de los Conjuntos I: Mínimos, máximos, minimales y maximales.

Conjuntos bien ordenados

Definición. Sea $(A,\leq)$ un conjunto parcialmente ordenado. Decimos que $A$ es un conjunto bien ordenado si cada subconjunto no vacío de $A$ tiene elemento mínimo. En este caso al orden $\leq$ se le llama buen orden.

Ejemplo.

Consideremos el conjunto $A=\set{\emptyset,\set{\emptyset}}$ ordenado con la inclusión. Afirmamos que $(A,\subseteq)$ es un buen orden. En efecto: supongamos que $B\subseteq A$ es un conjunto no vacío. Tenemos distintas posibilidades para $B$ y son las siguientes: $B=\set{\emptyset}$ o bien $B=\set{\set{\emptyset}}$ o bien $B=\set{\emptyset,\set{\emptyset}}$.

Si $B=\set{\emptyset}$, entonces $B$ tiene mínimo y es $\emptyset$. Si $B=\set{\set{\emptyset}}$, entonces $B$ tiene mínimo y es $\set{\emptyset}$. Finalmente, si $B=\set{\emptyset,\set{\emptyset}}$, entones $B$ tiene mínimo y es $\emptyset$, pues $\emptyset\subseteq\emptyset$ y $\emptyset\subseteq\set{\emptyset}$.

Así, en cualquier caso $B$ tiene mínimo. Por lo tanto, $(A,\subseteq)$ es un conjunto bien ordenado.

$\square$

Agrandar un conjunto bien ordenado

El siguiente ejemplo nos dice cómo podríamos conseguir conjuntos bien ordenados paso a paso.

Ejemplo.

Consideremos $A=\set{\emptyset,\set{\emptyset,\set{\emptyset}}}$. Luego, $A$ es un conjunto bien ordenado por la relación de contención. Dado que $A\notin A$, el conjunto $W=A\cup\set{A}$ es un conjunto no vacío distinto de $A$. Definamos la relación de orden $\preceq$ en $W$ como sigue: $A\preceq A$, $a\preceq A$ para todo $a\in A$ y $a_1\preceq a_2$ si y sólo si $a_1\leq a_2$ para cualesquiera $a_1,a_2\in A$ (en este caso $\leq$ es la relación de contención en $A$).

Notemos que esta nueva relación de orden definida en $W$ coincide con la relación de orden de $A$ si nos restringimos únicamente a comparar elementos de $A$.

Afirmamos que $(W,\preceq)$ es un conjunto bien ordenado. Para mostrarlo supongamos que $B\subseteq W=A\cup\set{A}$ es un conjunto no vacío y veamos que tiene mínimo en el orden $\preceq$. Si $B=\set{A}$, entonces el mínimo de $B$ es $A$.

Podemos suponer ahora que $B\cap A\not=\emptyset$. Como $B\cap A\subseteq A$ es un conjunto no vacío, entonces tiene un elemento mínimo en el orden $\leq$. Sea $b\in B\cap A$ el mínimo de este conjunto en el orden $\leq$ y veamos que $b\preceq x$ para cualquier $x\in B$. Supongamos entonces que $x\in B$ es cualquier elemento. Si $x\in B\cap A$, entonces $b\leq x$ y en consecuencia, $b\preceq x$. Si ahora $x\notin B\cap A$ se sigue que $x=A$ y, por definición de la relación $\preceq$, sabemos que $b\preceq A$, por lo que $b\preceq x$. De esta manera, $b=\min(B)$ en el orden $\preceq$.

Esto demuestra que cualquier subconjunto no vacío de $W$ tiene mínimo y, por tanto, $(W,\preceq)$ es un conjunto bien ordenado.

$\square$

Si tenemos un conjunto $A$ cualquiera, ¿será posible siempre darle un buen orden? Uno podría intentar hacer algo similar al ejemplo anterior. Comenzar con un elemento $a\in A$ e incluir a la pareja $(a,a)$ en el orden. Luego, tomar otro elemento distinto $b\in A$ y ponerlo como el elemento más grande poniendo las parejas $(a,b)$ y $(b,b)$. Y luego se podría poner un tercer elemento $c$ como el más grande, poniendo las parejas $(a,c)$, $(b,c)$, $(c,c)$. Podríamos intentar decir que se puede seguir «así sucesivamente», pero esto es informal y no está justificado por los axiomas. Aparentemente, tenemos que elegir elementos de $A$ una y otra vez para declararlos el nuevo máximo. Si $A$ es infinito, esto implica algo así como hacer una infinidad de elecciones. ¿Esto te recuerda a otros problemas que hemos enfrentado? ¡Sí! Una vez más nos encontramos con una dificultad que se superará una vez que hablemos del axioma de elección.

Bien ordenado implica totalmente ordenado

Ahora, veamos una consecuencia directa de que un conjunto sea bien ordenado.

Proposición. Si $(A,\leq)$ es un conjunto bien ordenado, entonces, $(A,\leq)$ es un conjunto totalmente ordenado.

Demostración.

Como $(A,\leq)$ es un conjunto bien ordenado, entonces, todo subconjunto no vacío de $A$ tiene elemento mínimo. Así, si tomamos dos elementos cualesquiera $a_1,a_2\in A$ se sigue que $\set{a_1,a_2}$ es un subconjunto no vacío de $A$, por lo que tiene elemento mínimo. En consecuencia, $a_1\leq a_2$ o $a_2\leq a_1$.

Esto demuestra que cualesquiera dos elementos de $A$ son $\leq-$comparables, por lo que $(A,\leq)$ es un conjunto totalmente ordenado.

$\square$

Otros cuántos resultados de buenos órdenes

Veamos ahora algunos resultados relacionados con conjuntos acotados en un conjunto bien ordenado.

Proposición. Sea $(A,\leq)$ un conjunto bien ordenado. Se cumple lo siguiente:
Si $B\subseteq A$ es un conjunto acotado superiormente, entonces, $B$ tiene supremo.

Demostración.

Sea $(A,\leq)$ un conjunto bien ordenado.
Supongamos que $B\subseteq A$ es un conjunto acotado superiormente. Sea $C=\set{a\in A:(\forall b\in B)(b\leq a)}$, el cual es un subconjunto no vacío de $A$, pues por hipótesis $B$ está acotado superiormente, es decir, existe $a\in C$.

Como $A$ está bien ordenado por $\leq$, entonces, existe el mínimo de $C$ en el orden $\leq$, es decir, existe $c\in A$ tal que $c=\min(C)$. Luego, como $c$ es el mínimo del conjunto de cotas superiores de $B$, concluimos por lo que vimos en la entrada anterior que $c=\sup(B)$.

Esto demuestra que todo subconjunto de $A$ que esté acotado superiormente tiene supremo, lo cual concluye la prueba.

Por la proposición anterior y el hecho de que todo subconjunto no vacío de un conjunto bien ordenado tiene mínimo, podemos concluir lo siguiente:

Si $(A,\leq)$ es un conjunto bien ordenado y $B\subseteq A$ es no vacío y acotado superiormente (inferiormente), entonces, $B$ tiene una mínima cota superior (máxima cota inferior).

$\square$

Hay que tener cuidado, pues en un conjunto bien ordenado los subconjuntos acotados inferiormente no necesariamente tienen ínfimo.

Tarea moral

La siguiente lista de ejercicios te ayudará a reforzar lo aprendido en esta sección:

  1. Sean $(A, \leq_A)$ y $(B, \leq_B)$ conjuntos bien ordenados. Demuestra que el orden lexicográfico horizontal en $A\times B$ es un buen orden.
  2. Sea $(A,\leq)$ un conjunto bien ordenado. Muestra que cualquier subconjunto no vacío $B$ tiene ínfimo.
  3. Demuestra que si $A$ admite un buen orden, entonces $\mathcal{P}(A)$ admite un orden total.
  4. Sea $(A, \leq_A)$ un conjunto totalmente ordenado. Prueba que existe $L\subseteq A$ tal que
    1) $\leq_A$ es un buen orden en $L$,
    2) para cualquier $x\in A$ existe $y\in L$ tal que $x\leq_A y$.

Más adelante…

En ocasiones tenemos dos conjuntos $A$ y $B$ con órdenes parciales $\leq_A$ y $\leq_B$ aparentemente distintos, pero que en el fondo se comportan igual. En la siguiente entrada hablaremos de una noción que nos permitirá decir cuándo dos conjuntos parcialmente ordenados son «básicamente el mismo». Esto lo haremos mediante funciones biyectivas que preservan el orden, a las que llamaremos isomorfismos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Cotas superiores y supremos

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca de cotas superiores y supremos. Así como las cotas inferiores que vimos en la entrada anterior, estos nuevos conceptos también nos permitirán acotar subconjuntos de conjuntos parcialmente ordenados.

Cotas superiores

Para comenzar esta entrada definiremos qué es una cota superior.

Definición. Sea $(A, \leq)$ un orden parcial y sea $B\subseteq A$. Decimos que $a\in A$ es una cota superior de $B$ si $x\leq a$ para toda $x\in B$. Si $B$ tiene por lo menos una cota superior, diremos que $B$ está acotado superiormente.

Notemos que la definición es muy parecida al concepto de máximo, sin embargo, los conceptos difieren en que el máximo debe ser elemento del conjunto al que estamos acotando y la cota no necesariamente debe satisfacer esto. Veamos el siguiente ejemplo.

Ejemplo.

Consideremos $A=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}}$ ordenado con la inclusión. Sea $B= \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}\subseteq A$, tenemos que $\set{\emptyset, \set{\emptyset}}\in A$ es una cota superior de $B$ pues $x\subseteq \set{\emptyset, \set{\emptyset}}$ para todo $x\in B$, como se muestra en el siguiente diagrama:

$\square$

Ejemplo.

Consideremos $A=\set{\emptyset, \set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ ordenado con la inclusión. Sea $B= \set{\emptyset, \set{\emptyset}}\subseteq A$, tenemos que $\set{\emptyset, \set{\emptyset}}\in A$ es una cota superior de $B$ pues $x\subseteq \set{\emptyset, \set{\emptyset}}$ para todo $x\in B$, como se muestra en el siguiente diagrama:

Además $\set{\emptyset}\in B$ también es una cota superior de $B$ pues para cada $x\in B$, $x\subseteq \set{\emptyset}$. Más aún, $\set{\emptyset}$ es el elemento máximo de $B$.

$\square$

El ejemplo anterior sugiere que la propiedad de ser máximo implica ser cota superior, pero no siempre es válido el recíproco.

De este último ejemplo podemos notar que la cota superior en un conjunto puede no ser única, y entonces podemos pensar en el conjunto que tenga a todas las cotas superiores. Esta idea junto con el concepto de mínimo motiva el concepto de supremo.

Supremos

Definición. Sea $(A, \leq)$ un orden parcial y sea $B\subseteq A$. Decimos que $a\in A$ es supremo de $B$ si es el elemento mínimo del conjunto de todas las cotas superiores de $B$. Lo denotaremos por $\sup(B)$.

Ejemplo.

Retomando el ejemplo anterior, si consideramos al conjunto de todas las cotas superiores de $B$, es decir, $\set{\set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ tenemos que el supremo es $\set{\emptyset}$ pues respecto al orden de $A$ se tiene que $\set{\emptyset}\subseteq\set{\emptyset, \set{\emptyset}}$ y por lo tanto, $\set{\emptyset}$ es el mínimo de las cotas superiores de $B$. Por lo tanto, $\set{\emptyset}= \sup(B)$.

$\square$

Teorema. Sea $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Si $B$ tiene supremo en el orden $\leq$, entonces es único.

Demostración.

Sea $(A,\leq)$ un orden parcial y $B\subseteq A$ no vacío. Supongamos que $B$ tiene supremo, es decir, que existe $a\in A$ de tal forma que $x\leq a$ para toda $x\in B$ y, si $b\in A$ es tal que $x\leq b$ para toda $x\in B$, entonces, $a\leq b$.

Supongamos que $a_1,a_2\in A$ son supremos de $B$. Veamos que $a_1=a_2$.

Como $a_1$ es supremo de $B$, en particular se tiene que $x\leq a_1$ para toda $x\in B$. Luego, como $a_2$ es supremo de $B$ se sigue por definición que $a_2\leq a_1$. De manera análoga, como $a_2$ es supremo de $B$, en particular se tiene que $x\leq a_2$ para toda $x\in B$ y así, como $a_1$ es supremo de $B$ se sigue por definición que $a_1\leq a_2$.

Tenemos entonces que $a_1\leq a_2$ y $a_2\leq a_1$, de donde se sigue que $a_1=a_2$, lo cual demuestra la unicidad del supremo.

$\square$

Teorema. Sea $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Si $B$ tiene un elemento máximo $b$, entonces $b$ es el supremo de $B$.

Demostración.

Sea $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Luego como $b\in B$ es el elemento máximo de $B$, entonces para cualquier $x\in B$, $x\leq b$.

Sea $C$ el conjunto de todas las cotas superiores de $B$. Veamos que $b\in C$ y que $b=\min(C)$. Dado que $x\leq b$ para todo $x\in B$, entonces $b$ es cota superior de $B$ y, por tanto, $b\in C$. Luego, si $c\in C$ es cualquier elemento, entonces $c$ es cota superior de $B$, es decir, $x\leq c$ para cualquier $x\in B$. En particular, como $b\in B$ se tiene que $b\leq c$. Esto muestra que $b=\min(C)$.

Por lo tanto, $b=\sup(B)$.

$\square$

Aún cuando ser máximo implica ser supremo, no siempre va a ocurrir que el supremo de un conjunto sea máximo, como ocurre en el siguiente ejemplo.

Ejemplo.

Consideremos $A=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}}$ ordenado con la inclusión. Sea $B= \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}\subseteq A$, tenemos que $\set{\emptyset, \set{\emptyset}}\in A$ es una cota superior de $B$ pues $x\subseteq \set{\emptyset, \set{\emptyset}}$ para todo $x\in B$, como se muestra en el siguiente diagrama:

Sin embargo, $B$ no tiene máximo pues no existe $x\in B$ tal que $y\subseteq x$. En efecto, si existiera tal $x$, tendría que simultánteamente contener a $\set{\emptyset}$ y a $\set{\set{\emptyset}}$, por lo que debe tener como elementos a $\emptyset$ y $\set{\emptyset}$. Pero entonces debe ser $\set{\emptyset,\set{\emptyset}}$, el cual no está en $B$.

$\square$

Tarea moral

La siguiente lista de ejercicios te ayudará a reforzar el contenido de esta entrada y las dos anteriores.

  1. Sean $(A, \leq)$ un orden parcial y $B\subseteq A$ un conjunto no vacío. Demuestra que si $b$ es supremo y $b\in B$, entonces $b$ es máximo de $B$.
  2. Sean $(A, \leq)$ un orden parcial y $B,C\subseteq A$ no vacíos. Si $B$ y $C$ tienen supremo y $B\subseteq C$, demuestra que $\sup(B)\leq \sup(C)$.
  3. Exhibe un conjunto que esté acotado superiormente pero que no tenga supremo.
  4. Da un ejemplo de un conjunto ordenado $(A,\leq)$ en el cual se cumpla que el conjunto $\emptyset$ tiene supremo.

Más adelante…

La siguiente entrada estará dedicada a un tipo particular de conjuntos ordenados llamados buenos órdenes. Para este tema serán importantes los conceptos sobre máximos y mínimos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»