Nota 15. Relaciones de equivalencia y particiones.

Introducción

En está nota veremos como las relaciones de equivalencia generan particiones y finalmente concluiremos que dada una relación de equivalencia tiene asociada una partición y viceversa, dada una partición tiene asociada una única relación de equivalencia, con esto concluiremos está primera unidad de conjuntos y funciones.

Teorema

Sea $A$ un conjunto, $\mathcal R$ una relación de equivalencia en $A$, entonces $\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Demostración

Sea $A$ un conjunto, $\mathcal R$ una relación de equivalencia en $A$

Por demostrar que:

$\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Vamos a mostrar que el conjunto $\set{\overline{x}\mid x\in A}$ cumple la definición de partición.

i) Por demostrar que $\overline{x}\neq \emptyset$, $\forall x\in A$.

Sea $x\in A$, como $\mathcal R$ es reflexiva $x\sim x$, así $x\in \overline{x}$ y entonces $\overline{x}\neq \emptyset$.

ii) Por demostrar que si $x,y\in A$ tales que $x\neq y$, entonces $\overline{x}\cap \overline{y}=\emptyset$.

En la nota anterior mostramos que: $x\sim y\Longrightarrow \overline{x}=\overline{y}$, que es equivalente a: $\overline{x}\neq \overline{y} \Longrightarrow x\nsim y $ (llamada la contrapositiva de la implicación ). También mostramos que $x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset$, así tenemos que:

$ \overline{x}\neq \overline{y} \Longrightarrow x\nsim y $

y

$x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset$

Por lo tanto se sigue que:

$\overline{x}\neq \overline{y} \Longrightarrow x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset $.

Así tenemos lo que queríamos mostrar pues si $x\neq y \Longrightarrow \overline{x}\neq \overline{y} \Longrightarrow x\nsim y \Longrightarrow \overline{x}\cap \overline{y}=\emptyset $.

iii) Por demostrar que $\bigcup\limits_{x\in A} \overline{x}=A$

Prueba por doble contención

$\subseteq$ primera contención.

Sea $z\in \bigcup\limits_{x\in A} \overline{x}$, entonces $z\in \overline{x}=\set{y\in A\mid y\sim x}$ para alguna $x\in A$, en particular $z\in A$, y por lo tanto $ \bigcup\limits_{x\in A}\subseteq A$.

$\supseteq$ segunda contención.

Sea $z\in A$, como $\mathcal R$ es reflexiva $z\sim z$ así $z\in \overline{z}$, concluimos que $z\in \bigcup\limits_{x\in A} \overline{x}$.

Como se cumplen las tres condiciones para que sea una partición entonces $\set{\overline{x}\mid x\in A}$ es una partición de $A$.

Ejemplos

1. $A=\set{1,2,3,4,5}$

$\mathcal R=\set{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (1,5), (5,1) (2,5), (5,2) , (3,4),(4,3)}$

$\overline{1}=\set{1,2,5}$

$\overline{3}=\set{3,4}$

$\set{ \overline{1}, \overline{3}}=\set{ \set{1,2,5}, \set{3,4}} $

2. $A=\set{1,2,3,4,5}$

$\mathcal R$ una relación de equivalencia en $A$. Si la partición en $A$ inducida por $\mathcal R$ es:

$ \set{ \set{3}, \set{2,4}, \set{1,5} } $

¿Quién es $\mathcal R$?

$\mathcal R=\set{ (3,3), (2,2), (2,4), (4,4), (4,2), (1,1), (1,5), (5,5), (5,1) }$

Es una relación de equivalencia que induce la partición $\set{ \overline{3}, \overline{2}, \overline{1} }=\set{ \set{3}, \set{2,4}, \set{1,5} } $.

Teorema

Sea $A$ un conjunto, consideremos:

$\mathcal R_A=\set{r\mid r \, \,es \, \, una \, \, relación \, \, de \, \, equivalencia }$

$\mathcal P_A=\set{p\mid p \, \,es \, \, una \, \, partición \, \, de \, \, A }$

Afirmación: Existe una biyección entre $\mathcal R_A$ y $\mathcal P_A$

Demostración

Sea $A$ un conjunto, consideremos:

$\mathcal R_A=\set{r\mid r \, \,es \, \, una \, \, relación \, \, de \, \, equivalencia }$

$\mathcal P_A=\set{p\mid p \, \,es \, \, una \, \, partición \, \, de \, \, A }$

Definimos:

$\psi: \mathcal R_A\to \mathcal P_A$ con

$\psi(r)=\set{\overline{x}^r\mid x\in A}\, \, \, \forall r\in \mathcal R_A$

donde $ \overline{x}^r =\set{y\in A\mid (y,x)\in r} $

Veamos que $\psi$ es inyectiva.

Sean $r,\rho\in \mathcal R_A$ tales que $\psi(r)=\psi(\rho)$.

Por demostrar que $r=\rho$.

La prueba se hará por doble contención

$\subseteq$ primera contención.

Sea $(a,b)\in r$ entonces por simetría $(b,a)\in r$ y entonces $b\in \overline{a}^r$.

Por otro lado $ \overline{a}^r\in \set{ \overline{x}^r\mid x\in A }=\psi(r)$ que por hipotesis es igual $\psi(\rho)= \set{ \overline{x}^{\rho}\mid x\in A }$ , de manera que $ \overline{a}^r = \overline{c}^{\rho}$ para alguna $c\in A$, como $b\in \overline{a}^r$ entonces $b\in \overline{c}^{\rho}$, así $(b,c)\in \rho$, por simetría $(c,b)\in \rho$. También $a\in \overline{a}^r= \overline{c}^{\rho}$ así $(a,c)\in \rho$. Como $(a,c)\in \rho$ y $(c,b)\in \rho$, por transitividad $(a,b)\in \rho$ y así $r\subseteq \rho$.

$\supseteq$ Segunda contención. Es análoga y por lo tanto $r=\rho$ y así la función $\psi: \mathcal R_A\to \mathcal P_A$ es inyectiva.

Veamos ahora que $\psi$ es suprayectiva.

Sea $P=\set{A_i\mid i\in I}$ una partición de $A$.

Definimos $r$ una relación en $A$ como:

$(x,y)\in r$ si y solo si existe $i\in I$ tal que $(x,y)\in A_i$.

Está es una relación de equivalencia (demuestralo).

Por demostrar que $\psi(r)=P$, es decir que $\set{\overline{x}^r\mid x\in A}=P$

La prueba es por doble contención.

$\subseteq$ primera contención.

Sea $\overline{a}^r\in \set{ \overline{x}^r\mid x\in A }$.

Por demostrar que $\overline{a}^r\in P$.

Como $A= \bigcup\limits_{i\in I}A_i$ entonces $a\in A_j$ para alguna $j\in I$.

Pero

$\overline{a}^r=\set{b\in A\mid (b,a)\in r}=\set{b\in A\mid \exists i\in I \,\, tal \,\, que \,\, b,a\in A_i}=\set{b\in A\mid b\in A_j}=A_j\in P$, y por lo tanto $\overline{a}^r\in P$, y así $\psi(r)\subseteq P$.

$\supseteq$ segunda contención.

Sea $A_j\in P$ con $j\in I$. Sabemos que $A_j\neq \emptyset$, consideremos $a\in A_j$, como acabamos de ver en la primera contención , $A_j=\overline{a}^r\in \set{\overline{x}^r\mid x\in A}=\psi(r)$ y así $P\subseteq \psi(r)$.

Como se cumplen las dos contenciones $P=\psi(r)$. Y de está forma dada una partición $P$ existe una relación de equivalencia que la genera y por lo tanto $\psi$ es suprayectiva.

Como $\psi$ es suprayectiva e inyectiva $\psi$ es biyectiva.

$\square$

Tarea Moral

  1. Encuentra todas las posibles particiones de $\set{3,6,7,9}$, y para cada una de ellas encuentra la relación de equivalencia asociada.
  2. Verifica que las distintas clases de equivalencia forman una partición de $\mathbb Z$, para la relación $\mathcal R$ en $\mathbb Z$, dada por: $(a,b)\in \mathcal R$ si y solo si $4$ divide a $b-a$.
  3. Sea $A=\set{1,2,3,4,5}$ y considera la relación dada por:
    $R=\set{(1,1),(2,3),(3,3),(4,4),(5,5),(2,4),(4,2),(2,5),(5,2),(4,5),(5,4)}$
    Encuentra la partición asociada.

Mas adelante

Con esta nota hemos terminado la unidad 1 del curso de algebra superior 1. En las siguiente nota pasaremos a la unidad 2 donde haremos un estudio de los números naturales a partir de la definición conjuntista.

Enlaces relacionados

Nota siguiente. Nota 16. Los números naturales.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.