Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Superior I: Introducción a funciones

Por Guillermo Oswaldo Cota Martínez

Introducción

En esta entrada empezaremos a estudiar un tipo de relación muy específica, que son las funciones. Este concepto es fundamental en casi todas las áreas de las matemáticas, y aprender su uso será fundamental a partir de ahora.

La importancia de las funciones

Antes de empezar a hablar de las funciones, es importante que desde ahora entiendas que el concepto de la función es un concepto casi omnipresente en la tarea de estudiar las matemáticas. Para tener idea de la profundidad de esto, observa los siguientes ejemplos:

  • La base del cálculo son las funciones en una variable.
  • La base del cálculo en varias variables son las funciones de distintas variables.
  • En análisis se estudian las funciones entre espacios numéricos.
  • En probabilidad, se trabaja con las funciones entre espacios de probabilidad.
  • Las secuencias numéricas son funciones.
  • En álgebra moderna, el concepto de grupo es un tipo de función.
  • En topología muchas veces se estudian familias de funciones.

Los ejemplos podrían seguir y seguir, y es que nosotros al estudiar las matemáticas, es muy importante entender que la mayor parte de estudiarla será el analizar funciones.

La primera noción que daremos de lo que son las funciones son unas máquinas que reciben una entrada y devuelven una salida.

Un ejemplo de esto es una función que toma de entrada cualquier número entero y devuelve el número multiplicado por dos. Para traducir cómo escribiremos esto, recordemos que al principio hemos dicho que las funciones van a ser relaciones, entonces la forma en que definirimos esta función será con una pareja ordenada $(x,y)$. Como tenemos la idea de que las funciones son máquinas que reciben una entrada y arrojan una salida, entonces diremos que $x$ es la variable de entrada y $y$ la de salida. De manera que podemos representar a la función que toma cualquier número entero y devuelve el número multiplicado por dos, es de la siguiente manera: $$f = \{(x,y) \in \mathbb{Z}^2: y = 2x\} $$ En donde al mencionar que $y=2x$, estamos diciendo que la salida es dos veces la entrada.

Algunos de los elementos que pertenecen a la función son $$\{(0,0),(1,2),(-1,-2),(5,10),(-7,-14), \dots\}.$$

Cuando hablemos de funciones habrán dos cosas importantes que tendrá que cumplir la relación:

  • Deberemos de usar todo el dominio para crear la relación. Esto quiere decir que si estamos hablando de una función entre números enteros, entonces no importa de qué número entero estemos hablando, siempre podrá tener su correspondencia según la función. En nuestro ejemplo, nota que dijimos que la función toma «cualquier número entero», no estamos diciendo que solo toma algunos números enteros.
  • Cada elemento del dominio tendrá uno y solo un correspondiente del contradominio. Esto quiere decir que si $(x,y)$ pertenecen a la función, entonces no existe otra pareja distinta $(x,w)$ en la función. En nuestro ejemplo, nota que las parejas son de la forma $(x,2x)$, y esto implica que cada elemento del dominio solo aparece una vez, si no fuera así, habría dos elementos $(x,2x),(x,w)$ en la función en donde $2x \neq w$, lo cual es imposible, puesto que los elementos del contradominio son los elementos del dominio multiplicados por $2$, es decir $w = 2x$, generando una contradicción.

Estas serán las propiedades que le pediremos a una relación para ser función.

Definición. Sea $f$ una relación entre dos conjuntos $X,Y$. Diremos que $f$ es una función si cumple las siguientes propiedades:

  • $Dom(f) = X$
  • Si $(x,y) \in f$ y $(x,w) \in f$, entonces $y=w$.

Esta última propiedad quiere decir que solo existe una pareja que tenga a $x$ en el lugar de los elementos del dominio.

Como hemos dicho antes, una función será una correspondencia entre elementos de $X$ con elementos de $Y$ de manera que a cada elemento de $X$ le corresponderá uno y únicamente un elemento del contradominio.

Ejemplos de funciones

Algunos ejemplos de funciones son:

  • La función identidad. Esta función de un conjunto $X$ en sí mismo, es el conjunto $$\{(x,y) \in X^2:x=y\}.$$ Y son las parejas de la forma $(x,x)$.
  • Si $X = \{1,2,3\}, Y=\{a,b\}$, entonces $\{(1,a),(2,a),(3,b)\}$ es una función.
  • La función que corresponde a cada persona de la tierra con su cumpleaños, es una función.
  • La función proyección. Supongamos que tenemos dos conjuntos $X,Y$, la proyección es la función entre el producto cartesiano $X \times Y$ y el conjunto $X$ que asocia cada pareja ordenada $(x,y)$ con el primer elemento de la pareja $x$. Esto quiere decir que la función «se olvida» del elemento $y$. De esta forma, $f$ toma elementos del producto $X \times Y$ y su contradominio es el conjunto $X$ que manda cada pareja ordenada a su proyección sobre la primer entrada, esto quiere decir que $f((x,y)) = x$. Así, observa que los elementos de esta función son de la forma $((x,y),x).$ Esta es una función que se utiliza en áreas como la geometría analítica, cuando se tiene el plano cartesiano y se define la proyección de un vector sobre algún eje o incluso sobre la dirección de otro vector.

Un ejemplo de una relación que no es función es la función entre $X = \{1,2,3\}$ y $Y=\{a,b\}$, donde la relación es $\{(1,a),(2,a),(1,b)\}$. Esto es por dos razones: Se utiliza más de una vez el elemento del dominio $1$, aparecen las parejas $(1,a),(1,b)$, pero no es cierto que $a=b$, además nota que no se utiliza el elemento $3$ del dominio, por lo que se rompen las dos condiciones que pedimos para que fuera función.

Más sobre funciones

Al momento de estar hablando de una función $f$ entre dos conjuntos $X$ y $Y$ , es común hacer uso de la notación $f:X \rightarrow Y$ que se lee como «$f$ es una función que va de $X$ a $Y$». Y si $x \in X$, al único elemento $y$ tal que $(x,y) \in f$, lo podremos denotar por $f(x)$ de manera que las parejas serán de la forma $(x,f(x))$.

A continuación definiremos algunos conceptos que usaremos al hablar de funciones.

Definición. Diremos que dos funciones $f: X \rightarrow Y$ y $g: W \rightarrow Z$ son iguales si las relaciones son la misma, es decir si $X=W$ y $Y=Z$ y para cada elemento $x \in X$, $f(x)=g(x)$.

Esto nos quiere decir que si dos funciones son iguales, entonces mandan a todo elemento $x$ al mismo elemento en el contradominio.

Con esto, hemos cubierto la noción de las funciones. Lo importante que recuerdes ahora es que las funciones son un tipo de relación que usan todo el contradominio y que mandan cualquier elemento del dominio a uno y solamente un elemento del contradominio. Verás que conforme avances en distintas ramas de la matemática, serán muy importante saber qué son las funciones.

Más adelante…

Hasta ahora hemos hablado únicamente de la definición de las funciones y cuándo dos funciones son iguales. En las siguiente entrada platicaremos acerca de las funciones inyectivas, suprayectivas y biyectivas. Que si recuerdas los términos, alguna vez definimos los dos primeros en el contexto de relaciones. Volveremos a explorar estos términos pero ahora desde el punto de vista de las funciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que la relación «ser menor o igual» en los números enteros no es una función.
  2. Dado cualquier conjunto $X$ no vacío, ¿Cuál es la única función que es relación de equivalencia?
  3. Demuestra que no existe ninguna función $f:X \rightarrow \emptyset$ .
  4. Sean $f: \mathbb{Z} \rightarrow \mathbb{Z}$ y $g: \mathbb{Z} \rightarrow \mathbb{Z}$. Definamos $f(x) = x ^2$ y $g(x) = (x+1)(x-1)+1$. Demuestra que $f=g$.

Entradas relacionadas

  • Ir a Álgebra Superior I
  • Entrada anterior del curso: Problemas de órdenes parciales y relaciones de equivalencia
  • Siguiente entrada del curso: Funciones inyectivas, suprayectivas y biyectivas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral I: Funciones exponenciales y logarítmicas

Por Karen González Cárdenas

Introducción

En esta entrada veremos un par de tipos de funciones muy particulares: las exponenciales y las logarítmicas. Probablemente en alguno de tus cursos anteriores te encontraste con funciones del tipo:
\begin{align*}
f(x)&= 3^{x} & g(x)&= ln(x)\\
\end{align*}

Aquí veremos su representación gráfica, ejercicios relacionados y algunos resultados importantes, como las leyes de los exponentes y de los logaritmos. Se profundizará más en este conjunto de funciones en el curso de Cálculo Diferencial e Integral II.

Funciones exponenciales

Definición (función exponencial): Sea $f$ una función. Decimos que $f$ es una función exponencial si está definida como:
$$f: \r \rightarrow (0, \infty)$$
$$f(x)=a^{x}$$
con $a \in {\r}$ y $a>0$.
En este tipo de funciones tenemos que la variable $x$ está como exponente.
Observemos que tenemos los siguientes casos:

Veamos que al tomar $a=1$ tenemos que su gráfica se vería:
$$f(x)=1^{x}$$

Leyes de los exponentes

Teorema (Leyes de los exponentes): Consideremos a $a, m, n \in \r$ y $a>0$. Vemos que se cumplen las siguientes propiedades:

  1. $a^{m}a^{n}=a^{m+n}$
  2. $(a^{n})^{m}=a^{(n\cdot m)}$
  3. $a^{0}=1$
  4. $a^{-1}=\frac{1}{a}$
  5. $a^{-n}=\frac{1}{a^{n}}$
  6. $a^{n-m}=\frac{a^{n}}{a^{m}}$
  7. $a^{\frac{1}{q}}=\sqrt[q]{a}$
  8. $a^{\frac{p}{q}}=\sqrt[q]{a^{p}}$

Por el momento no daremos las pruebas pertinentes, ya que las herramientas necesarias se verán durante el próximo curso de cálculo. Así pasaremos a revisar otros resultados relacionados a las funciones exponenciales.

Otros resultados sobre funciones exponenciales

Proposición: Consideremos $a>0$ y $r=\frac{p}{q} \in \mathbb{Q}$.

  1. Si $a>1$ y $r>0$ entonces $a^{r}>1$
  2. Si $0<a<1$ y $r>0$ entonces $a^{r}<1$
  3. Si $a>1$ y $r<0$ entonces $a^{r}<1$
  4. Si $0<a<1$ y $r<0$ entonces $a^{r}>1$

Demostración:

  1. Como $a>1$ se sigue que:
    \begin{align*}
    a>1 &\Rightarrow \sqrt[q]{a}>\sqrt[q]{1}\\
    &\Rightarrow (\sqrt[q]{a})^{p}>(\sqrt[q]{1})^{p}\\
    &\Rightarrow a^{\frac{p}{q}}>1\\
    &\Rightarrow a^{r}>1
    \end{align*}
  2. Ahora tenemos que $0<a<1$:
    \begin{align*}
    &\Rightarrow \sqrt[q]{a}< \sqrt[q]{1}\\
    &\Rightarrow (\sqrt[q]{a})^{p}<(\sqrt[q]{1})^{p}\\
    &\Rightarrow a^{r}<1
    \end{align*}
  3. Tarea moral
  4. Ya que $0<a<1$ observamos que:
    $$1< \frac{1}{a}$$
    Adicionalmente como $r<0$ se sigue:
    \begin{align*}
    &\Rightarrow \left(\frac{1}{a}\right)^{r}<1\\
    &\Rightarrow (a^{-1})^{r}<1\\
    &\Rightarrow a^{-r}<1\\
    &\Rightarrow \frac{1}{a^{r}}<1\\
    &\Rightarrow 1<a^{r}
    \end{align*}

$\square$

Teorema: Sea $f: A \subseteq \r \rightarrow \r$.

  1. Si $f$ es una función creciente $\Rightarrow f$ es inyectiva.
  2. Si $f$ es una función decreciente $\Rightarrow f$ es inyectiva.

Demostración de 1:
Tomemos $x_{1},x_{2} \in A$ tales que $x_{1} \neq x_{2}$ por lo que tenemos los siguientes casos:
Caso 1: Si $x_{1}>x_{2}$ entonces al aplicar la función $f$ tenemos
$$f(x_{1})>f(x_{2}).$$
Por lo que:
$$f(x_{1}) \neq f(x_{2}).$$

Caso 2: Ahora si $x_{1}<x_{2}$ y aplicamos la función $f$
$$f(x_{1})< f(x_{2}).$$
Así:
$$f(x_{1}) \neq f(x_{2}).$$
De los casos anteriores concluimos que $f$ es inyectiva.

$\square$

Afirmación: Si tenemos $a>0$ y $f: \r \rightarrow \r^{+}$
$$f(x)=a^{x}$$

  1. Si $a>1$ entonces $f$ es creciente.
  2. Si $0<a<1$ entonces $f$ es decreciente.

Demostración:

  1. Si $a>1$ y tomamos $x<y$ entonces $y-x>0$
    \begin{align*}
    &\Rightarrow a^{y-x}>1\\
    &\Rightarrow \frac{a^{y}}{a^{x}}>1\\
    &\Rightarrow a^{y}>a^{x}
    \end{align*}
  2. En cambio si $0<a<1$ y ahora consideramos $x<y$. Queremos probar que:
    $f(x)>f(y)$
    \begin{align*}
    x<y &\Rightarrow y-x>0\\
    &\Rightarrow a^{y-x}<1\\
    &\Rightarrow \frac{a^{y}}{a^{x}}<1\\
    &\Rightarrow a^{y}< a^{x}\\
    &\Rightarrow f(y)<f(x)
    \end{align*}

$\square$

Observación: Si $a>0$ y $a \neq 1$ entonces $f(x)=a^{x}$ es inyectiva.
Observación: $f(x)=a^{x}$ es sobreyectiva.

Ahora hablemos del número $e$

Si consideramos $a= e$ donde:
$$e=2.718282 \ldots$$
que es llamado el número de Euler.
Obtenemos la función:
$$f(x)=e^{x},$$
llamada función exponencial, ésta es quizá las más conocida de este tipo de funciones.

Su gráfica se ve del siguiente modo:

¿Y su función inversa?

Si tomas la función $f(x)=a^{x}$, la función identidad y reflejamos su gráfica, obtenemos que $f^{-1}$ se ve como:

Observamos que $f^{-1}$ esta definida como:
$$f^{-1}: (0, \infty) \rightarrow \r$$
que vemos también cumple ser inyectiva.
A $f^{-1}(x)$ la denotaremos por:
$$f^{-1}(x)= log_{a}(x).$$

Funciones logarítmicas

Definición (función logarítmica): Sea $g$ una función en los reales. Decimos que $g$ es una función logarítmica si:
$$g: (0, \infty) \rightarrow \r$$
$$g(x)=log_{a}(x)$$
donde $log_{a}(x)$ se lee como logaritmo base $a$ de $x$.
Notación:

  • Si tomamos $a=e$:
    $$log_{e}(x):= ln(x)$$
    llamado logaritmo natural de $x$.
  • Si tomamos $a=10$ escribiremos:
    $$log_{10}(x):= log(x)$$

Leyes de los logaritmos

Teorema (Leyes de los logaritmos): Sean $a \in (0, \infty)$ con $a\neq 1$, $x,y \in (0, \infty)$ y $r \in \r$. Tenemos que se cumplen las siguientes igualdades:

  1. $log_{a}(x \cdot y)=log_{a}(x)+log_{b}(y)$
  2. $r log_{a}(x)= log_{a}(x^{r})$
  3. $log_{a}(\frac{x}{y})= log_{a}(x)- log_{a}(y)$

Demostración:
Tomemos $log_{a}(x)=z $ y $log_{a}(y)=w$ y notemos que:
\begin{align*}
a^{z}&= x & a^{w}&=y
\end{align*}

  1. Para este punto consideremos el producto de $x$ con $y$:
    \begin{align*}
    x \cdot y &= a^{z}\cdot a^{w}\\
    &= a^{z+w}
    \end{align*}
    Así sustituyendo al logaritmo del producto tenemos:
    \begin{align*}
    log_{a}(x \cdot y)&= log_{a}(a^{z+w})\\
    &= z+w\\
    &=log_{a}(x)+ log_{a}(y)
    \end{align*}
  2. Ahora si elevamos $a^{z}=x$ a la $r$ obtenemos:
    $$(a^{z})^{r}= x^{r} \Rightarrow a^{rz}=x^{r}$$
    Tomando el $log_{a}(x^{r})$ se sigue:
    \begin{align*}
    log_{a}(x^{r})&= log_{a}(a^{rz})\\
    &= rz\\
    &=r log_{a}(x)
    \end{align*}
  3. Por último veamos que:
    $$x=\frac{x}{y}\cdot y$$
    Tomando lo anterior y aplicando logaritmo:
    \begin{align*}
    log_{a}(x)&= log_{a}\left(\frac{x}{y}\cdot y \right)\\
    &= log_{a}\left(\frac{x}{y }\right)+ log_{a}(y)
    \end{align*}
    Reacomodando obtenemos:
    $$log_{a} \left(\frac{x}{y}\right)= log_{a}(x)- log_{a}(y)$$

$\square$

Cambio de base de logaritmos

Proposición (Cambio de base): Consideremos $a,b \in (0, \infty)$ donde $a\neq 1, b \neq 1$, $x \in \r$ y $y>0$. Se cumplen las siguientes propiedades:

  1. $a^{x}=b^{x log_{b}(a)}$
  2. $log_{a}(y)=\frac{log_{b}(y)}{log_{b}(a)}$

Demostración:

  1. Si aplicamos la segunda ley de los logaritmos en la siguiente igualdad y simplificamos tenemos:
    \begin{align*}
    b^{x log_{b}(a)}&= b^{log_{b}(a^{x})}\\
    &= a^{x}.
    \end{align*}
  2. Como $y>0$ entonces podemos considerar $x=log_{a}(y)$. Así sustituyendo en el punto 1:
    \begin{align*}
    a^{log_{a}(y)}&= b^{log_{a}(y)log_{b}(a)}.
    \end{align*}
    De lo anterior tenemos:
    $$y=b^{log_{a}(y)log_{b}(a)}.$$
    Tomando el logaritmo base $b$ en ambos lados de la igualdad:
    \begin{align*}
    log_{b}(y)&= log_{b}(b^{log_{a}(y)log_{b}(a)})\\
    &= log_{a}(y)\cdot log_{b}(a)
    \end{align*}
    $$\therefore \quad log_{a}(y)=\frac{log_{b}(y)}{log_{b}(a)}.$$

$\square$

Ejercicio

Resuelve la ecuación:
\begin{equation*}
log_{4}(log_{3}(log_{2}(x)))=0.
\end{equation*}
Solución:
Comenzaremos realizando un cambio de variable considerando:
$$\beta =log_{3}(log_{2}(x)).$$
Por lo que tendríamos:
\begin{equation*}
log_{4}(\beta)=0.
\end{equation*}
Lo anterior implica que:
\begin{equation*}
4^{log_{4}(\beta)}=4^{0}=1.
\end{equation*}
$$\therefore \beta = 1$$
$$\therefore log_{3}(log_{2}(x))=1$$
Procedemos con un razonamiento similar para $log_{3}(log_{2}(x))=1$:
\begin{equation*}
3^{log_{3}(log_{2}(x))}=3^{1}=3.
\end{equation*}
Por lo que concluimos:
$$log_{2}(x)=3.$$
Finalmente, de $log_{2}(x)=3$ obtenemos:
\begin{equation*}
2^{log_{2}(x)}=2^{3}=8.
\end{equation*}
Así tenemos que el valor para $x$ sería:
$$x=8.$$

Realizando la comprobación vemos que se cumple:
\begin{align*}
log_{4}(log_{3}(log_{2}(x)))&=log_{4}(log_{3}(log_{2}(8)))\\
&=log_{4}(log_{3}(3))\\
&=log_{4}(1)\\
&=0
\end{align*}
$$\therefore log_{4}(log_{3}(log_{2}(x)))=0.$$

Más adelante

Ahora que hemos terminado la unidad de funciones, en la próxima entrada comenzaremos con la unidad dedicada al estudio de un tipo especial de funciones: las sucesiones de números reales. Encontrarás una introducción intuitiva sobre el concepto de sucesión para luego pasar a su definición formal y una serie de ejemplos.

Tarea moral

  • Demuestra el punto 3 de la Proposición.
  • Grafica las siguientes funciones:
    • $f(x)=ln(x-2)$
    • $f(x)=1-e^{x}$
  • Demuestra que dado $a \in (0, \infty)- \left\{1 \right\}$:
    \begin{equation*}
    log_{\frac{1}{a}}(x)=-log_{a}(x)
    \end{equation*}
  • Resuelve los siguientes ejercicios:
    • $log_{2}(log_{3}(log_{2}(x)))=1$
    • $log_{16}(x)+log_{4}(x)+log_{2}(x)=7$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Funciones trigonométricas (Parte 2)

Por Karen González Cárdenas

Introducción


Ahora que hemos comenzado a revisar las funciones trigonométricas de seno y coseno, en esta entrada veremos las funciones tangente, cotangente, secante y cosecante. De igual manera, revisaremos las funciones inversas y su representación gráfica.

Hablemos de la tangente y la cotangente

Recordemos de la entrada anterior las definiciones:

\begin{align*}
tan(\theta)&=\frac{sen(\theta)}{cos(\theta)} & cot(\theta)&=\frac{cos(\theta)}{sen(\theta)}
\end{align*}

Para la función tangente tenemos que su gráfica se vería como:

Observación: La tangente presenta asíntotas en los valores $x=\frac{k \pi}{2}$ con $k \in \mathbb{Z}$.

Y su rama principal la consideramos definida en el dominio:
$$tan: \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \rightarrow \r$$

Y para la función cotangente su gráfica sería:

Observación: La cotangente presenta asíntotas en los valores $x=k \pi$ con $k \in \mathbb{Z}$.

Para esta función consideraremos como su rama principal en el siguiente dominio:
$$cot: (0,\pi) \rightarrow \r$$.

Ahora la secante y la cosecante

Ya vimos que están definidas como:
\begin{align*}
sec(\theta)&= \frac{1}{cos(\theta)} & csc(\theta)&= \frac{1}{sen(\theta)}.
\end{align*}

Comencemos con la gráfica para la función secante:

Observación: La secante presenta asíntotas en los valores $x=\frac{k \pi}{2}$ con $k \in \mathbb{Z}$.

Notemos que esta función se encuentra definida sobre cada cresta y por debajo de cada valle de la función $cos(\theta)$:

Tomaremos como domino donde la función es invertible a:
$$D= \left[0, \frac{\pi}{2} \right) \cup \left(\frac{\pi}{2},\pi \right].$$

Para la función cosecante vemos que se encuentra definida sobre cada cresta y por debajo de cada valle de la función $sen(\theta)$:

Observación: La cosecante presenta asíntotas en los valores $x=k \pi$ con $k \in \mathbb{Z}$.

Para esta función consideraremos al dominio donde es invertible a:
$$D= \left[-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right].$$

¿Quiénes son las funciones inversas?

Para poder visualizar las gráficas de cada una de las funciones trigonométricas utilizaremos el método descrito previamente de reflejar la gráfica de la función respecto de la función identidad en el dominio donde es biyectiva o invertible.

Comenzaremos con la inversa de la función $f(x)=sen(x)$ en el dominio $D_{f}=\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$:

A $f^{-1}(x)$ la llamaremos arcoseno de $x$:
$$f^{-1}(x)=arcsen(x),$$
geométricamente esta función nos da el arco cuyo seno es $x$ valor.

Procederemos de la misma manera con $g(x)=cos(x)$ en el dominio $D_{g}=[0,\pi]$:

Ahora a $g^{-1}$ la llamaremos arcocoseno de $x$:
$$g^{-1}(x)=arccos(x)$$
y su interpretación geométrica sería el arco cuyo coseno es el valor $x$.

Dejaremos como ejercicio de Tarea moral realizar la gráfica para la función inversa de $h(x)= tan(x)$ en el dominio $D_{h}= \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$:
$$h^{-1}(x)= arctan(x),$$
la función arcotangente nos da el arco cuya tangente es el valor $x$.

Más adelante

En la siguiente entrada veremos al conjunto de funciones exponenciales y logarítmicas, sus representaciones gráficas, la relación que existe entre ellas y algunos resultados que cumplen, como las leyes de los exponentes y las leyes de los logaritmos.

Tarea moral

  • Obtener la gráfica de las siguientes funciones:
    • $f(x)=-tan(x)$
    • $f(x)=-2sec(x)+1$
    • $f(x)=arctan(x)$
    • $f(x)=3-csc(x)$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior I: Relaciones de equivalencia y clases de equivalencia

Por Guillermo Oswaldo Cota Martínez

Introducción

Siguiendo la revisión de algunas relaciones de un conjunto en sí mismo, ahora vamos a hablar de un tipo especial de relaciones, que se llamarán de equivalencia. Este es un concepto que aparece frecuentemente en las matemáticas y es un tipo de relación que permite «agrupar» distintos elementos de un conjunto según alguna propiedad que tengan.

Relación de equivalencia

La relación que veremos en esta entrada es la de equivalencia. Para entender propiedades de este tipo de relaciones, consideremos al conjunto de todas las personas $X$ y la relación $\sim$ como:$$\sim = \{(x,y) \in X^2:x\text{ tiene el mismo cumpleaños que }y\}.$$ Y como es costumbre, escribiremos $x \sim y$ si $(x,y) \in \sim$. Esta relación será de equivalencia, y antes de definirla, vamos a hacer algunas observaciones de ella.

Observa que este tipo de relación nos permite «agrupar» a las personas según su cumpleaños, pues al haber $365$ días en el año, cada persona $x$ tendrá su cumpleaños en alguno de esos días. Nota que podríamos hablar de «el subconjunto» de $X$ formado de las personas las cuales cumplen años el $14$ de febrero, y esto lo haríamos con ayuda de la relación $\sim$, pues considerando alguna persona $x$ que cumpla años ese día, podríamos considerar a todas las personas $y$ tales que $x \sim y$. Y todas las personas que estén relacionadas con $x$, serán las que tienen su cumpleaños ese día. Retomaremos esta idea de las «agrupaciones» más adelante, lo importante ahora es que veas que este tipo de relaciones (aún no hemos dicho qué significa que sea de equivalencia o porqué esta es una relación de equivalencia) nos permiten «agrupar» elementos de un conjunto según los elementos que se relacionan entre sí.

Ahora, veamos algunas propiedades que tiene esta relación que la hará de equivalencia:

  • $\sim$ es reflexiva. Nota que toda persona $x$ cumple el mismo día años que la persona $x$. Esto es porque estamos hablando de la misma persona.
  • $\sim$ es simétrica. Considera dos personas $x,y$ relacionadas ($x \sim y$). Entonces es cierto que $x$ tiene el mismo cumpleaños que $y$. Pero también es cierto que $y$ tiene el mismo cumpleaños que $x$, de esta manera $y \sim x$.
  • $\sim$ es transitiva. Ahora supón que $x \sim y$ y que $y \sim z$. Entonces es cierto que $x$ y $y$ comparten cumpleaños, pero como $y \sim z$ entonces $z$ tiene el mismo cumpleaños que $y$ y esto solo puede significar que $x$ tiene el mismo cumpleaños que $z$, pues no puede suceder que $y$ tenga dos cumpleaños distintos.

Estas son las propiedades que decimos que cumple una relación de equivalencia.

Definición. Sea $X$ un conjuntos y $\sim$ una relación de $X$ en sí mismo. Diremos que $\sim$ es una relación de equivalencia si $\sim$ es reflexiva, simétrica y transitiva.

Este es un concepto que se aparecerá muchas veces en distintas áreas de las matemáticas, veamos a continuación algunos ejemplos de relaciones de equivalencia, no importa que ahora no sepas muy bien qué son estos conceptos, lo importante es que veas que aparecen en distintas áreas de las matemáticas:

  1. En $\mathbb{R}$, la relación $x \sim y \Leftrightarrow |x|=|y|$ es de equivalencia.
  2. Si $X=\{a,b,c\}$ y $\sim=\{(a,a),(b,b),(a,b),(b,a),(c,c)\}$, entonces $\sim$ es una relación de equivalencia.
  3. En el espacio de matrices reales $M_{2\times 2}(\mathbb{R})$, la siguiente es una relación de equivalencia: $A \sim B \Leftrightarrow \exists \lambda \in \mathbb{R}, \lambda \neq 0(A = \lambda B)$.
  4. En espacios topológicos, la relación $X \sim Y \Leftrightarrow X \text{ es homeomorfo a } Y$ es una relación de equivalencia.
  5. La congruencia entre triángulos, es una relación de equivalencia.
  6. Diremos que un número entero $x$ es congruente con $y$ módulo $n$ si el residuo de dividir $x$ entre $n$ es el mismo que el residuo de dividir $y$ entre $n$ y lo escribiremos como $x \equiv_n y$. $\equiv_n$ es una relación de equivalencia.

Algunos ejemplos de relaciones que no son de equivalencia:

  1. La relación «ser menor o igual» en números enteros $\leq$ no es de equivalencia.
  2. La relación «ser padre/madre de» no es una relación de equivalencia.
  3. Si $X=\{a,b,c\}$ y $\sim=\{(a,a),(a,b),(b,a),(c,c)\}$, entonces $\sim$ no es de equivalencia.

Clases de equivalencia

Volvamos al ejemplo de la relación $\sim$ «tener el mismo cumpleaños». Ahora veremos porqué desde el principio hemos dicho que las relaciones de equivalencias nos ayudan a «agrupar» elementos de un conjunto de acuerdo a los elementos que se relacionan con él. Considera de nuevo el ejemplo de las personas que cumplen años el $14$ de febrero. La relación $\sim$ nos ayuda a encontrar a todas las personas que cumplen años ese día. Pues solo tendríamos que considerar una persona que cumpla años ese día y enseguida encontrar todas las personas que se relacionan con esta persona. Claramente este grupo, será distinto al grupo de personas que cumple años el $17$ de Junio, y a su vez estos do serán distintos al grupo de personas que cumplen el $10$ de Enero. En total podríamos «partir» el conjunto de personas $X$ en $365$ grupos de acuerdo al día en que cumplen años.

Si partimos de una persona $x$, entonces podemos considerar el conjunto $$[x]_{\sim}=\{y \in X: x \sim y\}.$$ Este conjunto representa a todas las personas que tienen el mismo cumpleaños que $x$, y recordando lo que dijimos en el párrafo anterior, si $x$ cumple el $14$ de febrero, entonces $[x]_{\sim}$ es el conjunto de personas que cumplen años ese día. Pues con esto en mente, hemos llegado al siguiente concepto: clase de equivalencia.

Definición. Sea $\sim$ una relación de equivalencia en $X$ y $x \in X$. La clase de equivalencia de $x$ es: $$[x]_{\sim}=\{y \in X: x \sim y\}.$$

Algunas veces cuando estemos hablando de una relación de equivalencia $\sim$ y no haya ambigüedad en qué relación de equivalencia estemos hablando, es común únicamente escribir $[x]$ para la clase de equivalencia del elemento $x$ en lugar de escribir $[x]_\sim$.

Veamos a continuación algunas propiedades que tienen estas clases de equivalencia que nos permiten asegurar que «parten» un conjunto agrupando sus elementos en distintos subconjuntos.

Proposición. Sea $\sim$ una relación de equivalencia en $X$ y $x,y \in X$. Son equivalentes:

  1. $x \sim y$
  2. $[x]=[y]$
  3. $[x] \cap [y] \neq \emptyset$

Demostración.

$(1) \Rightarrow (2)$ Para demostrar la igualdad entre conjuntos, demostraremos que cada clase equivalencia está contenida en la otra.

$\subset )$ Sea $w \in [x]$. Por definición del conjunto, $w \sim x$ y por hipótesis, $x \sim y$. Ahora, como $\sim$ es de equivalencia, entonces $w \sim y$. De esta forma, $w \in [y]$.

$\supset )$ De manera análoga a la contención anterior, si $w \in [y]$ entonces $w \sim y \land w \sim x$ de manera que $w \in [x]$.

$(2) \Rightarrow (3)$. Notemos que si $[x]=[y]$ entonces $[x] \cap [y]=[x]$ y $x \in [x]$, de esta manera, la intersección no es vacía.

$(3) \Rightarrow (1)$. Como $[x] \cap [y] \neq \emptyset$ entonces existe un elemento $w \in [x] \cap [y]$. De esta forma $x \sim w \land y \sim w$. Como $\sim$ es una relación de equivalencia, entonces $x \sim y$.

$\square$

Corolario. Sea $\sim$ una relación de equivalencia en $X$ y $x,y \in X$. Entonces $[x]=[y] \lor [x] \cap [y] = \emptyset.$

Demostración. Sean $x,y$ dos elementos de $X$. Entonces tenemos dos casos para $x,y$.

Caso 1) $x \sim y$. En este caso, por la proposición anterior, $[x]=[y]$.

Caso 2) $x \not \sim y$. Notemos que en este caso $[x]\cap [y]= \emptyset$, pues si no fuera cierto, la intersección no sería vacía y por la proposición anterior, esto significaría que $x \sim y$, contradiciendo la hipótesis de este caso.

$\square$

Particiones

El siguiente concepto nos permite hablar de «partir» un conjunto en distintos subconjuntos. En términos simples, una partición será una forma de dividir un conjunto en subconjuntos que no comparten elementos en común entre sí. Por ejemplo, considera a los números enteros. Podemos dividir el conjunto en dos particiones: el de los número pares y el de los impares. Denotemos al conjunto de los números pares como $P$ y al de los impares como $I$ entonces:

  • $P \cap I=\emptyset$
  • $P \cup I = \mathbb{Z}$

Entonces podemos observar algunos puntos para definir qué es una partición:

  • Cada uno de los subconjuntos que forman la partición son no vacíos. Nota que tanto $P$ como $I$ tienen al menos un elemento.
  • La intersección entre cada una de los subconjuntos de la partición es vacía. Esto significa que las particiones no comparten elementos, en el ejemplo, es claro que ningún número par es impar y viceversa.
  • La unión de los subconjuntos de la partición forman de nuevo el conjunto. Esto significa que todo elemento del conjunto pertenece a una única partición, en nuestro ejemplo esto significa que cualquier número entero es impar o es par, no ambos al mismo tiempo.

Estas son las tres propiedades que pediremos para definir una partición.

Definición. Sea $X$ un conjunto y $F = \{X_i\}_{i \in \mathcal{F}}$ una colección de subconjuntos, entonces diremos que $F$ es una partición de $X$ si:

  • Para cada $X_i \in F, X_i \neq \emptyset$.
  • Para $X_i,X_j \in F$ dos subconjuntos distintos, $X_i \cap X_j = \emptyset$.
  • $\bigcup F = X$

Resulta que esta definición no es al azar, pues cada relación de equivalencia induce una partición.

Proposición. Sea $\sim$ una relación de equivalencia sobre un conjunto $X$. Entonces las distintas clases de equivalencia forman una partición.

Demostración. Denotemos a $P$ como el conjunto de todas las clases de equivalencia de $X$, es decir $$P = \{[x]: x \in X\}$$. Ahora demostraremos que $P$ es una partición. Para ello, notemos que:

  1. Cada elemento de la partición $P$ es distinta al vacío. Observemos que si $[x] \in P$ entonces existe al menos un elemento en esa clase de equivalencia, de manera explícita, $x \in [x]$.
  2. Si $[x], [y] \in P$ son dos clases distintas, entonces $[x] \cap [y]$ es vacía. Este punto sale directamente del corolario demostrado anteriormente, pues $[x]=[y]$ o $[x] \cap [y]=\emptyset$.
  3. $\bigcup P = X$. De manera clara sucede que $\bigcup P \subset X$, pues cada elemento de $P$ es un subconjunto de $X$, y la unión de subconjuntos de un conjunto siempre está contenida en el conjunto. Para demostrar que $X \subset \bigcup P$, notemos que si $x \in X$, entonces $x \in [x]$ y $[x] \in P$, de esta manera, $x \in \bigcup P$.

De esta manera, $P$ es una partición.

$\square$

Este concepto de relaciones de equivalencia aparece muy seguido en distintas ramas de las matemáticas, será importante conforme avances en tu carrera del área matemática, pues muchas veces será útil ver que algunas relaciones son de equivalencias de manera en que sabremos que son particiones y podremos ver el conjunto en sus distintas partes de acuerdo a la relación.

Más adelante…

En la siguiente entrada volveremos a hablar de relaciones entre conjuntos que en un inicio, no deben ser el mismo. Y el siguiente tipo de relación será fundamental, pues es el concepto de función entre dos conjuntos. No solo aparecerá aquí, sino que es una base para hablar en otras materias como en cálculo, geometría, entre otras.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que la relación «ser igual a» $=$ en $\mathbb{Z}^2$ es una relación de equivalencia.
  2. Demuestre que la relación «ser menor o igual» en números enteros no es una relación de equivalencia.
  3. Demuestra que cualquier orden parcial no es una relación de equivalencia.
  4. Demuestra que si $x \in [y]_{\sim} \Leftrightarrow [x]_{\sim}=[y]_{\sim}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Geometría Moderna I: Ángulos en la circunferencia

Por Rubén Alexander Ocampo Arellano

Introducción

Dados un ángulo y una circunferencia nos podemos preguntar si podemos calcular la magnitud del ángulo dado con algún ángulo que tenga como vértice el centro de la circunferencia dada. En esta entrada estudiaremos algunos resultados que nos permitirán establecer dicha relación.

Definición 1. Un ángulo central en una circunferencia es un ángulo formado por dos radios.

Denotamos a una circunferencia con centro en $O$ como $\Gamma (O)$.

Ángulo inscrito

Definición 2. Decimos que un segmento es una cuerda de una circunferencia si sus extremos pertenecen a la circunferencia y el segmento no contiene al centro de la circunferencia, si contiene al centro entonces es un diámetro.

Un ángulo inscrito en una circunferencia es un ángulo formado por dos cuerdas o una cuerda y un diámetro que tienen un extremo en común sobre la circunferencia.

Teorema 1, de la medida del ángulo inscrito. Un ángulo inscrito en una circunferencia es igual a la mitad del ángulo central que abarca el mismo arco de circunferencia.

Demostración. Sea $\angle CBA$ un ángulo inscrito en $\Gamma (O)$.

Caso 1. $BC$ es diámetro, entonces $\triangle AOB$ es isósceles y por tanto $\angle BAO = \angle CBA$.

Figura 1

Como $\angle COA$ es un ángulo exterior de $\triangle AOB$ entonces es igual a la suma de los ángulos interiores no adyacentes a él,
$\Rightarrow \angle COA = \angle CBA + \angle BAO = 2\angle CBA$
$\Rightarrow \angle CBA = \dfrac{\angle COA}{2}$.

Caso 2. Ambos lados del ángulo son cuerdas, trazamos el diámetro $BO$ y consideramos $D = BO \cap \Gamma (O)$.

Si $AB$ y $BC$ están en un mismo lado respecto de $BD$ (izquierda figura 2), entonces
$\angle CBA = \angle DBA – \angle DBC$ y por el caso 1,
$\Rightarrow \angle CBA = \dfrac{\angle DOA}{2} – \dfrac{\angle DOC}{2} = \dfrac{\angle COA}{2}$.

Figura 2

Si $AB$ y $BC$ están en lados distintos respecto de $BD$ (derecha figura 2), entonces
$\angle CBA = \angle CBD + \angle DBA$ y por el caso 1,
$\Rightarrow \angle CBA = \dfrac{\angle COD}{2} + \dfrac{\angle DOA}{2} = \dfrac{\angle COA}{2}$.

$\blacksquare$ 

Ángulo semiinscrito

Definición 3. Decimos que una recta es tangente a una circunferencia en un punto si la recta es perpendicular al radio que pasa por el punto.  

Definición 4. Decimos que un ángulo es semiinscrito en una circunferencia, si el ángulo está formado por una recta tangente a la circunferencia y una cuerda que tiene como extremo el punto de tangencia.

Teorema 2, de la medida del ángulo semiinscrito. Un ángulo semiinscrito en una circunferencia es igual a la mitad del ángulo central que abarca el mismo arco de circunferencia.

Demostración. Sea $\angle CBA$ un ángulo inscrito en $\Gamma (O)$, con $AB$ tangente a $\Gamma (O)$ en $B$, consideremos $D = BO \cap \Gamma (O)$.

Figura 3

$\angle DBC$ es inscrito, por el teorema 1, $\angle DBC = \dfrac{\angle DOC}{2}$
$\Rightarrow \angle CBA = \angle DBA – \angle DBC = \dfrac{\pi}{2} – \dfrac{\angle DOC}{2}$
$= \dfrac{\angle DOB}{2} – \dfrac{\angle DOC}{2} = \dfrac{\angle COB}{2}$.

Por otro lado, consideremos $A’ \in AB$ pero del lado opuesto a $A$ respecto de $B$, entonces,
$\angle A’BC = \angle ABD + \angle DBC = \dfrac{\pi}{2} + \dfrac{\angle DOC}{2}$
$= \dfrac{\angle BOD}{2} + \dfrac{\angle DOC}{2} = \dfrac{\angle BOC}{2}$.

$\blacksquare$ 

Ángulo interior

Definición 5. Si el vértice de un ángulo está en el interior de una circunferencia decimos que el ángulo es interior a la circunferencia.

Teorema 3, de la medida del ángulo interior. Un ángulo interior a una circunferencia es igual a la semisuma del ángulo central que abarca el mismo arco que el ángulo interior y del ángulo central que abarca el mismo arco que el opuesto por el vértice.

Demostración.  Sea $\angle ABC$ un ángulo interior a $\Gamma (O)$ con $A$, $C \in \Gamma (O)$, consideremos $A’ = AB \cap \Gamma (O)$ y $C’ = CB \cap \Gamma (O)$.

Figura 4

Como $\angle ABC$ es un ángulo exterior de $\triangle A’BC$ es igual a la suma de los ángulos interiores no adyacentes a él, además $\angle AA’C$ y  $\angle A’CC’$ son inscritos y por el teorema 1,
$\Rightarrow \angle ABC = \angle AA’C + \angle A’CC’ = \dfrac{\angle AOC + \angle A’OC’}{2}$.

$\blacksquare$ 

Ángulo exterior (lados secantes)

Definición 6. Una recta secante a una circunferencia es una recta que la interseca en dos puntos distintos.

Definición 7. Decimos que un ángulo es exterior a una circunferencia si su vértice se encuentra fuera de la circunferencia y los lados que forman el ángulo son tangentes o secantes a la circunferencia.

Teorema 4, de la medida del ángulo exterior. Un ángulo exterior a una circunferencia es igual a la mitad de la diferencia de los ángulos centrales que abarcan arcos cuyos extremos son las intersecciones de cada lado del ángulo con la circunferencia.

Caso 1. Ambos lados del ángulo son secantes a la circunferencia.

Demostración. Sea $\angle BAC$ un ángulo exterior a $\Gamma (O)$.

Supongamos que $B$, $C \in \Gamma (O)$ y consideremos $B’ = AB \cap \Gamma (O)$ y $C’ = AC \cap \Gamma (O)$.

Veamos primero el caso particular en el que $CC’$ es diámetro entonces $\angle BC’C$ es un ángulo exterior de $\triangle AC’B$, por tanto,
$\angle BC’C = \angle A + \angle C’BB’$

Figura 5

Como $\angle BC’C$ y $\angle C’BB’$ son ángulos inscritos, por el teorema 1,
$\Rightarrow \angle A = \angle BC’C – \angle C’BB’ = \dfrac{\angle BOC – \angle C’OB’}{2}$.

Para el caso general sean $D$ y $E$ las intersecciones de $AO$ con $\Gamma (O)$.

Si $B$ y $C$ están en lados distintos respecto de $DE$ (izquierda figura 6), entonces
$\angle A = \angle BAE + \angle EAC$, y por el caso particular,
$\Rightarrow \angle BAE = \dfrac{\angle BOE – \angle DOB’}{2}$ y $\angle EAC = \dfrac{\angle EOC – \angle C’OD}{2}$
$\Rightarrow \angle A = \dfrac{\angle BOE + \angle EOC – (\angle C’OD + \angle DOB’)}{2} = \dfrac{\angle BOC – \angle C’OB’}{2}$.

Figura 6

Si $B$ y $C$ están en el mismo lado respecto de $DE$ (derecha figura 6), entonces
$\angle BAC = \angle BAE – \angle CAE$ y por el caso particular, 
$\angle BAE = \dfrac{\angle BOE – \angle DOB’}{2}$ y $\angle CAE = \dfrac{\angle COE – \angle DOC’}{2}$
$\Rightarrow \angle A = \angle BAC = \dfrac{(\angle BOE – \angle COE) – (\angle DOB’ – \angle DOC’)}{2} = \dfrac{\angle BOC – \angle C’OB’}{2}$.

$\blacksquare$ 

Ángulo exterior (lados tangentes)

Caso 2. Ambos lados del ángulo son tangentes a la circunferencia.

Demostración. Sea $\angle BAC$ un ángulo exterior a $\Gamma (O)$.

Supongamos que $B$, $C \in \Gamma (O)$ y consideremos $D$ y $E$ las intersecciones de $AO$ con $\Gamma (O)$.

Figura 7

Como $\angle BDE$ y $\angle EDC$ son ángulos exteriores de $\triangle ADB$ y $\triangle ADC$ respectivamente, entonces
$\angle BDE = \angle BAD + \angle DBA$ y $\angle EDC = \angle DAC + \angle ACD$
$\Rightarrow \angle A = \angle BAD + \angle DAC = (\angle BDE – \angle DBA) + (\angle EDC – \angle ACD)$
$ = (\angle BDE + \angle EDC) – (\angle ACD + \angle DBA) = \angle BDC – (\angle ACD + \angle DBA)$

$\angle ACD$ y $\angle DBA$ son ángulos semiinscritos y $\angle BDC$ es un ángulo inscrito, por los teoremas 1 y 2 tenemos
$\angle ACD = \dfrac{\angle COD}{2}$, $\angle DBA = \dfrac{\angle DOB}{2}$ y $\angle BDC = \dfrac{\angle BOC}{2}$,  
$\Rightarrow \angle A = \dfrac{\angle BOC – (\angle COD + \angle DOB)}{2} = \dfrac{\angle BOC – \angle COB}{2}$.

$\blacksquare$ 

Caso 3. Un lado del ángulo es tangente a la circunferencia y el otro es secante.

La demostración de este caso queda como ejercicio.

Ejemplos

Proposición 1. Dos ángulos ya sean inscritos o semiinscritos que abarcan el mismo arco de circunferencia son iguales.

Demostración. Por los teoremas 1 y 2, un ángulo inscrito y un ángulo semiinscrito son iguales a la mitad del ángulo central que abarca el mismo arco, si dos ángulos abarcan el mismo arco entonces el ángulo central es el mismo para ambos y por transitividad son iguales.

$\blacksquare$ 

Figura 8

Teorema 5, de Tales. Sean $A$, $B$ y $C$ puntos distintos en una circunferencia entonces $BC$ es diámetro si y solo si $A$ es un ángulo recto.

 Demostración. Sea $\Gamma (O)$ la circunferencia a la que pertenecen $A$, $B$ y $C$, el resultado se sigue del hecho de que el ángulo central que abarca el mismo arco que $\angle A$ es $\angle BOC$ y aplicar el teorema del ángulo inscrito.

$\blacksquare$ 

Figura 9

Problema. Dado un círculo $\Gamma$ construir su centro.

Solución. Construimos dos ángulos rectos inscritos en la circunferencia, tomando dos puntos distintos como vértice.

Por el teorema de Tales, las intersecciones de los lados de cada ángulo formaran dos diámetros distintos de la circunferencia y su intersección será el centro de la circunferencia.

$\blacksquare$ 

Figura 10

Proposición 2. Las rectas tangentes trazadas desde un punto exterior a una circunferencia son iguales.

Demostración. Sean $\Gamma (O)$ y $A$ un punto exterior, por $A$ trazamos $AB$ y $AC$ tangentes a $\Gamma (O)$ en $B$ y en $C$ respectivamente (figura 7).

Consideremos los radios $OB$ y $OC$ entonces $OB = OC$, y por definición de tangencia, $OB \perp AB$ y $OC \perp AC$.

Los triángulos rectángulos $\triangle AOB$ y $\triangle AOC$ tienen a $AO$ como lado en común, por criterio de congruencia hipotenusa-cateto $\triangle AOB \cong \triangle AOC$, por tanto, $AB = AC$.

$\blacksquare$ 

Más adelante…

Apoyándonos de los resultados vistos aquí, en la siguiente entrada daremos una caracterización de arco de circunferencia y veremos la circunferencia de Apolonio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean $A$ y $C$ dos puntos fijos en una circunferencia, muestra que para cualesquiera dos puntos $B$ y $D$ en la misma circunferencia se tiene que $\angle ABC = \angle ADC$ o $\angle ABC$ y $\angle CDA$ son suplementarios.
  2.  Prueba que una recta es tangente a una circunferencia si y solo si la recta y la circunferencia tienen un solo punto en común.
  3. Demuestra el teorema 4 en el caso en el que el un lado del ángulo exterior es secante a la circunferencia y el otro es tangente, es decir, en la figura 11 muestra que
    $\angle BAC = \dfrac{\angle BOC – \angle COD}{2}$.
Figura 11
  1. Dados una circunferencia y un punto fuera de ella, construye las rectas tangentes a la circunferencia dada trazadas desde el punto dado.
  2. Sean $\triangle ABC$, $K$ la intersección de la altura trazada desde $A$ con el circuncírculo de $\triangle ABC$ y $H$ el ortocentro de $\triangle ABC$, muestra que $BC$ biseca a $HK$.
Figura 12

Entradas relacionadas

Fuentes

  • Santos, J., Tesis Geometría del Cuadrilátero. 2010, pp 133-140.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 34-40.
  • Wikipedia
  • Geometría interactiva

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»