Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Analítica I: Matrices y funciones lineales

Por Paola Berenice García Ramírez

Introducción

En la entrada anterior vimos funciones lineales, un concepto fundamental y que sin él no podríamos definir formalmente al conjunto de las matrices en $\mathbb{R}^n$. Requerimos ver cómo los conceptos de función lineal y el de matriz se entrelazan; para comprender porqué a menudo se trabaja más con matrices asociadas a una función lineal cuando hablamos de transformaciones.

Matrices

Previo a la definición de nuestro interés en esta sección debemos recordarles quiénes son lo vectores canónicos de $\mathbb{R}^n$, ya que vamos a trabajar con ellos en esta entrada. Los vectores canónicos son aquellos formados por sólo una entrada igual a 1 y el resto de entradas son todas cero. Se denotan por $e_i$, donde $i=\{1,2,\cdots,n\}$ y el subíndice $i$ nos indica la posición de la entrada con 1.

Ejemplo. Si nos encontramos en $\mathbb{R}^3$, sus vectores canónicos son:

\begin{align*}
e_{1}&=(1,0,0),& e_{2}&=(0,1,0),& e_{3}&=(0,0,1).
\end{align*}

A continuación tomaremos una función lineal $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, donde $f(e_{1})=(4,3)$ y $f(e_{2})=(-1,2)$. Entonces $f$ se escribe como:

\begin{align*}
f(x,y) &= x(4,3) + y(-1,2)\\
&= (4x – y, 3x+2).\\
\end{align*}

Vemos que hay una clara desventaja en la forma en que representamos a $f$, porque podemos confundirnos al ordenar y separar comas. Si ahora consideramos a los vectores como columnas en lugar de filas, el reordenamiento será de la siguiente manera:

\[ f \left(\begin{array}{c}
x\\
y
\end{array} \right) = x \left(\begin{array}{c}
4\\
3
\end{array} \right) + y \left(\begin{array}{c}
-1\\
2
\end{array} \right) = \left(\begin{array}{c}
4x-y\\
3x+2y
\end{array} \right)\]

con lo cual, incluso ya no ocupamos las comas y el orden es más fácil. En consecuencia debemos definir esta notación.

Definición 1. Una matriz de orden o dimensión de $m \times n$ es una tabla con elementos con $m$ filas y $n$ columnas. Usualmente las matrices se representan con letras mayúsculas como $A, B, \cdots, etc$.

Definición 2. Un elemento o entrada de la matriz se designa mediante $a_{ij}$, donde el primer subíndice $i$ indica la fila en que se encuentra el elemento, mientras que el segundo subíndice $j$ es la columna en que lo encontramos.

Entonces una matriz de $m\times n$ es de la forma:

\[ A = \left(\begin{array}{cccc}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\ddots&\vdots\\
a_{m1}&a_{m2}&\cdots&a_{mn}
\end{array} \right).\]

Ejemplo. Como ejemplos de matrices tenemos a

\[ B= \left(\begin{array}{ccc}
2&3&4\\
6&-5&3\\
\end{array} \right), \hspace{1.5cm} C= \left(\begin{array}{ccc}
1&4&6\\
2&3&11\\
-7&4&8
\end{array} \right),\]

donde la matriz $B$ es de dimensión $2\times 3$, ya que tiene 2 filas y 3 columnas; mientras que $C$ es de dimensión $3\times 3$, con 3 filas y 3 columnas.

Deseamos que conozcan otra forma de definir a una matriz $A$ que nos será muy útil. A una matriz $A$ podemos verla como un conjunto ordenado de $n$ vectores en $\mathbb{R}^n$; esos vectores serán sus columnas, y entonces puede escribirse como:

\begin{equation*}
A = (u_1,u_2, \cdots, u_n),
\end{equation*}

donde

\[ u_i = \left(\begin{array}{c}
a_{1i}\\
a_{2i}\\
\vdots\\
a_{mi}
\end{array} \right) \in \mathbb{R}^m, \]

con $i=1,2,\cdots,n$.

Como escribiremos a los vectores en $\mathbb{R}^n$ como vectores columna y no como filas, entonces debemos tener otra notación que justifique dicho cambio.

Transpuesta de una matriz

Definición 3. La transpuesta de una matriz $A$ de dimensión $m \times n$ es una matriz $B$ de dimensión $n \times m$, que obtenemos después de intercambiar filas y columnas. De manera que los elementos cumplen

\begin{equation*}
b_{ij} = a_{ji},
\end{equation*}

donde $i=1,2,\cdots,m$ y $j=1,2,\cdots,n$. En general, se le denota a la transpuesta de $A$ por $A^T$.

Ejemplo. Vamos a escribir de nuevo las matrices del ejemplo anterior con sus respectivas transpuestas. Para la matriz $B$

\[ B= \left(\begin{array}{ccc}
2&3&4\\
6&-5&3\\
\end{array} \right),\]

su transpuesta $B^T$ es

\[ B^T = \left(\begin{array}{cc}
2&6\\
3&-5\\
4&3
\end{array} \right). \]

Y para la matriz $C$

\[ C= \left(\begin{array}{ccc}
1&4&6\\
2&3&11\\
-7&4&8
\end{array} \right),\]

su transpuesta $C^T$ es

\[C^T = \left(\begin{array}{ccc}
1&2&-7\\
4&3&4\\
6&11&8
\end{array} \right).\]

También nos falta definir otro concepto que nos será de utilidad con la notación que estamos construyendo.

Vectores columna

Definición 4. Un vector columna de orden $m$ es una ordenación de elementos en $m$ filas y que tiene una columna:

\[ a = \left(\begin{array}{c}
a_{1}\\
a_{2}\\
\vdots\\
a_{m}
\end{array} \right) \in \mathbb{R}^m, \]

Un vector fila de orden $n$ es una ordenación de elementos e $n$ columnas y que tiene una fila:

\begin{equation*}
c = (c_1,c_2, \cdots, c_n).
\end{equation*}

A este tipo de vectores como vemos, se les designa por una letra minúscula y de hecho la transpuesta de un vector fila es un vector columna y viceversa.

Entonces los vectores fila son los transpuestos de los vectores columna denotándolos por $x^T = (x_1,x_2, \cdots, x_n)$ o bien $x = (x_1,x_2, \cdots, x_n)^T$. Entonces, la notación que hasta ahora hemos presentado, la podemos ver reflejada con el siguiente ejemplo.

Ejemplo. Si tenemos que para $\mathbb{R}^2$ existen los dos vectores canónicos $e_1 = (1,0)$ y $e_2 = (0,1)$ y queremos representar los vectores como vectores columna, procedemos a escribir la notación de transpuesta previamente; es decir $e_1 = (1,0)^T$ y $e_2 = (0,1)^T$. Con ello podemos trabajar ahora los vectores como columnas:

\[ e_1= \left(\begin{array}{c}
1\\
0
\end{array} \right), \hspace{0.5cm} y \hspace{0.5cm} e_2 = \left(\begin{array}{c}
0\\
1
\end{array} \right).\]

Ahora tenemos las herramientas con las que podemos enlazar los conceptos de matriz con el de una función lineal; así que veamos a ver una definición muy importante para ello.

Matriz de una función lineal

Para continuar debemos observar que una matriz de tamaño $m\times n$ contiene la información de una función lineal de $\mathbb{R}^n$ en $\mathbb{R}^m$, invirtiendo el orden debido a la convención que existe debido al orden en que se realiza la composición de funciones.

Definición 5. A la matriz $A$ se le asocia la función lineal $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ que manda al vector canónico $e_i \in \mathbb{R}^n$ en su i-ésima columna, es decir, $f(e_i) = u_i$, para $i=,2,\cdots,n$.

Ejemplo. Si recordamos a la función del inicio de esta entrada de $\mathbb{R}^2$ en $\mathbb{R}^2$ donde

\[ f(x) = \left(\begin{array}{c}
4x-y\\
3x+2y
\end{array} \right),\]

bueno pues a la función lineal de $\mathbb{R}^2$ en $\mathbb{R}^2$ se le asocia la matriz

\[ f(x) = \left(\begin{array}{cc}
4&-1\\
3&2
\end{array} \right).\]

Observemos bien cómo la variable $x$ está asociada a la primer columna y la variable $y$ a la segunda columna.

Tarea moral

  1. Para el primer ejercicio vamos a dar una definición:

Definición. La suma de dos matrices $A$, $B$, ambas de dimensión $m \times n$, se llama matriz suma de $A$ y $B$ y se denota $C=A+B$ a la matriz $C$ de dimensión $m \times n$ tal que

\begin{equation*}
a_{ij} = a_{ij} + b_{ij}, \hspace{0.3cm} i=1,2,\cdots,m; \hspace{0.2cm} j=1,2,\cdots,n.
\end{equation*}

Calcular la suma de $A+B$, $B+C$ y $A+C$ con las matrices:

\[ A = \left(\begin{array}{cc}
3&8\\
4&-2
\end{array} \right), \hspace{1.5cm} B= \left(\begin{array}{cc}
1&-1\\
3&-2
\end{array} \right), \hspace{1.5cm} C= \left(\begin{array}{cc}
2&-5\\
6&4
\end{array} \right).\]

2. De las siguientes matrices , calcular sus transpuestas:

\[ D = \left(\begin{array}{cc}
1&3\\
5&7\\
9&11\\
-1&4
\end{array} \right), \hspace{1.5cm} B= \left(\begin{array}{c}
-1\\
5\\
3\\
2
\end{array} \right), \hspace{1.5cm} C= \left(\begin{array}{ccc}
1&3&-5\\
4&7&-9
\end{array} \right). \]

3. De la siguiente función $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por:

\[ g(x) = \left(\begin{array}{c}
6x-8y\\
-2x+81y
\end{array} \right),\]

¿Cuál es la matriz asociada a la función lineal?.

Más adelante

Ahora que definimos a un vector y a una matriz de una función lineal, podemos proceder a definir su producto. En la siguiente entrada primero veremos cómo se realiza el producto de una matriz con un vector y después definir el producto de matrices cualesquiera. Además se darán cuenta de la fuerte relación que hay entre la composición de funciones y el producto de funciones.

Enlaces relacionados

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Cálculo Diferencial e Integral I: La derivada

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente se revisó el concepto de continuidad, característica de la cual emanaban diversas propiedades útiles tal como el teorema del valor intermedio. En esta ocasión, daremos inicio con la séptima unidad que estará enfocada al aspecto teórico de uno de los conceptos más conocidos dentro de las matemáticas: la derivada.

El objetivo de esta entrada es entender este nuevo concepto para que posteriormente podamos analizar las propiedades y aplicaciones que posee.

Interpretación geométrica

Comenzaremos estudiando la interpretación geométrica para construir la definición formal. Pensemos en la siguiente función y notemos los dos puntos marcados.

Considerando que el punto gris está dado por $P = (x, f(x))$ y el punto negro por $P_0 = (x_0, f(x_0))$, podríamos obtener fácilmente la pendiente de la recta que pasa por ambos puntos.

$$m = \frac{f(x)-f(x_0)}{x-x_0}. \tag{1}$$

¿Qué sucede si dejamos a $P_0$ como un punto fijo y «movemos» el punto $P$ de tal forma que estos puntos comienzan a estar cada vez más cerca? (En la gráfica, el «movimiento» de $P$ se plasma mediante los puntos $P_1$, $P_2$, y $P_3$)

Si tales puntos están cada vez están más cerca, el concepto de límite entra en juego, pues estaríamos buscando $P \to P_0$. Así, podríamos calcular la pendiente de la recta tangente en el punto $P_0$. De esta forma, el límite deseado es el siguiente:

$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}.$$

La derivada

Definición. La función $f$ es derivable en $x_0$ si el siguiente límite existe

$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}.$$

En este caso, denotaremos al límite anterior como $f'(x_0)$ y le llamaremos derivada de $f$ en $x_0.$

También es común encontrar la siguiente definición equivalente de la derivada.

Definición. La función $f$ es derivable en $x_0$ si el siguiente límite existe

$$\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}.$$

Ahora que conocemos la definición de derivada, es momento de ponerla en práctica y revisar algunas funciones que sean derivables.

Ejemplo 1. Prueba que la función $f(x) = c$, con $c \in \RR$, es derivable para cualquier $x_0 \in \mathbb{R}.$

Demostración

Sea $x_0 \in \RR$. Veremos que $$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$ sí existe.

Notemos que si $x \neq x_0$, entonces

\begin{align*}
\frac{f(x)-f(x_0)}{x-x_0} & = \frac{c-c}{x-x_0} \\
& = \frac{0}{x-x_0} \\
& = 0.
\end{align*}

Por lo anterior, se sigue que

$$ \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} = 0.$$

Por lo tanto, $f$ es derivable en $\mathbb{R}$ y $f'(x) = 0$.

$\square$

Ejemplo 2. Prueba que la función $f(x) = ax+b$ es derivable para cualquier $x_0 \in \mathbb{R}.$

Demostración

Sea $x_0 \in \RR$. Bastará probar que el límite $$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$ sí existe.

Para ello, primero veamos que si $x \neq x_0$, entonces

\begin{align*}
\frac{f(x)-f(x_0)}{x-x_0} & = \frac{ax+b – (ax_0+b)}{x-x_0} \\
& = \frac{ax-ax_0}{x-x_0} \\
& = \frac{a(x-x_0)}{x-x_0} \\
& = a.
\end{align*}

Por lo anterior, se sigue que

$$ \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} = a.$$

Por lo tanto, $f$ es derivable en $\mathbb{R}$ y $f'(x) = a$.

$\square$

Continuemos con un segundo ejemplo sencillo para acostumbrarnos a este nuevo concepto.

Ejemplo 3. Prueba que la función $f(x) = x^2$ es derivable para cualquier $x \in \mathbb{R}.$

Demostración.

Sea $x_0 \in \RR.$
Procederemos a calcular el límite directamente.

\begin{align*}
\lim_{x \to x_0} \frac{ f(x)-f(x_0) }{ x-x_0 } & = \lim_{x \to x_0} \frac{x^2 – x_0^2}{x-x_0} \\
& = \lim_{x \to x_0} \frac{ (x-x_0)(x+x_0) }{ x-x_0 } \\
& = \lim_{x \to x_0} x+x_0 \\
& = 2x_0.
\end{align*}

Por lo tanto, $f$ es derivable para cualquier $x \in \RR$ y $f'(x) = 2x$.

$\square$

Ejemplo 4. Prueba que la función $f(x) = \sqrt{x}$ es derivable para cualquier $x_0 > 0.$

Demostración

Sea $x_0 > 0$. Para esta demostración, usaremos la segunda definición de límite.

Notemos que si $h \neq 0$, entonces

\begin{align*}
\frac{f(x_0+h)-f(x_0)}{h} & = \frac{\sqrt{x_0+h}-\sqrt{x_0}}{h} \\
& = \frac{\sqrt{x_0+h}-\sqrt{x_0}}{h} \cdot \frac{\sqrt{x_0+h}+\sqrt{x_0}}{\sqrt{x_0+h}+\sqrt{x_0}} \\
& = \frac{x_0+h-x_0}{h \left( \sqrt{x_0+h}+\sqrt{x_0} \right)} \\
& = \frac{h}{h \left( \sqrt{x_0+h}+\sqrt{x_0} \right)} \\
& = \frac{1}{ \sqrt{x_0+h}+\sqrt{x_0} }.
\end{align*}

Por lo anterior, se sigue que

$$ \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{x-x_0} = \frac{1}{2 \sqrt{x_0}}.$$

Por lo tanto, $f$ es derivable para cualquier $x > 0$ y $f'(x) = \frac{1}{2 \sqrt{x}}$.

$\square$

Es momento de revisar una función que no sea derivable. Para este propósito, emplearemos la función valor absoluto, la cual hemos revisado anteriormente y será conveniente que tengas presente su gráfica, pues este tipo de funciones que generan un «pico» en su gráfica, no son derivables en tal punto.

Ejemplo 5. Sea $f: \RR \to \RR$, $f(x) = |x|$. Prueba que $f$ no es derivable en $x_0 = 0.$

Demostración.

Notemos que $$\lim_{x \to x_0} \frac{|x|-0}{x-0} = \lim_{x \to x_0} \frac{|x|}{x}.$$

Consideremos las sucesiones $\{a_n\}$, $\{b_n\}$ donde $a_n = \frac{1}{n}$ y $b_n = -\frac{1}{n}$. Tenemos que $a_n$, $b_n \in \RR$ para todo $n \in \mathbb{N}$. Además, $a_n$, $b_n \neq 0$ para todo $n \in \mathbb{N}$ y $$\lim_{n \to \infty} a_n = 0 = \lim_{n \to \infty} b_n.$$

Pero se tiene que

\begin{align*}
\lim_{n \to \infty} \frac{|a_n|}{a_n} & = \lim_{n \to \infty} \frac{|\frac{1}{n}|}{\frac{1}{n}} \\
& = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n}} \\
& = 1.
\end{align*}

Además
\begin{align*}
\lim_{n \to \infty} \frac{|b_n|}{b_n} & = \lim_{n \to \infty} \frac{|-\frac{1}{n}|}{-\frac{1}{n}} \\
& = \lim_{n \to \infty} \frac{\frac{1}{n}}{-\frac{1}{n}} \\
& = -1.
\end{align*}

De lo que se concluye que el límite $$\lim_{x \to x_0} \frac{|x|-0}{x-0}$$ no existe.

Por tanto, $f$ no es derivable en $x_0= 0$.

$\square$

Intuitivamente, podemos notar que si tratáramos de encontrar una «recta tangente» en $x_0 = 0$ moviéndonos por la derecha, será distinta a la «recta tangente» a generada por la izquierda. Esto hace que el límite no exista, sin embargo, podemos ser menos restrictivos en la definición.

Derivadas laterales

De forma complementaria, podemos definir la derivada en términos de la forma en que $x \to x_0$, es decir, a través de los límites laterales. Así, tenemos las siguientes definiciones.

Definición.

  1. La función $f$ es derivable por la derecha en $x_0$ si el siguiente límite existe

    $$\lim_{x \to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}.$$

    En este caso, denotaremos al límite anterior como $f'(x_0^+)$ y le llamaremos derivada por la derecha de $f$ en $x_0$.
  2. La función $f$ es derivable por la izquierda en $x_0$ si el siguiente límite existe

    $$\lim_{x \to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}.$$

    En este caso, denotaremos al límite anterior como $f'(x_0^-)$ y le llamaremos derivada por la derecha de $f$ en $x_0$.

Más adelante…

En la siguiente entrada revisaremos la relación existente entre la derivabilidad y la continuidad. Además, revisaremos algunas propiedades que nos permitirán obtener la derivada de una función con mayor facilidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Da un ejemplo de función que no sea derivable en un punto $x_0$.
  • Prueba que la función $f: \RR \to \RR$ definida por $f(x) = ax^2+bx+c$ es derivable en todo $\RR$.
  • Prueba que la función $f: \RR \to \RR$ definida por $f(x) = x^3-8$ es derivable en todo $\RR$.
  • Demuestra que $f(x) = |x|$ es derivable para todo $x \neq 0$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones lineales no homogéneas de segundo orden – Método de coeficientes indeterminados

Por Omar González Franco

No es que no puede ver la solución. Es que no puede ver el problema.
– GK Chesterton

Introducción

En la entrada anterior estudiamos las ecuaciones diferenciales de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = 0 \label{1} \tag{1}$$

Con $a$, $b$ y $c$ constantes reales. Vimos que, una vez que hemos determinado la ecuación auxiliar, las soluciones están dadas de acuerdo al valor del discriminante $\Delta = b^{2} -4ac$.

En esta entrada estudiaremos este mismo tipo de ecuaciones diferenciales, pero en el caso no homogéneo, es decir, ecuaciones de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = g(x) \label{2} \tag{2}$$

Con $a$, $b$, $c$ constantes y $g(x) \neq 0$.

Ya sabemos que, en general, para resolver una ecuación diferencial no homogénea de la forma

$$a_{n} \dfrac{d^{n}y}{dx^{n}} + a_{n -1} \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1} \dfrac{dy}{dx} + a_{0}y = g(x) \label{3} \tag{3}$$

debemos hacer dos cosas. Encontrar la función complementaria $y_{c}(x)$ que corresponde a la solución general de la ecuación homogénea asociada de (\ref{3}) y posteriormente encontrar la solución particular $y_{p}(x)$ de dicha ecuación. Una vez obtenidas, la solución general de (\ref{3}) será la superposición

$$y(x) = y_{c}(x) + y_{p}(x)$$

En la entrada anterior vimos como resolver el caso homogéneo de este tipo de ecuaciones cuando los coeficientes son constantes, por lo que en esta entrada nos ocuparemos de desarrollar un método que nos permita obtener soluciones particulares.

Un primer método para resolver este tipo de ecuaciones se conoce como método de coeficientes indeterminados.

Dentro de este método existen al menos dos caminos desde una perspectiva diferente, uno de ellos es conocido como método de superposición y se desarrolla desde el punto de vista del principio de superposición para ecuaciones no homogéneas, mientras que un segundo método utiliza el concepto de operadores diferenciales anuladores y se conoce como método del anulador. El segundo método no lo estudiaremos en este curso, pero puedes investigar acerca de él si lo deseas.

Coeficientes indeterminados – Método de superposición

La idea fundamental de este método consiste en hacer una conjetura acerca de la forma que debe tener la solución particular $y_{p}(x)$, esta intuición esta motivada por el tipo de funciones que constituyen a la función $g(x)$ de (\ref{3}). Debido a que la solución de cierta manera depende de la forma de $g(x)$, es que este método se ve limitado a cierto tipo de funciones que componen a $g(x)$.

Como lo hemos venido haciendo, desarrollaremos esta teoría para el caso de ecuaciones de segundo orden ya que al aumentar el orden aumenta la complejidad en los cálculos, pero la idea se mantiene.

La ecuación a resolver es (\ref{2}), esto es

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = g(x)$$

Este método se puede aplicar sólo en el caso el que se cumple lo siguiente.

  • Los coeficientes $a$, $b$ y $c$ son constantes y,
  • $g(x)$ es una constante $c$, una función polinomial, una función exponencial $e^{\alpha x}$, una función seno o coseno $(\sin(\beta x)$ o $\cos(\beta x))$ o sumas infinitas y productos de estas funciones.

De acuerdo al segundo punto, este método no es aplicable a funciones como

$$g(x) = \ln(x); \hspace{1cm} g(x) = \dfrac{1}{x}; \hspace{1cm} g(x) = \tan(x); \hspace{1cm} g(x) = \arcsin(x)$$

etcétera. En cambio, es aplicable a funciones como

$$g(x) = P_{n}(x) = a_{n}x^{n} + a_{n -1}x^{n -1} + \cdots + a_{1}x + a_{0}$$

$$g(x) = P_{n}(x) e^{\alpha x}; \hspace{1cm} g(x) = P_{n}(x) e^{\alpha x} \sin(\beta x); \hspace{1cm} y \hspace{1cm} g(x) = P_{n}(x) e^{\alpha x} \cos(\beta x)$$

donde $n$ es un número entero no negativo que indica el grado del polinomio y $\alpha$ y $\beta$ son números reales.

Lo importante a considerar en este método es que el conjunto de funciones que consiste en constantes, polinomios, exponenciales, senos y cosenos tiene la notable propiedad de que las derivadas de sus sumas y productos vuelven a ser funciones de este mismo estilo y debido a que la combinación lineal $a \dfrac{d^{2}y_{p}}{dx^{2}} + b \dfrac{dy_{p}}{dx} + cy_{p}$ debe ser idéntica a la función $g(x)$ es razonable suponer que la solución particular $y_{p}(x)$ tiene la misma forma que $g(x)$.

Ahora que hemos motivado la noción de este método desarrollemos la teoría que nos permite determinar las soluciones de ecuaciones diferenciales lineales de segundo orden no homogéneas con coeficientes constantes (\ref{2}).

Comencemos con el caso en el que la función $g(x)$ es un polinomio.

$g(x)$ es un polinomio

Supongamos que la función $g(x)$ es un polinomio de grado $n$ de la forma

$$g(x) = a_{n}x^{n} + a_{n -1}x^{n -1} + \cdots + a_{1}x + a_{0} = \sum_{k = 0}^{n}a_{k}x^{k} \label{4} \tag{4}$$

con $a_{k}$, $k = 0, 1, 2, \cdots, n$ constantes.

Buscamos la solución particular $y_{p}(x)$, tal que

$$a \dfrac{d^{2}y_{p}}{dx^{2}} + b \dfrac{dy_{p}}{dx} + cy_{p} = \sum_{k=0}^{n}a_{k}x^{k} \label{5} \tag{5}$$

Como mencionamos anteriormente, vamos a suponer que la solución particular tiene la misma forma que $g(x)$ así, en este caso, $y_{p}(x)$ será también un polinomio de grado $n$.

$$y_{p}(x) = A_{n}x^{n} + A_{n -1}x^{n -1} + \cdots + A_{1}x + A_{0} = \sum_{k = 0}^{n}A_{k}x^{k} \label{6} \tag{6}$$

con $A_{k}$, $k = 0, 1, 2, \cdots, n$ constantes. Calculemos la primera y segunda derivada y sustituyamos en la ecuación (\ref{5}).

$$\dfrac{dy_{p}}{dx} = \sum_{k = 1}^{n} kA_{k}x^{k -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y_{p}}{dx^{2}} = \sum_{k = 2}^{n}k(k -1)A_{k}x^{k -2}$$

Si desglosas las sumas notarás la razón y la importancia de que el valor de $k$ comience en $1$ y en $2$ en la suma de la primera y la segunda derivada respectivamente. Más adelante trabajaremos con series y mencionaremos con mayor detalle este tipo de situaciones.

Sustituyendo en la ecuación diferencial (\ref{5}) se tiene lo siguiente.

$$a \sum_{k = 2}^{n} k(k -1)A_{k}x^{k -2} + b \sum_{k = 1}^{n}k A_{k}x^{k -1} + c \sum_{k = 0}^{n}A_{k}x^{k} = \sum_{k = 0}^{n}a_{k}x^{k} \label{7} \tag{7}$$

Para que se cumpla la igualdad los coeficientes de cada $x^{k}$, $k = 0, 1, \cdots, n$, tienen que ser iguales. Para que resulte más intuitivo el cómo igualar los coeficientes vamos a reescribir la ecuación (\ref{7}) desglosando las sumas.

\begin{align*}
a \left[ 2A_{2} + 6A_{3}x + 12A_{4}x^{2} + \cdots + n(n -1)A_{n}x^{n -2} \right] \\
+ b \left[ A_{1} + 2A_{2}x + 3A_{3}x^{2} + \cdots + (n -1)A_{n -1}x^{n -2} + n A_{n}x^{n -1} \right] \\
+ c \left[ A_{0} + A_{1}x + A_{2}x^{2} + \cdots + A_{n -2}x^{n -2} + A_{n -1}x^{n -1} + A_{n}x^{n} \right] \\
= a_{0} + a_{1}x + a_{2}x^{2} + \cdots + a_{n -2}x^{n -2} + a_{n -1}x^{n -1} + a_{n}x^{n}
\end{align*}

Ahora si resulta directo igualar los coeficientes de cada $x^{k}$, $k = 0, 1, \cdots, n$. Para que se cumpla la ecuación (\ref{7}) se deben cumplir las siguientes relaciones.

\begin{align*}
2aA_{2} + bA_{1} + cA_{0} &= a_{0} \\
6aA_{3} + 2bA_{2} + cA_{1} &= a_{1} \\
12aA_{4} + 3bA_{3} + cA_{2} &= a_{2} \\
\vdots \\
n(n -1)aA_{n} + (n -1)bA_{n -1} + cA_{n -2} &= a_{n -2} \\
nbA_{n} +c A_{n -1} &= a_{n -1} \\
c A_{n} &= a_{n}
\end{align*}

Lo que tenemos es un sistema de $n + 1$ ecuaciones. Si $c \neq 0$, de la última relación se obtiene

$$A_{n} = \dfrac{a_{n}}{c}$$

De la penúltima relación se obtiene

$$A_{n -1} = \dfrac{a_{n-1} -nbA_{n}}{c}$$

En donde ya se conoce el valor de $A_{n}$, y así sucesivamente, de manera que seremos capaces de determinar todos los valores $A_{k}$, $k = 0, 1, \cdots, n$ y por tanto, obtendremos la solución particular $y_{p}(x)$ dada en (\ref{6}).

El paso fundamental en este método es suponer que la solución particular $y_{p}(x)$ tiene la misma forma que la función $g(x)$, pero debemos ser cuidadosos con ello, por ejemplo, si ocurre que $c = 0$ y suponemos que $y_{p}(x)$ es un polinomio de grado $n$, entonces la expresión $a\dfrac{d^{2}y_{p}}{dx^{2}}+b\dfrac{dy_{p}}{dx}$ será una expresión de grado $n -1$, pero estará igualada a $g(x)$ que es una expresión de grado $n$ y esto no puede ocurrir. Para solucionar esto será necesario considerar a $y_{p}(x)$ como un polinomio de grado $n + 1$, esto es

$$y_{p}(x) = x (A_{n}x^{n} + A_{n -1}x^{n -1} + \cdots + A_{1}x + A_{0}) \label{8} \tag{8}$$

De esta manera la expresión $a\dfrac{d^{2}y_{p}}{dx^{2}}+b\dfrac{dy_{p}}{dx}$ sí será de grado $n$ y por tanto podremos igualar coeficientes con $g(x)$ y así obtener los valores $A_{k}$, $k = 1, 2 \cdots, n$, y con ello la solución particular $y_{p}(x)$.

Finalmente, si $b = c = 0$ tendremos la ecuación

$$a\dfrac{d^{2}y_{p}}{dx^{2}} = g(x)$$

la cual se puede resolver integrando un par de veces con respecto a $x$.

Realicemos un ejemplo.

Ejemplo: Determinar la solución particular $y_{p}(x)$ de la ecuación diferencial

$$9\dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + y = 9 -x^{3}$$

Solución: En este caso la función $g$ es

$$g(x) = 9 -x^{3}$$

Corresponde a un polinomio de grado $n = 3$ y como $c = 1 \neq 0$ vamos a suponer que la solución particular es también un polinomio de grado $3$.

Importante, aunque en la función $g$ no estén los términos con $x$ y $x^{2}$ en la solución sí debemos considerarlos.

De acuerdo a (\ref{6}), la solución particular debe tener la siguiente forma.

$$y_{p}(x) = A_{3}x^{3} + A_{2}x^{2} + A_{1}x + A_{0}$$

Calculemos la primera y segunda derivada para sustituir en la ecuación diferencial.

$$\dfrac{dy_{p}}{dx} = 3A_{3}x^{2} + 2A_{2}x + A_{1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y_{p}}{dx^{2}} = 6A_{3}x + 2A_{2}$$

Sustituyamos.

$$(54A_{3}x + 18A_{2}) -(18A_{3}x^{2} + 12A_{2}x + 6A_{1}) + (A_{3}x^{3} + A_{2}x^{2} + A_{1}x + A_{0}) = 9 -x^{3}$$

Agrupemos términos semejantes.

$$A_{3}x^{3} + (-18A_{3} + A_{2})x^{2} + (54A_{3} -12A_{2} + A_{1})x + (18A_{2} -6A_{1} + A_{0}) = 9 -x^{3}$$

Observemos que la función $g$ la podemos escribir como

$$g(x) = -1x^{3} + 0x^{2} + 0x + 9$$

Esto nos permitirá igualar los coeficientes de cada $x^{k}$, $k = 0, 1, 2, 3$.

\begin{align*}
A_{3} &= -1\\
-18A_{3} + A_{2} &= 0 \\
54A_{3} -12A_{2} + A_{1} &= 0 \\
18A_{2} -6A_{1} + A_{0} &= 9
\end{align*}

Resolviendo el sistema de ecuaciones obtendremos que

$$A_{3} = -1, \hspace{1cm} A_{2} = -18, \hspace{1cm} A_{1} = -162 \hspace{1cm} y \hspace{1cm} A_{0} = -639$$

Por lo tanto, la solución particular de la ecuación diferencial es

$$y_{p}(x) = -x^{3} -18x^{2} -162x -639$$

$\square$

Puedes comprobar que efectivamente es solución de la ecuación diferencial. Por otro lado, notemos que en el ejemplo hemos obtenido sólo la solución particular $y_{p}(x)$. Aplicando lo visto en la entrada anterior, de tarea moral determina la solución complementaria $y_{c}(x)$ que corresponde a la solución de la ecuación homogénea asociada

$$9\dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + y = 0$$

para así finalmente obtener la solución general

$$y(x) = y_{c}(x) + y_{p}(x)$$

Ahora veamos que ocurre cuando la función $g(x)$ es una función exponencial o el producto de un polinomio con una función exponencial.

$g(x)$ es producto de un polinomio y una función exponencial

Antes de desarrollar la teoría para este caso veamos una situación que nos muestra que no siempre la solución particular debe tener la misma forma que la función $g(x)$.

Supongamos que queremos obtener la solución particular de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -5\dfrac{dy}{dx} + 4y = 8e^{x}$$

Se puede suponer razonablemente una solución particular de la forma

$$y_{p}(x) = Ae^{x}$$

Con $A$ una constante por determinar. Las primeras dos derivadas de esta función son

$\dfrac{dy_{p}}{dx} = Ae^{x} = \dfrac{d^{2}y_{p}}{dx^{2}}$

Al sustituir en la ecuación diferencial da como resultado la expresión contradictoria

$$0 = 8e^{x}$$

Esto nos muestra que se hizo una conjetura equivocada para $y_{p}(x)$. Lo que sucede es que la solución complementaria

$$y_{c}(x) = c_{1}e^{x} + c_{2}e^{4x}$$

ya contiene nuestra suposición $Ae^{x}$. Esto significa que $e^{x}$ es una solución de la ecuación diferencial homogénea asociada y un múltiplo constante $Ae^{x}$ cuando se sustituye en la ecuación diferencial necesariamente da cero.

Como lo vemos en este ejemplo, la solución particular que propongamos no debe ser una función que ya este contenida en la solución complementaria. A continuación desarrollaremos un método que nos permite obtener la forma de la solución particular cuando la función $g(x)$ esta constituida por un polinomio y una función exponencial.

Supongamos que la función $g(x)$ es el producto de un polinomio con una función exponencial.

$$g(x) = \left( a_{n}x^{n} + a_{n -1}x^{n -1} + \cdots + a_{1}x + a_{0} \right) e^{\alpha x} = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) e^{\alpha x} \label{9} \tag{9}$$

Con $\alpha$ una constante distinta de cero, ya que en caso de serlo regresamos al caso anterior. En esta ocasión la ecuación diferencial a resolver es

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) e^{\alpha x} \label{10} \tag{10}$$

Manteniendo la esencia del método, vamos a suponer que la solución particular tiene la forma de la función $g(x)$. Supongamos que la solución particular es de la forma

$$y_{p}(x) = e^{\alpha x} h(x)$$

Con $h(x)$ una función continua y derivable en el intervalo de solución. Lo que haremos será determinar la forma de la función $h(x)$, para ello vamos a calcular las derivadas correspondientes y sustituir en la ecuación diferencial (\ref{10}).

$$\dfrac{dy_{p}}{dx} = e^{\alpha x} \dfrac{dh}{dx} + \alpha e^{\alpha x}h \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y_{p}}{dx^{2}} = e^{\alpha x} \dfrac{d^{2}h}{dx^{2}} + 2 \alpha e^{\alpha x} \dfrac{dh}{dx} + \alpha^{2}e^{\alpha x}h$$

Sustituyendo en la ecuación diferencial.

$$a \left[ e^{\alpha x} \dfrac{d^{2}h}{dx^{2}} + 2 \alpha e^{\alpha x} \dfrac{dh}{dx} + \alpha^{2}e^{\alpha x}h \right] + b \left[ e^{\alpha x} \dfrac{dh}{dx} + \alpha e^{\alpha x}h \right] + c\left( e^{\alpha x}h \right) = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) e^{\alpha x}$$

Como $e^{\alpha x} \neq 0$ $\forall x \in \mathbb{R}$, podemos cancelar la exponencial de todos los términos y reordenar para obtener la siguiente expresión.

$$a \dfrac{d^{2}h}{dx^{2}} + \left( 2 \alpha a + b \right) \dfrac{dh}{dx} + \left( a \alpha^{2} + b \alpha + c \right) h = \sum_{k = 0}^{n}a_{k}x^{k} \label{11} \tag{11}$$

Lo que obtuvimos es una ecuación diferencial de segundo orden con coeficientes constantes en donde el lado derecho de la ecuación corresponde a una función polinomial, es decir, hemos reducido el problema al primer caso. Podemos aplicar lo visto anteriormente para obtener la forma de la solución $h(x)$. Consideremos los siguientes casos.

  • $a \alpha^{2} + b \alpha + c \neq 0$

Al considerar este caso lo que podemos proponer es que la función $h(x)$ sea un polinomio de grado $n$, esto es

$$h(x) = A_{n}x^{n} + A_{n -1}x^{n -1} + \cdots + A_{1}x + A_{0} = \sum_{k = 0}^{n}A_{k}x^{k}$$

De esta manera ambos lados de la ecuación (\ref{11}) serán expresiones de grado $n$ y podremos igualar coeficiente a coeficiente, tal como lo hicimos en el caso anterior. Por lo tanto, la solución particular de la ecuación diferencial (\ref{10}) es

$$y_{p}(x) = \left( \sum_{k = 0}^{n}A_{k}x^{k} \right) e^{\alpha x} \label{12} \tag{12}$$

  • $a \alpha^{2} + b \alpha + c = 0$ y $2 \alpha a + b \neq 0$

En este caso, por el mismo argumento que en el caso en el que $g(x)$ es sólo un polinomio de grado $n$, debemos asegurarnos de que la combinación lineal $a \dfrac{d^{2}h}{dx^{2}} + \left( 2 \alpha a + b \right) \dfrac{dh}{dx}$ sea una expresión de grado $n$, por lo que será necesario que $h(x)$ sea un polinomio de grado $n + 1$. La propuesta para $h(x)$ es que sea de la forma

$$h(x) = x \left( A_{n}x^{n} + A_{n -1}x^{n -1} + \cdots + A_{1}x + A_{0} \right) = x \left( \sum_{k = 0}^{n}A_{k}x^{k} \right)$$

Por lo tanto, para este caso la solución particular es la siguiente.

$$y_{p}(x) = x \left( \sum_{k = 0}^{n}A_{k}x^{k} \right) e^{\alpha x} \label{13} \tag{13}$$

  • $a \alpha^{2} + b \alpha + c = 0$ y $2\alpha a + b = 0$

Siguiendo el mismo razonamiento, en este caso la solución particular debe ser

$$y_{p}(x) = x^{2} \left( \sum_{k = 0}^{n}A_{k}x^{k} \right) e^{\alpha x} \label{14} \tag{14}$$

Ahora que conocemos las posibles formas de las soluciones particulares, vamos a resolver la ecuación que nos genero conflicto.

Ejemplo: Hallar la solución particular $y_{p}(x)$ de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -5\dfrac{dy}{dx} + 4y = 8e^{x}$$

Solución: Supongamos que la solución tiene la forma

$$y_{p}(x) = h(x)e^{x}$$

En este caso $\alpha = 1$. Las derivadas correspondientes son

$$\dfrac{dy_{p}}{dx} = \dfrac{dh}{dx}e^{x} + he^{x} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y_{p}}{dx^{2}} = \dfrac{d^{2}h}{dx^{2}} e^{x} + 2\dfrac{dh}{dx} e^{x} + he^{x}$$

Sustituyamos en la ecuación diferencial.

$$\left( \dfrac{d^{2}h}{dx^{2}} e^{x} + 2\dfrac{dh}{dx} e^{x} + he^{x} \right) -5 \left( \dfrac{dh}{dx}e^{x} + he^{x} \right) + 4he^{x} = 8e^{x}$$

Cancelando la exponencial y reordenando los términos obtenemos la siguiente ecuación para $h(x)$.

$$\dfrac{d^{2}h}{dx^{2}} -3\dfrac{dh}{dx} = 8$$

Como no aparece explícitamente la función $h(x)$, pero sí su primer derivada, esto nos obliga a proponer como solución un polinomio de grado $1$, ya que en el lado derecho de la ecuación tenemos un polinomio de grado cero (una constante). Propongamos

$$h(x) = Ax$$

Derivando obtenemos

$$\dfrac{dh}{dx} = A \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}h}{dx^{2}} = 0$$

Sustituyendo en la ecuación de $h$, obtenemos

$$-3A = 8$$

De donde $A = -\dfrac{8}{3}$. Por lo tanto, la solución particular de la ecuación diferencial dada es

$$y_{p}(x) = -\dfrac{8}{3}xe^{x}$$

$\square$

Realicemos un ejemplo más.

Ejemplo: Hallar la solución particular $y_{p}(x)$ de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} -6y = -5e^{2x}$$

Solución: En este caso

$$g(x) = -5e^{2x}$$

y podemos identificar que $a = 1, b = 1, c = -6$ y $\alpha = 2$. Podemos directamente sustituir en la ecuación (\ref{11}), pero es conveniente no memorizarla sino realizar el procedimiento que nos permite llegar a ella.

Proponemos la solución

$$y_{p}(x) = h(x) e^{2x}$$

La primera y segunda derivada están dadas como

$$\dfrac{dy_{p}}{dx} = e^{2x}\dfrac{dh}{dx} + 2e^{2x}h \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = e^{2x}\dfrac{d^{2}h}{dx^{2}} + 4e^{2x}\dfrac{dh}{dx} +4e^{2x}h$$

Sustituimos en la ecuación diferencial.

$$\left( e^{2x}\dfrac{d^{2}h}{dx^{2}} + 4e^{2x}\dfrac{dh}{dx} +4e^{2x}h \right) + \left( e^{2x}\dfrac{dh}{dx} + 2e^{2x}h \right) -6e^{2x}h = -5e^{2x}$$

Cancelando la exponencial de todos los términos y reordenando obtenemos la expresión correspondiente a (\ref{11}).

$$\dfrac{d^{2}h}{dx^{2}} + 5\dfrac{dh}{dx} = -5$$

Notamos que el lado derecho de la ecuación es una constante que, estrictamente hablando, corresponde a un polinomio de grado cero. Por otro lado, en la ecuación diferencial no aparece explícitamente la función $h$, pero sí sus derivadas, en particular la primer derivada, esto nos indica que $h$ debe ser un polinomio de grado $1$ para que efectivamente la expresión $\dfrac{d^{2}h}{dx^{2}} + 5\dfrac{dh}{dx}$ sea de grado cero. Tomando en cuenta esto podemos establecer que la forma de $h$ debe ser

$$h(x) = Ax$$

Así, la solución particular será

$$y_{p}(x) = Axe^{2x}$$

Si regresamos a la teoría desarrollada nos damos cuenta que la solución particular tiene justamente la forma de la ecuación (\ref{13}) para $n = 0$, ya que estamos en el caso en el que $a \alpha^{2} + b \alpha + c = 0$ y $2 \alpha a + b \neq 0$.

Determinemos el valor del coeficiente $A$ considerando la función $h(x) = Ax$, calculando las derivadas se tiene que

$$\dfrac{dh}{dx} = A \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}h}{dx^{2}} = 0$$

Sustituyendo en la ecuación diferencial de $h$, tenemos

$$0 + 5A = -5$$

De donde $A = -1$, así

$$h(x) = -x$$

y por lo tanto, la solución particular de la ecuación diferencial es

$$y_{p}(x) = -xe^{2x}$$

$\square$

De tarea moral determina la solución complementaria del ejemplo para así obtener la solución general

$$y(x) = y_{c}(x) + y_{p}(x)$$

Finalmente veamos que ocurre si la función $g(x)$ es una función seno, coseno o el producto de un polinomio con alguna de estas funciones trigonométricas.

Caso en el que g(x) es producto de un polinomio y una función seno o coseno

Consideremos nuevamente el polinomio

$$P(x) = a_{n}x^{n} + a_{n -1}x^{n -1} + \cdots + a_{1}x + a_{0} = \sum_{k = 0}^{n}a_{k}x^{k}$$

El tipo de ecuación que queremos resolver es de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b\dfrac{dy}{dx} + cy = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \cos(\beta x) \label{15} \tag{15}$$

O bien,

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \sin(\beta x) \label{16} \tag{16}$$

Con $\beta$ una constante. Para resolver este tipo de ecuaciones es conveniente considerar la siguiente propiedad.

$$e^{i\beta x} = \cos (\beta x) + i \sin(\beta x) \label{17} \tag{17}$$

Con $i^{2} = -1$. Y consideremos la ecuación diferencial

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) e^{i \beta x} \label{18} \tag{18}$$

Que podemos escribir como

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \cos (\beta x) + i \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \sin(\beta x) \label{19} \tag{19}$$

Supongamos que la función

$$z(x) = u(x) + i v(x) \label{20} \tag{20}$$

es solución de la ecuación diferencial (\ref{19}). Consideremos el operador polinomial

$$\mathcal{L} = a \dfrac{d^{2}}{dx^{2}} + b\dfrac{d}{dx} + c \label{21} \tag{21}$$

de manera que podamos reescribir a la ecuación (\ref{19}) como

$$\mathcal{L}[z] = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \cos(\beta x) + i \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \sin(\beta x) \label{22} \tag{22}$$

Pero notemos que

$$\mathcal{L}[z] = \mathcal{L}[u + iv] = \mathcal{L}[u] + i \mathcal{L}[v] \label{23} \tag{23}$$

Comparando las ecuaciones (\ref{22}) y (\ref{23}) deducimos que

$$\mathcal{L}[u] = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \cos(\beta x) \label{24} \tag{24}$$

y

$$\mathcal{L}[v] = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \sin(\beta x) \label{25} \tag{25}$$

Es decir, la parte real $Re(z) = u(x)$ es solución de la ecuación

$$a \dfrac{du^{2}}{dx^{2}} + b \dfrac{du}{dx} + cu = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \cos(\beta x) \label{26} \tag{26}$$

y la parte imaginaria $Im(z) = v(x)$ es solución de la ecuación

$$a \dfrac{dv^{2}}{dx^{2}} + b \dfrac{dv}{dx} + cv = \left( \sum_{k = 0}^{n}a_{k}x^{k} \right) \sin(\beta x) \label{27} \tag{27}$$

Realicemos un par de ejemplos en el que veamos cómo obtener las funciones $u(x)$ o $v(x)$ de la solución (\ref{20}).

Ejemplo: Determinar la solución particular $y_{p}(x)$ de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{3}{2}\dfrac{dy}{dx} -y = 3 \cos(x)$$

Solución: La ecuación que queremos resolver es de la forma (\ref{15}), pero es conveniente sustituir la función coseno por la función compleja $e^{ix}$ para resolver la ecuación en la forma (\ref{18}) con $\beta = 1$. Haciendo la sustitución, la ecuación que intentaremos resolver será

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{3}{2}\dfrac{dy}{dx} -y = 3 e^{ix}$$

Ahora tenemos una ecuación en la que el lado derecho corresponde al producto de un polinomio de grado cero con una función exponencial, esto nos indica que podemos proponer una solución de la forma

$$z(x) = h(x)e^{ix}$$

Las derivadas son

$$\dfrac{dz}{dx} = e^{ix}\dfrac{dh}{dx} + ie^{ix}h \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}z}{dx^{2}} = e^{ix}\dfrac{d^{2}h}{dx^{2}} + 2ie^{ix}\dfrac{dh}{dx} -e^{ix}h$$

Sustituimos en la ecuación diferencial.

$$\left( e^{ix}\dfrac{d^{2}h}{dx^{2}} + 2ie^{ix}\dfrac{dh}{dx} -e^{ix}h \right) -\dfrac{3}{2} \left( e^{ix}\dfrac{dh}{dx} + ie^{ix}h \right) -\left( he^{ix} \right) = 3 e^{ix}$$

Cancelando las exponenciales de todos los términos y reordenando, obtenemos

$$\dfrac{d^{2}h}{dx^{2}} + \left( 2i -\dfrac{3}{2} \right) \dfrac{dh}{dx} + \left( -2 -\dfrac{3}{2}i \right)h = 3$$

Es claro que la forma de la función $h$ debe ser la de un polinomio de grado cero, ya que es el tipo de función que tenemos en el lado derecho de la ecuación. Digamos que

$$h(x) = A$$

Ambas derivadas son cero, por lo que al sustituir en la ecuación diferencial para $h$ obtenemos que

$$\left( -2 -\dfrac{3}{2}i \right)A = 3$$

Para despejar a la constante $A$ vamos a multiplicar ambos lados de la ecuación por el número complejo conjugado $\left( -2 +\dfrac{3}{2}i \right)$.

\begin{align*}
\left( -2 +\dfrac{3}{2}i \right) \left( -2 -\dfrac{3}{2}i \right)A &= \left( -2 +\dfrac{3}{2}i \right)3 \\
\dfrac{25}{4}A &= -6 +\dfrac{9}{2}i \\
A &= -\dfrac{24}{25} + \dfrac{18}{25}i
\end{align*}

Como $h(x) = A$, entonces

$$h(x) = -\dfrac{24}{25} + \dfrac{18}{25}i$$

Sustituyendo en la solución, tenemos

\begin{align*}
z(x) &= \left( -\dfrac{24}{25} + \dfrac{18}{25}i \right) e^{ix} \\
&= \left( -\dfrac{24}{25} + \dfrac{18}{25}i \right) \left( \cos(x) + i \sin(x) \right) \\
&= \left( -\dfrac{24}{25} \cos(x) -\dfrac{18}{25} \sin(x) \right) + i \left( -\dfrac{24}{25} \sin(x) + \dfrac{18}{25} \cos(x) \right)
\end{align*}

Si

$$z(x) = u(x) +iv(x)$$

notamos que

$$Re(z) = u(x) = -\dfrac{24}{25} \cos(x) -\dfrac{18}{25} \sin(x)$$

y

$$Im(z) = v(x) = -\dfrac{24}{25} \sin(x) + \dfrac{18}{25} \cos(x)$$

Ya que en la ecuación original esta presente la función coseno, de acuerdo a $(\ref{26})$, la solución de la ecuación será la función $u(x)$, es decir, la parte real de la función $z(x)$. Por lo tanto, la solución particular es

$$y_{p}(x) = -\dfrac{24}{25} \cos(x) -\dfrac{18}{25} \sin(x)$$

$\square$

Realicemos un ejemplo más.

Ejemplo: Hallar la solución particular $y_{p}(x)$ de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 4y = 12 \sin(2x)$$

Solución: La ecuación a resolver es de la forma (\ref{16}), pero es conveniente sustituir la función seno por la función compleja $e^{2ix}$ para resolver la ecuación en la forma (\ref{18}) con $\beta = 2$. Haciendo la sustitución, la ecuación que intentaremos resolver será

$$\dfrac{d^{2}y}{dx^{2}} + 4y = 12 e^{2ix}$$

Como tenemos una ecuación en la que el lado derecho corresponde al producto de un polinomio de grado cero con una función exponencial, entonces podemos suponer una solución de la forma

$$z(x) = h(x)e^{2ix}$$

Las derivadas son

$$\dfrac{dz}{dx} = e^{2ix}\dfrac{dh}{dx} + 2ie^{2ix}h \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}z}{dx^{2}} = e^{2ix}\dfrac{d^{2}h}{dx^{2}} + 4ie^{2ix}\dfrac{dh}{dx} -4e^{2ix}h$$

Sustituimos en la ecuación diferencial.

$$\left( e^{2ix}\dfrac{d^{2}h}{dx^{2}} + 4ie^{2ix}\dfrac{dh}{dx} -4e^{2ix}h \right) + 4\left( he^{2ix} \right) = 12 e^{2ix}$$

Cancelando las exponenciales de todos los términos y reordenando, obtenemos

$$\dfrac{d^{2}h}{dx^{2}} + 4i \dfrac{dh}{dx} = 12$$

Es claro que la forma de la función $h$ debe ser la de un polinomio de grado $1$, pues dicha función no aparece explícitamente en el lado izquierdo de la ecuación, pero sí su primer derivada que es la que determina el grado más alto de la ecuación y queremos que sea de grado cero ya que es el grado de la función que tenemos en el lado derecho. Supongamos que

$$h(x) = Ax$$

La primer derivada es

$$\dfrac{dh}{dx} = A$$

y la segunda derivada es cero, al sustituir en la ecuación diferencial para $h$ obtenemos que

$$\left( 4i \right)A = 12$$

De donde $A = -3i$. Entonces

$$h(x) = -3ix$$

y por tanto

$$z(x) = -3ixe^{2ix}$$

Vemos que

\begin{align*}
z(x) &= \left( -3ix \right) \left( \cos(2x) + i \sin(2x) \right) \\
&= \left( 3x \sin(2x) \right) + i \left(-3x \cos(2x) \right)
\end{align*}

Si

$$z(x) = u(x) + i v(x)$$

notamos que

$$Re(z) = u(x) = 3x \sin(2x)$$

y

$$Im(z) = v(x) = -3x \cos(2x)$$

Debido a que en la ecuación original esta presente la función seno, de acuerdo a $(\ref{27})$, la solución de la ecuación será la función $v(x)$, es decir, la parte imaginaria de la función $z(x)$. Por lo tanto, la solución particular es

$$y_{p}(x) = -3x \cos(2x)$$

$\square$

Como pudimos notar, éste método de resolución requiere, en buena medida, de nuestra intuición para proponer la forma correcta de la solución.

A lo largo de esta entrada hemos desarrollado la teoría que nos permite proponer una solución adecuada, sin embargo existen distintas variantes de opciones para la función $g(x)$ y por tanto para la solución particular $y_{p}(x)$. A continuación mostraremos los resultados generales que nos permiten proponer una solución particular dada una función $g(x)$.

Resultados generales

Como mencionamos al inicio de esta entrada, en la ecuación (\ref{2}) la función $g(x)$ puede ser un polinomio, una exponencial, una función seno o coseno o el producto entre estas funciones. De manera general diremos que la función $g(x)$ puede tener la siguiente forma.

$$g(x) = e^{\alpha x} \left[ P_{n}(x) \cos(\beta x) + Q_{m}(x) \sin(\beta x) \right] \label{28} \tag{28}$$

Donde $\lambda = \alpha \pm i\beta$ es raíz de la ecuación auxiliar y $P_{n}(x)$ y $Q_{m}(x)$ son los polinomios en $x$ de grado $n$ y $m$ respectivamente.

$$P_{n}(x) = \sum_{k = 0}^{n}a_{k}x^{k} \hspace{1cm} y \hspace{1cm} Q_{m}(x) = \sum_{k = 0}^{m}b_{k}x^{k}$$

Lo que buscamos es una solución particular de la forma

$$y_{p}(x) = x^{s} e^{\alpha x} \left[ p_{r}(x) \cos(\beta x) + q_{r}(x) \sin(\beta x) \right] \label{29} \tag{29}$$

Donde $r = \max(n, m)$, $p_{r}(x)$ y $q_{r}(x)$ son polinomios en $x$ de grado $r$, cuyos coeficientes están indeterminados, dados como

$$p_{r}(x) = \sum_{k = 0}^{r}A_{k}x^{k} \hspace{1cm} y \hspace{1cm} q_{r}(x) = \sum_{k = 0}^{r}B_{k}x^{k}$$

y $s$ es la multiplicidad de la raíz $\lambda = \alpha \pm i\beta$ de la ecuación auxiliar. La forma de $y_{p}(x)$ se puede resumir de la siguiente manera:

  1. $g(x) = P_{n}(x)$:
  • Si las raíces de la ecuación auxiliar son distintas de cero, $\lambda_{i} \neq 0, i = 1, 2, \cdots, s$, entonces la forma de la solución particular es

$$y_{p}(x) = p_{n}(x) = \sum_{k = 0}^{n}A_{k}x^{k} \label{30} \tag{30}$$

  • Si alguna raíz es igual a cero, $\lambda _{i} = 0$, entonces la forma de la solución particular es

$$y_{p}(x) = x^{s}p_{n}(x) = x^{s} \left( \sum_{k = 0}^{n}A_{k}x^{k} \right) \label{31} \tag{31}$$

  1. $g(x) = P_{n}(x) e^{\alpha x}$:
  • Si $\alpha$ no es raíz, entonces la forma de la solución particular es

$$y_{p}(x) = p_{n}(x) e^{\alpha x} = \left( \sum_{k = 0}^{n}A_{k}x^{k} \right) e^{\alpha x} \label{32} \tag{32}$$

  • Si $\alpha $ es raíz repetida $s$ veces (de orden $s$), entonces la forma de la solución particular es

$$y_{p}(x) = x^{s} p_{n}(x)e^{\alpha x} = x^{s} \left( \sum_{k = 0}^{n}A_{k}x^{k} \right) e^{\alpha x} \label{33} \tag{33}$$

  1. $g(x) = P_{n}(x) \cos(\beta x) + Q_{m}(x) \sin(\beta x)$:
  • Si $\pm i \beta$ no son raíces y $r= \max(n, m)$, entonces la forma de la solución particular es

$$y_{p}(x) = p_{r}(x) \cos(\beta x) + q_{r}(x) \sin(\beta x) \label{34} \tag{34}$$

  • Si $\pm i \beta$ son raíces de orden $s$ y $r = \max(n, m)$, entonces la forma de la solución particular es

$$y_{p}(x) = x^{s} \left[ p_{r}(x) \cos(\beta x) + q_{r}(x) \sin(\beta x) \right] \label{35} \tag{35}$$

  1. $g(x) = e^{\alpha x} \left[ P_{n}(x) \cos(\beta x) + Q_{m}(x) \sin(\beta x) \right]$:
  • Si $\alpha \pm i\beta$ no son raíces, entonces la forma de la solución particular es

$$y_{p}(x) = e^{\alpha x} \left[p_{r}(x) \cos(\beta x) + q_{r}(x) \sin(\beta x) \right] \label{36} \tag{36}$$

  • Si $\alpha \pm i\beta$ son raíces de orden $s$, entonces la forma de la solución particular es

$$y_{p}(x) = x^{s}e^{\alpha x} \left[ p_{r}(x) \cos(\beta x) + q_{r}(x) \sin(\beta x) \right] \label{37} \tag{37}$$

Este método es conocido como método de superposición y la razón es porque los resultados anteriores se aplican a cada sumando de la función $g(x)$. Veamos un ejemplo.

Ejemplo: Determinar la forma de la solución particular de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -9 \dfrac{dy}{dx} +14y = 3x^{2} -5 \sin(2x) + 7xe^{6x}$$

Solución: La función $g$ es

$$g(x) = 3x^{2} -5 \sin(2x) + 7xe^{6x}$$

Al primer sumando

$$g_{1}(x) = 3x^{2}$$

le corresponde una solución de la forma

$$y_{p1}(x) = A_{2}x^{2} + A_{1}x + A_{0}$$

Al segundo sumando

$$g_{2}(x) = -5 \sin(2x)$$

le corresponde una solución de la forma

$$y_{p2}(x) = B_{1} \cos(2x) + B_{0} \sin(2x)$$

Y al tercer sumando

$$g_{3}(x) = 7xe^{6x}$$

le corresponde una solución de la forma

$$y_{p3}(x) = (C_{1}x + C_{0})e^{6x}$$

La solución particular estará dada por la superposición de las tres soluciones correspondientes a los tres sumandos de la función $g(x)$.

\begin{align*}
y_{p}(x) &= y_{p_{1}}(x) + y_{p_{2}}(x) + y_{p_{3}}(x) \\
&= A_{2}x^{2} + A_{1}x + A_{0} + B_{1} \cos(2x) + B_{0} \sin(2x) + (C_{1}x + C_{0})e^{6x}
\end{align*}

En esta suposición ningún término duplica un término de la función complementaria

$$y_{c}(x) = c_{1}e^{2x} + c_{2}e^{7x}$$

De tarea moral determina el valor de los coeficientes para formar la solución general de la ecuación diferencial dada.

$\square$

Concluyamos la entrada con algunos ejemplos más.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 6 \dfrac{dy}{dx} -7y = 3e^{2x} -e^{-x}$$

Solución: En esta ocasión buscamos la solución general, así que debemos encontrar la solución complementaria $y_{c}(x)$ que satisface la ecuación diferencial homogénea asociada.

$$\dfrac{d^{2}y}{dx^{2}} + 6 \dfrac{dy}{dx} -7y = 0$$

La ecuación auxiliar es

$$k^{2} + 6k -7 = 0$$

De donde $k_{1} = 1$ y $k_{2} = -7$. En este caso la multiplicidad es de $s = 1$, es decir no hay raíces repetidas. La solución complementaria es

$$y_{c}(x) = c_{1}e^{x} + c_{2}e^{-7x}$$

La solución particular tiene la forma

$$y_{p}(x) = A_{0}e^{2x} + B_{0}e^{-x}$$

Derivando obtenemos,

$$\dfrac{dy_{p}}{dx} = 2A_{0}e^{2x} -B_{0}e^{-x} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y_{p}}{dx^{2}} = 4A_{0}e^{2x} + B_{0}e^{-x}$$

Sustituimos en la ecuación no homogénea.

$$(4A_{0}e^{2x} + B_{0}e^{-x}) + 6(2A_{0}e^{2x} -B_{0}e^{-x}) -7(A_{0}e^{2x} + B_{0}e^{-x}) = 3e^{2x} -e^{-x}$$

Reordenando obtenemos,

$$9A_{0}e^{2x} -12B_{0}e^{-x} = 3e^{2x} -e^{-x}$$

De donde

\begin{align*}
9A_{0} &= 3 \\
-12B_{0} &= -1
\end{align*}

Resolviendo obtenemos que

$A_{0} = \dfrac{1}{3} \hspace{1cm} y \hspace{1cm} B_{0} = \dfrac{1}{12}$

Por lo tanto, la solución particular es

$$y_{p}(x) = \dfrac{1}{3}e^{2x} + \dfrac{1}{12}e^{-x}$$

Así, la solución general de la ecuación diferencial corresponde a la superposición de ambas soluciones.

$$y(x) = c_{1}e^{x} + c_{2}e^{-7x} + \dfrac{1}{3}e^{2x} + \dfrac{1}{12}e^{-x}$$

$\square$

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -2\dfrac{dy}{dx} = 2e^{2x} + 4 \cos(2x)$$

Solución: Primero resolvemos la ecuación homogénea asociada

$$\dfrac{d^{2}y}{dx^{2}} -2\dfrac{dy}{dx} = 0$$

para obtener la solución complementaria. La ecuación auxiliar es

$$k^{2} -2k = 0$$

De donde $k_{1} = 0$ y $k_{2} = 2$. La solución complementaria es

$$y_{c}(x) = c_{1} + c_{2}e^{2x}$$

Para el caso no homogéneo notamos que $\alpha = 2$ es raíz de la ecuación auxiliar, por lo que la solución correspondiente al término $2e^{2x}$ esta dada por (\ref{31}) con multiplicidad $s = 1$, entonces la forma de la solución particular es

$$y_{p}(x) = A_{0}xe^{2x} + B_{1} \cos(2x) + B_{0} \sin (2x)$$

Derivando obtenemos,

$$\dfrac{dy_{p}}{dx} = A_{0}e^{2x} + 2A_{0}xe^{2x} -2B_{1}\sin(2x) + 2B_{0} \cos(2x)$$

y

$$\dfrac{d^{2}y_{p}}{dx^{2}} = 2A_{0}e^{2x} + 2A_{0}e^{2x} + 4A_{0}xe^{2x} -4B_{1} \cos(2x) -4B_{0} \sin(2x)$$

Sustituyendo en la ecuación diferencial y reordenando los términos se obtiene la relación

$$2A_{0}e^{2x} + (-4B_{1} -4B_{0}) \cos(2x) + (-4B_{0} + 4B_{1}) \sin(2x) = 2e^{2x} + 4 \cos(2x)$$

De donde

\begin{align*}
2A_{0} &= 2 \\
-4B_{1} -4B_{0} &= 4 \\
-4B_{0} + 4B_{1} &= 0
\end{align*}

Resolviendo obtenemos que

$$A_{0} = 1, \hspace{1cm} B_{1} = -\dfrac{1}{2} \hspace{1cm} y \hspace{1cm} B_{0} = -\dfrac{1}{2}$$

Por lo tanto, la solución particular es

$$y_{p}(x) = xe^{2x} -\dfrac{1}{2} \cos(2x) -\dfrac{1}{2} \sin(2x)$$

Así, la solución general es la superposición de ambas soluciones.

$$y(x) = c_{1} + c_{2}e^{2x} + xe^{2x} -\dfrac{1}{2} \cos(2x) -\dfrac{1}{2} \sin(2x)$$

$\square$

Ejemplo: Determinar la solución particular de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -4y = -12e^{-2x} + 15 \cos(x) + 8x$$

Solución: Para el caso homogéneo tenemos que la ecuación auxiliar es

$$k^{2} -4 = 0$$

Esto es,

$$k^{2} = 2$$

es decir, $k_{1} = 2$ y $k_{2} = -2$. Por tanto, la solución complementaria es

$$y_{c}(x) = c_{1}e^{2x} + c_{2}e^{-2x}$$

Notamos que $\alpha = -2$ es raíz de la ecuación auxiliar, así que la solución particular debe ser de la forma

$$y_{p}(x) = A_{0}xe^{-2x} + B_{1} \cos(x) + B_{0} \sin(x) + C_{1}x + C_{0}$$

Derivando obtenemos

$$\dfrac{dy_{p}}{dx} = A_{0}e^{-2x} -2A_{0}xe^{-2x} -B_{1} \sin(x) + B_{0} \cos(x) + C_{1}$$

y

$$\dfrac{d^{2}y_{p}}{dx^{2}} = -4A_{0}e^{-2x} + 4A_{0}xe^{-2x} -B_{1} \cos(x) -B_{0} \sin(x)$$

Sustituyendo en la ecuación diferencial y reordenando los términos, obtenemos

$$-4A_{0}e^{-2x} -5B_{1} \cos(x) -5B_{0} \sin(x) -4C_{1}x -4C_{0} = -12e^{-2x} + 15 \cos(x) + 8x$$

De donde

\begin{align*}
-4A_{0} &= -12 \\
-5B_{1} &= 15 \\
-5B_{0} &= 0 \\
-4C_{1} &= 8 \\
-4C_{0} &= 0
\end{align*}

Resolviendo se obtiene que

$$A_{0} = 3, \hspace{1cm} B_{1} = -3, \hspace{1cm} B_{0} = 0, \hspace{1cm} C_{1} = -2 \hspace{1cm} y \hspace{1cm} C_{0} = 0$$

Por lo tanto, la solución particular es

$$y_{p}(x) = 3xe^{-2x} -3 \cos(x) -2x$$

Y la solución general

$$y_{p}(x) = c_{1}e^{2x} + c_{2}e^{-2x} + 3xe^{-2x} -3 \cos(x) -2x$$

$\square$

Hasta aquí concluimos con esta entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Hallar la solución general de las siguientes ecuaciones diferenciales.
  • $\dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} -2y = 3e^{2x} -x^{2}$
  • $\dfrac{d^{2}y}{dx^{2}} -2 \dfrac{dy}{dx} + y = 4 \cos(3x) -2 \sin(2x)$
  • $\dfrac{d^{2}y}{dx^{2}} + \dfrac{3}{5} \dfrac{dy}{dx} -\dfrac{1}{5} y = \cos(x) + 5x^{2}$
  • $\dfrac{d^{2}y}{dx^{2}} -3 \dfrac{dy}{dx} -9y = 4 \cos(2x) -5e^{-x}$
  • $\dfrac{d^{2}y}{dx^{2}} -3 \dfrac{dy}{dx} -10y = 50 \cos(5x) -7e^{-2x} + 12e^{x} + 20x$
  1. Resolver el siguiente problema con valor inicial.
  • $\dfrac{d^{2}x}{dt^{2}} + \omega^{2} x = F_{0} \sin(\omega t); \hspace{1cm} x(0) = 0; \hspace{0.4cm} x^{\prime}(0) = 0$.
  1. Considerar la ecuación diferencial $$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = e^{\alpha x}$$ con $a$, $b$, $c$ y $\alpha$ constantes. La ecuación auxiliar de la ecuación homogénea asociada es $$ak^{2} + bk + c = 0$$
  • Si $\alpha$ no es una raíz de la ecuación auxiliar, demostrar que se puede encontrar una solución particular de la forma $y_{p}(x) = Ae^{\alpha x}$, donde $$A = \dfrac{1}{a \alpha^{2} + b \alpha + c}$$
  • Si $\alpha$ es una raíz de la ecuación auxiliar de multiplicidad uno, mostrar que se puede encontrar una solución particular de la forma $y_{p}(x) = Axe^{\alpha x}$, donde $$A = \dfrac{1}{2a \alpha + b}$$ Explica cómo se sabe que $\alpha \neq -\dfrac{b}{2a}$.
  • Si $\alpha$ es una raíz de la ecuación auxiliar de multiplicidad dos, demostrar que se puede encontrar una solución particular de la forma $y_{p}(x) = Ax^{2}e^{\alpha x}$, donde $$A = \dfrac{1}{2a}$$

Más adelante…

El método desarrollado en esta entrada es bastante práctico para resolver ecuaciones diferenciales de segundo orden no homogéneas con coeficientes constantes, sin embargo es un método limitado sólo a cierto tipo de funciones $g(x)$.

En la siguiente entrada desarrollaremos un método general que nos permite resolver éste mismo tipo de ecuaciones para cualquier función $g(x)$. Dicho método se conoce como método de variación de parámetros y corresponde a una extensión a orden superior del método desarrollado en la unidad anterior.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Analítica I: Grupos de transformaciones

Por Paola Berenice García Ramírez

Introducción

En la primera entrada de esta unidad [1a entrada] indicamos que serán muy importantes tanto las propiedades de los vectores como los lugares geométricos vistos en las primeras dos unidades, pues serán de vital apoyo para comprender los tipos de transformaciones que estaremos viendo.

En la entrada anterior [2a entrada] contemplamos los conceptos necesarios de las funciones que nos ayudaron a definir formalmente a una transformación. En ésta entrada vamos a comenzar por dos conjuntos: $\Delta_{2}$ y $\Delta_{3}$, las propiedades que cumplen y que nos ayudarán a comprender la definición de un grupo. Ambos conjuntos son los ejemplos más representativos de los grupos de transformaciones: los grupos simétricos de orden n. Pretendemos dar a conocer el tema en éste primer curso de Geometría Analítica de forma introductoria; pero puede profundizarse en asignaturas más avanzadas de la carrera universitaria, una de ellas es Álgebra Moderna en la Teoría de Grupos.

El conjunto $\Delta_{2}$

Antes que nada nos pondremos de acuerdo en la notación que vamos a usar: $x \mapsto y$ nos indicará que al elemento $x$ le corresponde el elemento $y$ bajo la función correspondiente.

El primero conjunto que conoceremos tiene dos elementos $\{ 0,1 \}$, a quien identificaremos por $\Delta_{2}$ y se lee «delta-dos». ¿Cuáles son las funciones de $\Delta_{2}$ en sí mismas? Primero tenemos a

\begin{align*}
0 & \xmapsto{id} 0\\
1 & \mapsto 1\\
\end{align*}

a quien llamaremos por $id$ (identidad de $\Delta_{2}$); porque al elemento $0$ le corresponde él mismo y al elemento $1$ le corresponde él mismo. La siguiente función es

\begin{align*}
0 & \xmapsto{\rho} 1\\
1 & \mapsto 0\\
\end{align*}

que denotamos por $\rho$. ¿Qué ocurre si recurrimos a la función composición $\rho \circ \rho$? Si comenzamos con $0$ sabemos bajo $\rho$ que $\rho (0) = 1$, por ello

\begin{align*}
(\rho \circ \rho)(0) &= \rho [\rho (0)]\\
& = \rho (1) = 0.\\
\end{align*}

Y si comenzamos con $\rho (1)$, en forma análoga obtendremos $(\rho \circ \rho)(1) = 1$. Podemos darnos cuenta que $\rho$ es su propio inverso, pues $(\rho \circ \rho = id)$.

Otra forma en que podemos trabajar la composición de funciones es siguiendo los elementos mediante una tablita. Vamos a ver que $\rho \circ \rho = id$ como sigue:

\begin{align*}
0 & \xmapsto{p} 1 \xmapsto{p} 0\\
1 & \mapsto 0 \mapsto 1\\
\end{align*}

donde colocamos la función correspondiente sobre cada flecha entre los elementos y nos damos cuenta que los elementos iniciales coinciden con las imágenes finales bajo la composición. Entonces concluimos que se cumple $\rho \circ \rho = id$.

Tenemos otras dos funciones:

\begin{align*}
0 & \xmapsto{C_{0}} 0 \hspace{0.2cm} & 0 \xmapsto{C_{1}} 1\\
1 & \mapsto 0 \hspace{0.18cm} &1 \mapsto 1\\
\end{align*}

e independientemente del elemento inicial, bajo $C_{0}$ corresponde el elemento $0$ y bajo $C_{1}$ corresponde el elemento $1$. Tanto $C_{0}$ como $C_{1}$ se consideran funciones constantes; mientras que las únicas transformaciones que contemplaremos de $\Delta_{2}$ son $ id $ y $ \rho $.

El conjunto $\Delta_{3}$

Ahora consideremos al conjunto $\Delta_{3} := \{ 0,1,2 \}$ e indicaremos las funciones de $\Delta_{3}$ en sí mismo bajo la notación

\begin{align*}
0 & \mapsto x\\
1 & \mapsto y\\
2 & \mapsto z
\end{align*}

donde $x, y, z \in \Delta_{3}$. Como $x, y, z \in \Delta_{3}$ son imágenes arbitrarias, habrán $3^3 = 27$ funciones, pero sólo 6 serán transformaciones. Vamos a explicar porqué sólo 6 transformaciones: puesto que queremos biyectividad, al elegir a $0$ y corresponderle su imagen, entonces al $1$ le podrán corresponder sólo $2$ opciones y a su vez, cuando llegamos al $2$, ya sólo le podrá corresponder $1$ opción. En resumen, en la primera posición hay $3$ opciones, en la segunda hay $2$ opciones y en la tercera sólo $1$ y el número de transformaciones será de $3 \times 2 \times 1 = 6$.

Las primeras 3 transformaciones que veremos son:

\begin{align*}
&0 \xmapsto{id} 0 &0 \xmapsto{\rho_{1}} 1& \hspace{0.2cm} &0 \xmapsto{\rho_{2}} 2\\
&1 \mapsto 1 &1 \mapsto 2 & \hspace{0.2cm} &1 \mapsto 0\\
&2 \mapsto 2 &2 \mapsto 0 & \hspace{0.2cm} &2 \mapsto 1
\end{align*}

De hecho a las 6 transformaciones las visualizaremos como las «simetrías» de un triángulo equilátero. Las primeras 3 corresponden a rotaciones (la identidad es quien rota $0$ grados). Diremos que $\rho_{1}$ y $\rho_{2}$ son inversas, pues $\rho_{1} \circ \rho_{2} = \rho_{2} \circ \rho_{1} = id$ (vamos a dejar esta relación como ejercicio de la tarea moral, para practicar). Es decir, con cualquier elemento inicial, la imagen de la composición será el mismo elemento inicial. Esto quiere decir que una rotación rotará $120°$ en una dirección y al aplicar la segunda rotación rota $120°$ pero en dirección contraria. Los triángulos correspondientes son:

También se cumple que $\rho_{1} \circ \rho_{1} = \rho_{2}$, pues

\begin{align*}
0 & \xmapsto{\rho_{1}} 1 \xmapsto{\rho_{1}} 2\\
1 & \mapsto 2 \mapsto 0 \\
2 & \mapsto 0 \mapsto 1
\end{align*}

Entonces decimos que cumple la siguiente definición:

Definición. Sea $f$ cualquier transformación, decimos que

\begin{equation*}
f^{n} = f \circ f \circ \cdots \circ f,
\end{equation*}

es decir, $f^{n}$ es $f$ compuesta consigo misma n veces.

En nuestro ejemplo, escribiremos que se cumple entonces la relación $\rho_{1}^{2} = \rho_{2}$. Por otro lado, para $\Delta_{3}$ tenemos otras 3 transformaciones llamadas transposiciones que geométricamente las visualizamos como reflexiones y son:

\begin{align*}
&0 \xmapsto{\alpha} 0 & 0 \xmapsto{\beta} 2 & \hspace{0.2cm} & 0 \xmapsto{\gamma} 1\\
&1 \mapsto 2 &1 \mapsto 1 & \hspace{0.2cm} &1 \mapsto 0\\
&2 \mapsto 1 &2 \mapsto 0 & \hspace{0.2cm} &2 \mapsto 2
\end{align*}

El triángulo que representa a estas transformaciones es:

Las direcciones de la flecha dependerán de cada transformación. Ahora vamos a probar una relación que cumple $ \alpha, $ la cual es:

Demostrar que se cumple $\alpha^{2} = id$.

Demostración. En efecto, recordemos que $ \alpha^{2} = \alpha \circ \alpha$, así que desarrollaremos el seguimiento de elementos a través de la composición $\alpha \circ \alpha$ como sigue:

\begin{align*}
0 & \xmapsto{\alpha} 0 \xmapsto{\alpha} 0\\
1 & \mapsto 2 \mapsto 1 \\
2 & \mapsto 1 \mapsto 2
\end{align*}

y observemos que al final de la composición obtuvimos $\alpha^2 (0)=0$, $\alpha^2 (1)=1$, $\alpha^2 (2)=2$ y con ello vemos que $\alpha^{2}=id.$

$\square$

En la sección de tarea moral dejaremos unos ejercicios de práctica sobre más relaciones que cumplen $\alpha$, $\beta$ y $\gamma$; como son $\alpha^2 = \beta^2 = \gamma^2 = id$, $\alpha \circ \beta = \rho_{1}$ y que $\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta = \gamma$.

A continuación vamos a definir a un conjunto de transformaciones que cumplen ciertas propiedades interesantes y para ejemplificar a dicho conjunto retomaremos uno de los conjuntos vistos en esta entrada.

Grupos de transformaciones

Definición. A un conjunto $G$ de transformaciones de un conjunto $A$ le llamaremos un grupo de transformaciones de $A$ si cumple:

  1. $id_{A} \in G$
  2. $f,g \in G \longrightarrow g \circ f \in G$
  3. $f \in G \longrightarrow f^{-1} \in G$

Como ejemplos, tomemos a $A$ como $A = \Delta_{3}$. Sabemos que tiene 6 elementos, pero un grupo de transformaciones es el de las rotaciones ya que contiene a la identidad $(1)$, es cerrado bajo la composición $(2)$ y es cerrado bajo inversas $(3)$.

Otro grupo de transformaciones de $A=\Delta_{3}$ es el de las transposiciones (o reflexiones) junto con la identidad.

Definición. Dado un conjunto cualquiera de transformaciones de $A$, el grupo que genera es el grupo de transformaciones obtenido de todas las posibles composiciones con elementos de él o sus inversos.

Como ejemplo de un grupo que genera tenemos a $\alpha$ y $\beta$ ya que generan todas las transformaciones de $\Delta_{3}$.

También $\rho_{1}$ genera el grupo de rotaciones de $\Delta_{3}$ ( porque $\rho^{3} = id$, $\rho_{1}$ y $\rho^{2} = \rho_{2}$).

Para terminar con esta entrada daremos un concepto adicional. Si te llamaron la atención los conjuntos $\Delta_{2}$ y $\Delta_{3}$ y quieres saber más de ellos o si hay más conjuntos similares, la respuesta es sí. Pertenecen a un conjunto de transformaciones, el cual definiremos a continuación:

Definición. Al conjunto de todas las transformaciones de un conjunto con $n$ elementos $\Delta_{n} := \{ 0, 1, \cdots, n-1 \}$ se le llama grupo simétrico de orden $n$ y se le denota $S_{n}$. Dicho grupo tiene $n! = n \times (n-1) \times (n-2 ) \cdots \times 2 \times 1$ ($n$ factorial) elementos a los cuales se le llaman permutaciones.

Tarea moral

  • Considerando el conjunto $\Delta_{3}$ y sus transformaciones $id$, $\rho_{1}$ y $\rho_{2}$ que vimos en esta entrada, demostrar que $\rho_{1}$ y $\rho_{2}$ son inversas, es decir:
    1. $\rho_{1} \circ \rho_{2} = \rho_{2} \circ \rho_{1} = id$
  • Considerando el conjunto $\Delta_{3}$ y sus transformaciones $id$, $\alpha$, $\beta$ y $\gamma$ que vimos en esta entrada, demostrar que se cumplen las relaciones siguientes:
    1. $\alpha^2 = \beta^2 = \gamma^2 = id$. [Sugerencia: Hacer cada composición por separado].
    2. $\alpha \circ \beta = \rho_{1}$
    3. $\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta = \gamma$.
  • Demuestren que $\rho_{1}$ genera el grupo de rotaciones de $\Delta_{3}$. [Sugerencia: Demuestren que se cumplen las relaciones $\rho^{3} = id$, y $\rho^{2} = \rho_{2}$), porque $\rho_{1}$ es un elemento de dicho grupo de rotaciones].

Más adelante

En esta entrada vimos que en el conjunto $\Delta_{3}$ hay dos posibles grupos de transformaciones: el de las rotaciones y el de las transposiciones junto con la identidad. Mediante triángulos pudimos visualizar el comportamiento que hay en los elementos iniciales y sus imágenes; con ello se comprende porque están en cada grupo.

En la siguiente entrada continuaremos con un primer grupo de transformaciones en los \mathbb{R}, que es de las transformaciones afines, que tiene una muy buena relación con un lugar geométrico que ya hemos visto: las rectas. La entrada [Rectas en forma paramétrica] de la Unidad 1 nos podrá ayudar como repaso si lo requerimos.

Enlaces

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Geometría Analítica I: Recordatorio de funciones

Por Paola Berenice García Ramírez

Introducción

En la entrada anterior [Enlace entrada anterior] se introdujo la esencia del concepto de transformaciones y que estaremos viendo diversos tipos de transformaciones, pero para que no trabajemos en un espacio desconocido, en ésta entrada hablaremos de nociones básicas de funciones que debemos tener presentes para luego definir formalmente el concepto de qué es una transformación.

Funciones

Sean $E$ y $F$ dos conjuntos no vacíos, denominaremos función de un conjunto $E$ en un conjunto $F$ (o función definida en $E$ con valores en $F$) a una regla o ley $f$ que a todo elemento $x \in E$ le pone en correspondencia un determinado elemento $f(x) \in F$.

Al conjunto de los elementos $x \in E$ les llamamos dominio o argumento de la función $f$ y normalmente su notación es $Dom(f)$. Al conjunto de los elementos $f(x) \in F$ le llamamos rango o imagen y se denota por $Im(f)$. Además se encuentra el conjunto $F$ del contradominio, el cual contiene al rango.

A una función la designamos por lo general con la letra $f$ o con el símbolo $f: E \longrightarrow F$, que nos señala que $f$ aplica el conjunto $E$ en $F$. También podemos emplear la notación $x \mapsto f(x)$ para indicarnos que al elemento $x$ le corresponde el elemento $f(x)$. Cabe mencionar que en la mayoría de los casos las funciones se definen mediante igualdades, las cuales describen la ley de correspondencia.

Ejemplo 1. Podemos decir que la función $f$ está definida mediante la igualdad $f(x) = \sqrt{ x^2 + 1}$, $x \in [a,b]$. Si $y$ es la notación general de los elementos del conjunto $F$, o sea $F = \{y\}$, la aplicación $f: E \longrightarrow F$ se escribe en forma de la igualdad $y = f(x)$, y decimos entonces que la función se encuentra dada en su forma explícita.

Ejemplo 2. Mediante la siguiente imagen vamos a obtener $Domf$, $Imf$ y el $Codf$.

Podemos ver que $Domf$ es el conjunto formado por $\{1, -2, 2, -3, 3, 4\} $. La $Imf$ es $\{2, -4, 4, -6, 6, 8\}$ y el $Codf$ es $\{-2,2,-4,4,-6,6,8,-8\}$. Podemos darnos cuenta que no necesariamente la $Imf$ debe coincidir siempre con el $Codf$.

Ejemplo 3. Sea la función definida por la ecuación $y = \sqrt{3 – 9x}$. Debido a que la función es una raíz cuadrada, $y$ es función de $x$ sólo para $3-9x \geq 0$; pues para cualquier $x$ que satisfaga esta desigualdad, se determina un valor único de $y$. Procedemos a resolver la desigualdad:

\begin{align*}
3-9x & \geq 0,\\
3 & \geq 9x,\\
\dfrac{3}{9} & \geq x,\\
\dfrac{1}{3} & \geq x.
\end{align*}

Sin embargo si $x > \dfrac{1}{3}$, obtenemos la raíz cuadrada de un número negativo y en consecuencia no existe un número real $y$. Por tanto $x$ debe estar restringida a $\dfrac{1}{3} \geq x $. Concluimos que el $Domf$ es el intervalo $\left(- \infty, \dfrac{1}{3}\right]$ y la $Imf$ es $[0, + \infty).$

Gráfica de $f(x) = \sqrt{3-9x}$

Función inyectiva, sobreyectiva y biyectiva

Definición. Una función $f: E \longrightarrow F$ se denomina:

  • Inyectiva si $f(x) = f(x’)$ implica que $x = x’$. Otra forma de expresarlo es que no existen dos elementos de $E$ con una misma imagen ($x \neq x $ implica que $f(x) \neq f(x’)$).
  • Suprayectiva o sobreyectiva si $\forall y \in F$ existe $x \in E$ tal que $f(x)=y$. Es decir que todos los elementos del conjunto $F$ son imagen de algún elemento de $E$.
  • Biyectiva si la función cumple ser inyectiva y suprayectiva.

Problema 1. Consideren la función $f: \mathbb{R} \longrightarrow \mathbb{R} $ definida por $f(x) = \dfrac{3x-1}{x+3}$ y determinen su dominio y si es biyectiva.

Solución. Veamos el dominio de la función, para que la función racional $f(x) = \dfrac{3x-1}{x+3}$ no se indetermine debe cumplirse que:

\begin{align*}
x+3 & \neq 0,\\
x & \neq -3,\\
\therefore Domf & = \mathbb{R} – \{-3 \}.\\
\end{align*}

Ahora veamos si $f$ es biyectiva. Sean $a,b \in \mathbb{R} – \{ -3 \}$, para que $f$ sea inyectiva debe cumplir que $f(x) = f(x’)$ implica que $x = x’$, por ello:

\begin{equation*}
f(a) = f(b) \hspace{0.5cm} \Longrightarrow \hspace{0.5cm} \dfrac{3a-1}{a+3} = \dfrac{3b-1}{b+3}.\\
\end{equation*}

Resolviendo:

\begin{align*}
(3a-1)(b+3) &= (3b-1)(a+3),\\
3ab + 9a – b -3 &= 3ab +9b -a -3,\\
10a &= 10b,\\
a &= b.
\end{align*}

Por tanto $f$ es inyectiva. Ahora veamos si $f$ es suprayectiva, sean $x, y \in E$ entonces:

\begin{align*}
f(x) = f(y) \hspace{0.5cm} &\Longrightarrow \hspace{0.5cm} y = \dfrac{3x-1}{x+3},\\
\end{align*}

Resolviendo

\begin{align*}
y(x+3) &= 3x-1,\\
yx +3y &= 3x-1,\\
yx-3x &= -3y-1,\\
x(y-3) &= -3y-1,
\end{align*}

y despejando a $x$

\begin{align*}
x &= \dfrac{-3y-1}{y-3},\\
x &= \dfrac{3y+1}{3-y},
\end{align*}

y como $3-y \neq 0$, entonces $y \neq 3$. En consecuencia $y \in \mathbb{R} – \{3 \}$. Pero al estar definida $f$ por $f: \mathbb{R} \longrightarrow \mathbb{R}$, tenemos que $f$ no es suprayectiva.

\begin{align*}
\therefore f \text{ no es biyectiva}.
\end{align*}

Composición de funciones y funciones inversas.

Definición. Dadas las funciones $f: A \longrightarrow B$ y $g: B \longrightarrow C$ , donde la imagen de $f$ está contenida en el dominio de $g$, se define la función composición $(g \circ f): A \longrightarrow C$ como $(g \circ f)(x) = g(f(x)),$ para todos los elementos $x$ de $A$.

La composición de funciones se realiza aplicando dichas funciones en orden de derecha a izquierda, de manera que en $(g \circ f)(x)$ primero actúa la función $f$ y luego la $g$ sobre $f(x)$.

Ejemplo 4. Sean las funciones $f$ y $g$ tales que $f(x)=x+1$ y $g(x) = x^2 +2$, calcularemos las funciones composición $(g \circ f)(x)$ y $(f \circ g)(x)$. Tenemos para $(g \circ f)(x)$

\begin{align*}
(g \circ f)(x) = g[f(x)] &= g(x+1),\\
&= (x+1)^2 + 2,\\
&= x^2 +2x +1 +2,\\
&= x^2 + 2x +3.
\end{align*}

Y para $(f \circ g)(x)$

\begin{align*}
(f \circ g)(x) = f[g(x)] &= f(x^2+2),\\
&= (x^2 + 2) + 1,\\
&= x^2 + 3.\\
\end{align*}

Observemos que la composición no es conmutativa pues las funciones $(f \circ g)$ y $(g \circ f)$ no son iguales.

Definición. Llamaremos función inversa de $f$ a otra función $f^{-1}$ que cumple que si $f(x)=y$, entonces $f^{-1}(y)=x$.

Sólo es posible determinar la función inversa $f^{-1}: B \longrightarrow A$ si y sólo si $f: A \longrightarrow B$ es biyectiva.

Notemos que la función inversa $f^{-1}: B \longrightarrow A$ también es biyectiva y cumple:

\begin{align*}
f^{-1}(f(x)) &= x, \hspace{0.2cm} \forall x \in A,\\
f(f^{-1}(y)) &= y, \hspace{0.2cm} \forall y \in B.
\end{align*}

Dicho de otro modo,

\begin{align*}
f^{-1} \circ f &= id_{A},\\
f \circ f^{-1} &= id_{B},
\end{align*}

donde $id_{A}$ e $id_{B}$ son las funciones identidad de $A$ y $B$ respectivamente. Es decir, son las funciones $id_{A}: A \longrightarrow A$ definida por $id_{A}(x) = x$ e $id_{B}: B \longrightarrow B$ definida por $id_{B}(y) = y$.

Concepto formal de transformación

Ahora hemos llegado a la definición de nuestro interés.

Definición. Una transformación en un plano A es una función biyectiva $f: A \longrightarrow A$ del plano en sí mismo.

Llamaremos transformación en el plano, a toda función que hace corresponder a cada punto del plano, otro punto del mismo.

Tarea moral

Vamos a realizar unos par de ejercicios para repasar y practicar los conceptos que vimos en esta entrada.

Ejercicio 1. Consideren la siguiente función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \dfrac{3x-1}{x+3}$ y determinen su dominio, si ella es inyectiva, suprayectiva y la inversa de $f$.

Ejercicio 2. Sean $f: X \longrightarrow Y$ y $g: Y \longrightarrow Z$ funciones, demuestren que

(1) Si $f$ y $g$ son inyectivas, entonces $g \circ f$ es inyectiva.

(2) Si $g \circ f$ es suprayectiva, entonces $g$ es suprayectiva.

Más adelante

En esta entrada vimos las nociones básicas de funciones que nos llevaron a definir formalmente el concepto de una transformación. Dicho concepto nos permitirá comenzar a trabajar en la siguiente entrada con unos primeros conjuntos cuyas propiedades hacen que tengan un nombre especial: los grupos de transformaciones.

Enlaces

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso: