Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna I: Puntos de Fermat y triángulos de Napoleón

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión veremos algunos resultados sobre los puntos de Fermat y los triángulos de Napoleón, objetos que aparecen al construir triángulos equiláteros sobre los lados de un triángulo cualquiera.

Definición. Sean $\triangle ABC$ y puntos $A’$, $B’$, $C’$ tales que los triángulos $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son equiláteros y ninguno se traslapa con $\triangle ABC$, decimos que $ABCA’B’C’$ es una configuración externa de Napoleón.

De manera análoga definimos una configuración interna de Napoleón, si los triángulos $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son equiláteros y todos se traslapan con $\triangle ABC$.

Puntos de Fermat

Teorema 1. Sea $ABCA’B’C’$ una configuración externa de Napoleón, entonces
$i)$ los circuncírculos de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ y las rectas $AA’$, $BB’$, $CC’$ son concurrentes, al punto de concurrencia se le conoce como primer punto de Fermat,
$ii)$ $AA’ = BB’ = CC’$.

Demostración. Sea $F_1 = \Gamma(AB’C) \cap \Gamma(ABC’)$ la intersección de los circuncírculos de $\triangle AB’C$ y $\triangle ABC’$ respectivamente.

Como $\square AF_1CB’$ y $\square AF_1BC’$ son cíclicos entonces los pares de ángulos $\angle BC’A$, $\angle AF_1B$ y $\angle AB’C$, $\angle CF_1A$ son suplementarios, por lo tanto, $\angle AF_1B = \angle CF_1A = \dfrac{2\pi}{3}$.

Figura 1

En consecuencia, $\angle BF_1C = \dfrac{2\pi}{3}$, por lo tanto, $\angle BF_1C$ y $\angle PA’B$ son suplementarios, así, $\square F_1BA’C$ es cíclico, es decir $F_1 \in \Gamma(A’BC)$.

Por otra parte, $\angle BF_1A’ = \angle BCA$, pues abarcan el mismo arco, entonces, $\angle AF_1B + \angle BF_1A’ = (\pi – \angle BC’A) + \angle BCA’ = \pi – \dfrac{\pi}{3} + \dfrac{\pi}{3} = \pi$, por lo tanto, $F_1 \in AA’$.

Igualmente podemos ver que $F_1 \in BB’$ y $F_1 \in CC’$.

Finalmente, hagamos una rotación de $\dfrac{\pi}{3}$ en sentido contrario al de las manecillas y centro en $B$, entonces $A$ toma el lugar de $C’$ y $A’$ toma el lugar de $C$, por lo tanto, $AA’ = CC’$.

Con una rotación de $\dfrac{\pi}{3}$ en el sentido de las manecillas, con centro en $C$, $A’$ toma el lugar de $B$ y $A$ el de $B’$, por lo tanto, $CC’ = AA’ = BB’$.

$\blacksquare$

Nota. Si $ABCA’B’C’$ es una configuración interna de Napoleón, los mismos resultados son ciertos y al punto de concurrencia le llamamos segundo punto de Fermat.

Problema de Fermat

Problema de Fermat. Dado un triángulo $\triangle ABC$ tal que ninguno de sus ángulos internos es mayor a $\dfrac{2\pi}{3}$, encuentra el punto $P$ que minimiza la suma de las distancias a los vértices de $\triangle ABC$, $PA + PB + PC$.

Solución. Sea $P$ un punto fuera de $\triangle ABC$ (figura 2), sin pérdida de generalidad supongamos que $P$ y $C$ se encuentran en lados contrarios respecto de $AB$.

Sea $D = PC \cap AB$ aplicando la desigualdad del triángulo tenemos lo siguiente
$PA + PB + PC = P’A + P’B + PC$
$= P’A + P’B + PD + DC$
$= P’A + P’B + P’D + DC$
$\geq P’A + P’B + P’C$.

Figura 2

De lo anterior concluimos que el punto buscado debe estar dentro de $\triangle ABC$.

Ahora supongamos que $P$ está dentro de $\triangle ABC$ (figura 3), sea $\triangle BC’P’$ la imagen de $\triangle BAP$ bajo una rotación de $\dfrac{\pi}{3}$ en sentido contrario al de las manecillas y centro en $B$.

Como $BP = BP’$ y $\angle PBP’ = \dfrac{\pi}{3}$ entonces $\triangle BPP’$ es equilátero y tenemos lo siguiente
$PA + PB + PC = P’C’ + PP’ + PC \geq CC’$.

Figura 3

Por lo tanto, para que la suma de distancias sea mínima es necesario que $P \in CC’$, pero por un razonamiento análogo también es necesario que $P \in AA’$ y $P \in BB’$, donde $ABCA’B’C’$ es una configuración externa de Napoleón.

Por el teorema 1, $P = F_1$, es el primer punto de Fermat.

Sin embargo, notemos que, $\angle BPC = \pi – \angle P’PB = \dfrac{2\pi}{3}$, por lo tanto, por el ejercicio 3 de la entrada desigualdad del triángulo, cualquier ángulo interno de $\triangle ABC$ debe ser menor o igual que $\dfrac{2\pi}{3}$, si esto se cumple entonces $F_1$ es el punto buscado.

$\blacksquare$

Triángulos de Napoleón

Teorema 2, de Napoleón. Sea $ABCA’B’C’$ una configuración externa de Napoleón, entonces los centroides de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son los vértices de un triángulo equilátero, conocido como triángulo exterior de Napoleón y su centroide coincide con el centroide de $\triangle ABC$.

Demostración. Sean $G_1$, $G_2$ y $G_3$ los centroides de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ respectivamente, $G$ el centroide de $\triangle ABC$ y $M$ el punto medio de $BC$.

Figura 4

Como $\dfrac{MA}{MG} = \dfrac{MA’}{MG_1} = 3$ por el reciproco del teorema de Tales $GG_1 \parallel AA’$, además $AA’ = 3GG_1$.

Igualmente podemos ver que $GG_2 \parallel BB’$, $BB’ = 3GG_2$ y $GG_3 \parallel CC’$ y $CC’ = 3GG_3$.

Como $AA’ = BB’ = CC’$, entonces $GG_1 = GG_2 = GG_3$, por lo tanto, $G$ es el circuncentro de $\triangle G_1G_2G_3$.

Por el teorema 1, $\angle A’F_1B’ = \dfrac{2\pi}{3}$, por lo tanto, $\angle G_1GG_2 = \dfrac{2\pi}{3}$.

Igualmente vemos que $\angle G_2GG_3 = \angle G_3GG_1 = \dfrac{2\pi}{3}$.

Por criterio de congruencia LAL, $\triangle GG_1G_2 \cong \triangle GG_2G_3 \cong \triangle GG_1G_3$.

En consecuencia, $\triangle G_1G_2G_3$ es equilátero, como en un triángulo equilátero el circuncentro y el centroide coinciden entonces $G$ es el centroide de $\triangle G_1G_2G_3$.

$\blacksquare$

Nota. Si $ABCA’B’C’$ es una configuración interna de Napoleón se obtienen los mismos resultados y al triángulo formado por los centroides se le conoce como triángulo interior de Napoleón.

Área del triángulo externo de Napoleón

Teorema 3. El área del triangulo externo de Napoleón es igual a la la mitad del área de su triángulo de referencia mas un sexto de la sumas de las áreas de los triángulos equiláteros construidos.

Demostración. Sea $ABCA’B’C’$ una configuración externa de Napoleón y $G_1$, $G_2$, $G_3$ los centroides de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ respectivamente.

Figura 5

Sean $F_1$ el primer punto de Fermat, como $AF_1$ es una cuerda común de $\Gamma(ABC’)$ y $\Gamma(AB’C)$, entonces $G_2G_3$ es la mediatriz de $AF_1$, es decir, la reflexión de $A$ en $G_2G_3$ es $F_1$.

Por lo tanto, $\triangle AG_2G_3$ y $\triangle F_1G_2G_3$ son congruentes.

Similarmente vemos que $\triangle BG_1G_3 \cong \triangle F_1G_1G_3$ y $\triangle CG_1G_2 \cong \triangle F_1G_1G_2$.

Esto implica que,
$(\triangle G_1G_2G_3) = \dfrac{(AG_3BG_1CG_2)}{2} $
$= \dfrac{1}{2} ((\triangle ABC) + (\triangle ABG_3) + (\triangle BCG_1) + (\triangle ACG_2))$
$= \dfrac{1}{6} ((\triangle ABC’) + (\triangle A’BC) + (\triangle AB’C)) + \dfrac{(\triangle ABC)}{2}$.

$\blacksquare$

Área del triángulo interno de Napoleón

Teorema 3. El área del triangulo interno de Napoleón es igual a menos la mitad del área de su triángulo de referencia mas un sexto de la sumas de las áreas de los triángulos equiláteros construidos.

Demostración. Sea $ABCA’’B’’C’’$ una configuración interna de Napoleón, $F_2$ el segundo punto de Fermat y $G’_1$, $G’_2$, $G’_3$ los centroides de $\triangle A’’BC$, $\triangle AB’’C$, $\triangle ABC’’$ respectivamente.

Sea $F_2$ el segundo punto de Fermat, siguiendo un razonamiento análogo al teorema anterior tenemos
$(\triangle G’_1G’_2G’_3) $
$= (\triangle F_2G’_1G’_3) + (\triangle F_2G’_3G’_2) – (\triangle F_2G’_1G’_2)$
$\begin{equation} = (\triangle BG’_1G’_3) + (\triangle AG’_3G’_2) – (\triangle CG’_1G’_2). \end{equation}$.

Figura 6

Por otro lado,
$\dfrac{1}{3}((\triangle A’BC) + (\triangle AB’C) + (\triangle ABC’))$
$\begin{equation} = (\triangle G’_1BC) + (\triangle AG’_2C) + (\triangle ABG’_3). \end{equation}$.

Sean, $E = AB \cap G’_1G’_3$, $D = BC \cap G’_1G’_3$, $J = BC \cap G’_2G’_3$ e $I = G’_1C \cap G’_2G’_3$, entonces tenemos lo siguiente:

$(\triangle G’_1BC) = (\triangle BED) + (\triangle BEG’_1) + (\triangle CJI) + (\square G’_1DJI)$.

$(\triangle ABG’_3) = (\triangle BEG’_3) + (\triangle AG’_2G’_3) + (AEDJG’_2) + (\triangle DG’_3J)$.

Sustituyendo en $(2)$
$\dfrac{1}{3}((\triangle A’BC) + (\triangle AB’C) + (\triangle ABC’)) $
$= ((\triangle BEG’_3) + (\triangle BEG’_1)) + (\triangle AG’_2G’_3) + ((\triangle BED) + (AEDJG’_2)$
$+ (\triangle CJI) + (\triangle AG’_2C)) + ((\triangle DG’_3J) + (\square G’_1DJI))$
$= (\triangle BG’_1G’_3) + (\triangle AG’_2G’_3) + ((\triangle ABC) – (\triangle CIG’_2)) + (\triangle IG’_1G’_3)$
$= (\triangle BG’_1G’_3) + (\triangle AG’_2G’_3) + ((\triangle ABC) – (\triangle CIG’_2)) + ((\triangle G’_1G’_2G’_3) – (\triangle G’_1G’_2I))$
$ = (\triangle ABC) + ((\triangle BG’_1G’_3) + (\triangle AG’_2G’_3) – (\triangle CG’_1G’_2)) + (\triangle G’_1G’_2G’_3)$.

Usando $(1)$
$\dfrac{1}{3}((\triangle A’BC) + (\triangle AB’C) + (\triangle ABC’))$
$= (\triangle ABC) + 2(\triangle G’_1G’_2G’_3)$.

Por lo tanto,
$(\triangle G’_1G’_2G’_3) = \dfrac{1}{6} ((\triangle ABC’) + (\triangle A’BC) + (\triangle AB’C)) –  \dfrac{(\triangle ABC)}{2}$.

$\blacksquare$

Corolario. La diferencia entre el área del triángulo externo de Napoleón y el área del triángulo interno de Napoleón es igual al área de su triángulo de referencia.

Como consecuencia de los teorema 3 y 4 tenemos,
$(\triangle G_1G_2G_3) – (\triangle G’_1G’_2G’_3) = (\triangle ABC)$.

$\blacksquare$

Rectas de Euler concurrentes

Proposición 1. Sea $ABCA’B’C’$ una configuración externa de Napoleón y $F_1$ el primer punto de Fermat, entonces las rectas de Euler de $\triangle ABF_1$, $\triangle AF_1C$ y $\triangle F_1BC$ concurren en el centroide de $\triangle ABC$.

Demostración. Sean $G$, $G’$ y $G_3$ los centroides de $\triangle ABC$, $\triangle ABF_1$ y $\triangle ABC’$ respectivamente, consideremos el $M$ el punto medio de $AB$.

Figura 7

Por el teorema 1, $G_3$ es el circuncentro de $\triangle ABF_1$ y $C$, $F_1$ y $C’$ son colineales, como $G_3$, $G’$ y $G$ son los centroides de $\triangle ABC’$, $\triangle AF_1$ y $\triangle ABC$ entonces
$\dfrac{MG_3}{MC’} = \dfrac{MG’}{MF_1} = \dfrac{MG}{MC} = \dfrac{1}{3}$.

Por el reciproco del teorema de Tales $G_3G’ \parallel C’F_1$ y $G’G \parallel F_1C$.

Por lo tanto, $G_3$, $G’$ y $G$ son colineales, y $G_3G’$ es la recta de Euler de $\triangle ABF_1$.

Igualmente podemos ver que las rectas de Euler de $\triangle AF_1C$ y $\triangle F_1BC$ pasan por el centroide de $\triangle ABC$.

$\blacksquare$

Hexágono de Napoleón

Proposición 2. Sea $ABCA’B’C’$ una configuración externa de Napoleón, sean $G_1$, $G_2$, $G_3$ los centroides de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ y $G_a$, $G_b$, $G_c$ los centroides de $\triangle AB’C’$, $\triangle A’BC’$, $\triangle A’B’C$, entonces $G_aG_3G_1G_bG_2G_c$ es un hexágono regular.

Demostración. Sea $M$ el punto medio de $CB’$, en $\triangle MAA’$ tenemos
$\dfrac{MG_2}{MA} = \dfrac{MG_c}{MA’} = \dfrac{1}{3}$.

Por lo tanto, $G_2G_c \parallel AA’$ y $3G_2G_c = AA’$.

Figura 8

Análogamente consideremos $N$ el punto medio de $CA’$, en $\triangle NBB’$ tenemos
$\dfrac{NG_c}{NB’} = \dfrac{NG_1}{NB} = \dfrac{1}{3}$.

Por lo tanto, $G_1G_c \parallel BB’$ y $3G_1G_c = BB’$.

Por el teorema 1, $AA’ = BB’$, por lo que $G_1G_c = G_cG_2$, sea $F_1$ el primer punto de Fermat entonces $\angle G_1G_cG_2 = \angle BF_1A = \dfrac{2\pi}{3}$.

Igualmente podemos ver que los demás lados del hexágono son iguales y que el ángulo entre ellos es de $\dfrac{2\pi}{3}$.

En conclusión, $G_aG_3G_1G_bG_2G_c$ es un hexágono regular.

$\blacksquare$

Más adelante…

Con la siguiente entrada daremos inicio a la unidad III y con la ayuda de segmentos dirigidos mostraremos el teorema de Menelao, que nos dice cuando tres puntos sobre los lados de un triángulo son colineales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $ABCA’B’C’$ una configuración interna de Napoleón (figura 6), para los ejercicios 1, 2 y 3 demuestra lo siguiente:
    $i)$ los circuncírculos de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ y las rectas $AA’$, $BB’$, $CC’$ son concurrentes,
    $ii)$ $AA’ = BB’ = CC’$.
  2. Prueba que los centroides de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son los vértices de un triángulo equilátero y que su centroide coincide con el centroide de $\triangle ABC$ (figura 6).
  3. Considera $F_2$, el segundo punto de Fermat, muestra que las rectas de Euler de $\triangle ABF_2$, $\triangle AF_2C$ y $\triangle F_2BC$ concurren en el centroide de $\triangle ABC$ (figura 6).
  4. Sean $ABCA’B’C’$ una configuración externa de Napoleón y $ABCA’’B’’C’’$ una configuración interna de Napoleón, demuestra que
    $i)$ el punto medio de $CC»$ coincide con el punto medio de $A’B’$,
    $ii)$ el punto medio de $CC’$ coincide con el punto medio de $A»B»$.
  5. Sea $ABCA’B’C’$ una configuración externa de Napoleón demuestra que el centroide de $\triangle A’B’C’$ coincide con el centroide de $\triangle ABC$.
  6. Divide los lados de un triángulo en tres partes iguales, sobre el tercio de en medio de cada lado del triángulo, construye externamente (internamente) triángulos equiláteros, muestra que los terceros vértices construidos son los vértices de un triángulo equilátero (figura 9).
Figura 9
  1. Sea $ABCA’B’C’$ una configuración externa de Napoleón, considera los arcos $\overset{\LARGE{\frown}}{BC}$, $\overset{\LARGE{\frown}}{CA}$ y $\overset{\LARGE{\frown}}{AB}$ de los circuncírculos de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ respectivamente que no contienen a los vértices de $\triangle ABC$ (figura 1), sean $P \in \overset{\LARGE{\frown}}{AB}$ arbitrario y $Q = PA \cap \overset{\LARGE{\frown}}{CA}$, muestra que la intersección $R$ de $PB$ y $QC$ esta en el arco $\overset{\LARGE{\frown}}{BC}$ y que $\triangle PQR$ es equilátero.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden

Por Eduardo Vera Rosales

Introducción

Vamos a concluir la tercera unidad del curso revisando el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden, en su forma general, es decir, para sistemas lineales y no lineales que satisfagan las hipótesis del teorema. Hasta el momento únicamente demostramos el teorema de existencia y unicidad para sistemas lineales con coeficientes constantes, pero es importante demostrar la versión general al igual que hicimos para las ecuaciones de primer orden.

Lo primero que veremos es que un sistema de ecuaciones de la forma $$\begin{alignedat}{4} \dot{x}_{1} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x}_{2} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x}_{n} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}$$ se puede escribir en forma abreviada como sigue: $$\dot{\textbf{X}}(t)=\textbf{F}(t,\textbf{X}(t))$$ donde $\textbf{F}$ es el vector conformado por las funciones $F_{i}$ del sistema, con $i \in \{1,…,n\}$. Si además agregamos la condición inicial $\textbf{X}(t_{0})=\textbf{Y}$, entonces podemos ver que el sistema se reduce a una expresión muy similar al problema de condición inicial $$\frac{dy}{dt}=f(t,y(t)) \,\,\,\,\, ; \,\,\,\,\, y(t_{0})=y_{0}$$ salvo que ahora $\textbf{X}$ es una función que toma valores en $\mathbb{R}^{n}$, y $\textbf{F}$ es una función de $\mathbb{R}^{n+1}$ a $\mathbb{R}^{n}$.

Afortunadamente la mayoría de los lemas y teoremas que usamos para demostrar el teorema de existencia y unicidad para ecuaciones de primer orden se pueden extender a funciones de varias variables, por lo que la demostración será muy similar a la demostración de este último teorema.

Antes de iniciar te dejo la entrada correspondiente al teorema de existencia y unicidad de Picard, para que te familiarices con él y te sea más fácil ver los videos de esta entrada.

El teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Ecuación integral asociada

Enunciamos el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden, analizamos las similitudes que existen con el teorema de existencia y unicidad de Picard, y vemos que resolver el problema de condición inicial es equivalente a resolver la ecuación integral $$\textbf{X}(t)=\textbf{Y}+\int_{t_{0}}^{t} \textbf{F}(s, \textbf{X}(s)) \, ds.$$

Demostración de la existencia de la solución al problema de condición inicial

Demostramos la existencia de una solución al problema de condición inicial estudiando bajo qué circunstancias converge uniformemente la sucesión de iteraciones de Picard del problema. En dado caso que esto último suceda, la función a la cual convergen las iteraciones será solución a la ecuación integral del video anterior.

Demostración de la unicidad de la solución al problema de condición inicial

Concluimos la demostración del teorema probando la unicidad de la solución al problema de condición inicial.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Sea $\textbf{F}(t,\textbf{X}(t))$ continua en un dominio $E \subseteq \mathbb{R}^{n+1}$ que contenga a $(t_{0},\textbf{Y})$. Demuestra que $\textbf{X}(t)$ es solución al problema de condición inicial $$\dot{\textbf{X}}(t)=\textbf{F}(t,\textbf{X}(t)) \,\,\,\,\, ; \,\,\,\,\, \textbf{X}(t_{0})=\textbf{Y}$$ si y sólo si es solución a la ecuación integral $$\textbf{X}(t)=\textbf{Y}+\int_{t_{0}}^{t} \textbf{F}(s,\textbf{X}(s)) \, ds.$$
  • Considera el problema de condición inicial $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \textbf{X} + \begin{pmatrix} t \\ t \end{pmatrix} \,\,\,\,\, ; \,\,\,\,\, \textbf{X}(0)=\begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$ Calcula las iteraciones de Picard correspondientes al problema. ¿Convergen a alguna función? En caso afirmativo, muestra que dicha función es solución al problema de condición inicial.
  • Supongamos que $\textbf{F}(t,\textbf{X}(t))$ es continua en $$R:=\{(t,x_{1},…,x_{n}) \in \mathbb{R}^{n+1} : |t-t_{0}| \leq a, \lVert \textbf{X}(t) – \textbf{Y} \rVert \leq b, \, \, a, b \in \mathbb{R}\}.$$ Demuestra que existe $M > 0$ y $h \in \mathbb{R}$ tal que $$\lVert \textbf{X}^{n}(t)-Y \rVert \leq M |t-t_{0}|, \forall n \in\mathbb{N}, \forall t \in I_{h} \subseteq \mathbb{R}.$$ Recuerda que $\textbf{X}^{n}(t)$ es la $n$-ésima iteración de Picard correspondientes al problema de condición inicial que estudiamos a lo largo de la entrada. (Hint: La prueba es similar al lema análogo que probamos en este video para el teorema de existencia y unicidad de Picard).
  • Consideremos el problema de condición inicial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0 \,\,\,\,\, ; \,\,\,\,\, y(t_{0})=y_{0} \,\,\,\,\, ; \,\,\,\,\, \frac{dy}{dt}(t_{0})=y_{1}$$ con $a,b,c$ constantes. ¿Si el sistema de ecuaciones asociado satisface el teorema de existencia y unicidad, entonces el problema de condición inicial original tiene una única solución?

Más adelante

Con este teorema finalizamos la tercera unidad del curso. En la cuarta unidad comenzaremos con la teoría cualitativa de los sistemas de ecuaciones de primer orden.

Veremos que los sistemas tienen puntos de equilibrio, los clasificaremos según su estabilidad. En virtud de esto vamos a analizar el comportamiento de las soluciones cerca de puntos de equilibrio y dibujaremos el plano fase de un sistema.

Abordaremos sistemas no lineales, y aunque no los resolveremos explícitamente, veremos el comportamiento de sus soluciones cerca de sus puntos de equilibrio.

Finalmente, veremos algunos sistemas que satisfacen propiedades interesantes, como los sistemas Hamiltonianos, los disipativos, entre otros.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Derivadas implícitas y de orden superior

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada estudiaremos dos conceptos que probablemente te suenen familiares: las derivadas implícitas y las derivadas de orden superior. Una vez los hayamos comprendido, tendremos muchos más casos en los cuales podremos aplicar la derivada empleando todas las herramientas que se han desarrollado hasta este punto.

Derivadas implícitas

A las funciones que se pueden expresar de la forma $y=f(x)$ definidas en un intervalo las llamamos funciones explícitas; sin embargo, en ocasiones nos encontramos con funciones que no están expresadas de esta forma. Por ejemplo, en un curso de geometría analítica se estudia la ecuación que describe una parábola vertical: $4p(y-k) = (x-h)^2$. Esta forma, la llamaremos función implícita, y aunque en este caso podríamos despejar $y$ para obtener una función explícita, no siempre es posible obtenerla.

Ejemplo 1.

En el siguiente ejemplo, $y$ depende de $x$ y se busca calcular la derivada de $y$.

$$x^3+2x^2y+xy^2+y^3=0.$$

Aunque no tengamos una función explícita, esto no limita la posibilidad de encontrar la derivada de $y$.

\begin{gather*}
(x^3+2x^2y+xy^2+y^3)’=(0)’. \\ \\
(x^3)’+(2x^2y)’+(xy^2)’+(y^3)’ = 0. \\ \\
3x^2+2x^2(y)’+2(x^2)’y+x(y^2)’+(x)’y^2+3y^2y’ = 0. \\ \\
3x^2+2x^2y’+4xy+2xyy’+y^2+3y^2y’=0. \\ \\
\Rightarrow 3x^2+4xy+y^2+ y'(2x^2+2xy+3y^2)=0. \\ \\
\Rightarrow y’ = – \frac{3x^2+4xy+y^2}{2x^2+2xy+3y^2}.
\end{gather*}

Notemos que es complicado saber respecto a que variable estamos derivando, por ello, particularmente para las derivadas implícitas es usual emplear la notación $\frac{dy}{dx} = y’.$

Ejemplo 2. Obtener la derivada implícita $y’ = \frac{dy}{dx}$ de $xsen(y)-cos(2y) = 0$.

\begin{gather*}
\frac{d}{dx} xsen(y)+\frac{d}{dx}cos(3y) = 0. \\ \\
x \frac{d}{dx} sen(y)+ sen(y)\frac{d}{dx} x -sen(3y) \frac{d}{dx} 3y = 0. \\ \\
xcos(y) \frac{dy}{dx} + sen(y)-3sen(3y) \frac{dy}{dx} = 0. \\ \\
\frac{dy}{dx} (xcos(y)-3sen(3y)) = -sen(y). \\ \\
\frac{dy}{dx} = -\frac{sen(y)}{xcos(y)-3sen(3y)}.
\end{gather*}

Derivadas de orden superior

Cuando derivamos una función, tenemos como resultado una nueva función y, por tanto, se podría buscar la derivada de la misma; de esta forma, tal proceso lo podemos hacer iterativamente siempre que la derivada exista y a ello se le conoce como derivadas de orden superior. Así, tenemos la siguiente definición.

Definición. Si $f: A \to \RR$ es una función derivable, entonces se tiene que

$$f'(x) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}.$$

La función $f’$ es derivable, conocida como segunda derivada y denotada como $f^{(2)}$, si el siguiente límite existe

$$f^{(2)}(x) = \lim_{x \to x_0} \frac{f'(x)-f'(x_0)}{x-x_0}.$$

En general, denotaremos como $f^{(n)}$ a la $n$-ésima derivada de $f$

$$f^{(n)}(x) = \lim_{x \to x_0} \frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{x-x_0}.$$

La definición anterior resulta bastante natural y es análoga a la definición de derivada que revisamos anteriormente. Al igual que la primera derivada, puede suceder el caso donde las derivadas de orden superior no existan.

Ejemplo 3.

$$f(x) =
\begin{cases}
x^2sen(\frac{1}{x}) & \text{ si } x \neq 0 \\
0 & \text{ si }x = 0.
\end{cases}$$

Notemos que si $x \neq 0$, podemos encontrar un intervalo $I$ tal que si $x \in I$, entonces

$$f(x) = x^2sen \left( \frac{1}{x} \right).$$

Lo cual implica que su derivada es

$$f'(x) = 2xsen \left( \frac{1}{x} \right) – cos \left( \frac{1}{x} \right).$$

Para el caso particular de $x = 0$, se tiene que

\begin{align*}
f'(x) & = \lim_{x \to 0} \frac{f(x)-f(0)}{x-0} \\ \\
& = \lim_{x \to 0} \frac{x^2 sen(\frac{1}{x})-0}{x} \\ \\
& = \lim_{x \to 0} xsen \left( \frac{1}{x} \right) \\ \\
& = 0.
\end{align*}

Por tanto, se tiene que

$$f'(x) = \begin{cases}
2xsen \left( \frac{1}{x} \right) – cos \left( \frac{1}{x} \right) & \text{ si }x\neq 0 \\
0 & \text{ si }x=0.
\end{cases}$$

Observemos que $f’$ no es continua en cero, puesto que, por las propiedades de continuidad, esto implicaría que la función

$$g(x) = \begin{cases}
cos(\frac{1}{x}) & \text{ si } x \neq 0 \\
0 & \text{ si }x=0.
\end{cases}$$

También es continua en cero, sin embargo, esto no sucede ya que el límite de $cos(\frac{1}{x})$ cuando $x \to 0$ no existe (demostración análoga al tercer ejemplo revisado en esta entrada previa). Como $f’$ no es continua en $x=0$, tampoco es derivable en tal punto.

A continuación se tiene un ejemplo donde se muestra el proceso que se sigue para encontrar una derivada de orden superior.

Ejemplo 4. Obtener la cuarta derivada de la función $f(x) = ln(x)+sen(3x)$.

\begin{gather*}
f'(x) = \frac{1}{x} +3cos(3x). \\ \\
f^{(2)}(x) = -\frac{1}{x^2}-9sen(3x). \\ \\
f^{(3)}(x) = \frac{2}{x^3}-27cos(3x). \\ \\
f^{(4)}(x) = -\frac{6}{x^4}+91sen(3x).
\end{gather*}

Más adelante…

En la siguiente entrada probaremos dos populares resultados de las funciones que son derivables en un intervalo: el teorema de Rolle y el teorema del valor intermedio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra en cada caso la derivada de $y$ respecto a $x$:
    • $\frac{x+y}{x-y}=x+4.$
    • $x^2y^2=ln(xy).$
    • $y = ln(sen(x+y)).$
    • $\frac{y}{tan(xy)} – x = 2.$
  • Encuentra la tercera derivada de las siguientes funciones:
    • $f(x) = 3x^5+2x^3+7x^2+1.$
    • $f(x) = cos(x^3).$
    • $f(x) = sen(x)cos(x).$
    • $f(x) = \frac{ln(x)}{\sqrt{x}}.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Derivadas de las funciones trigonométricas

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada estudiaremos las derivadas de las funciones trigonométricas, para lo cual haremos uso de las propiedades revisadas al momento de definirlas, así como de las propiedades vistas al momento de estudiar sus límites. Por esta razón se recomienda repasar dichas entradas en caso de no tenerlas presentes.

Funciones trigonométricas

Daremos inicio probando que las funciones trigonométricas $sen(x)$, $cos(x)$ y $tan(x)$ son derivables en todo su dominio.

Teorema. La función $f(x) = sen(x)$ es derivable en $\RR$, más aún $f'(x) =cos(x)$.

Demostración.

En la entrada de funciones trigonométricas se revisó la siguiente identidad:

$$sen(\alpha+\beta) = cos(\alpha)sen(\beta) + cos(\beta)sen(\alpha).$$

De la cual haremos uso para calcular el límite:

\begin{align*} 
f'(x) & = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \\ \\
& = \lim_{h \to 0} \frac{sen(x+h)-sen(x)}{h} \\ \\ 
& = \lim_{ h \to 0} \frac{cos(x)sen(h)+cos(h)sen(x)-sen(x)}{h} \\ \\
& = \lim_{h \to 0} \frac{cos(x)sen(h)+sen(x) (cos(h)-1)}{h} \\ \\
& = \lim_{h \to 0} \left( \frac{sen(h)}{h}cos(x) + \frac{cos(h)-1}{h}sen(x) \right) \\ \\
& = \lim_{h \to 0} \frac{sen(h)}{h}cos(x) + \lim_{h \to 0} \frac{cos(h)-1}{h}sen(x) \\ \\
& = cos(x) \lim_{h \to 0} \frac{sen(h)}{h} + sen(x) \lim_{h \to 0} \frac{cos(h)-1}{h} \\ \\
& = cos(x) \cdot 1 + sen(x) \cdot 0 \\ \\
& = cos(x).
\end{align*}

$$\therefore f'(x)=cos(x).$$

$\square$

Teorema. La función $f(x) = cos(x)$ es derivable en $\RR$, más aún $f'(x) =-sen(x).$

Demostración.

Haremos uso de la siguiente identidad (revisada anteriormente):

$$cos(\alpha+\beta) = cos(\alpha)cos(\beta) – sen(\alpha)sen(\beta).$$

Así, tenemos lo siguiente

\begin{align*} 
f'(x) & = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \\ \\
& = \lim_{h \to 0} \frac{cos(x+h)-cos(x)}{h} \\ \\ 
& = \lim_{ h \to 0} \frac{cos(x)cos(h)-sen(x)sen(h)-cos(x)}{h} \\ \\
& = \lim_{h \to 0} \frac{-cos(x)(1-cos(h))-sen(x) sen(h)}{h} \\ \\
& = \lim_{h \to 0} \left( -\frac{1-cos(h)}{h}cos(x) \text{ } – \text{ } \frac{sen(h)}{h}sen(x) \right) \\ \\
& = -\lim_{h \to 0} \frac{1-cos(h)}{h}cos(x) \text{ } – \text{ } \lim_{h \to 0} \frac{sen(h)}{h}sen(x) \\ \\
& = -cos(x) \lim_{h \to 0} \frac{1-cos(h)}{h} \text{ } – \text{ } sen(x) \lim_{h \to 0} \frac{sen(h)}{h} \\ \\
& = -cos(x) \cdot 0 \text{ } – \text{ } sen(x) \cdot 1 \\ \\
& = -sen(x).
\end{align*}

$$\therefore f'(x)=-sen(x).$$

$\square$

Teorema. La función $f(x) = tan(x)$ es derivable en todo su dominio, más aún $f'(x) = sec^2(x).$

Demostración.

\begin{align*}
f'(x) & = (tan(x))’ \\ \\
& = \left( \frac{sen(x)}{cos(x)} \right)’ \\ \\
& = \frac{(sen(x))’cos(x)-sen(x) (cos(x))’}{cos^2(x)} \\ \\
& = \frac{cos^2(x)+sen^2(x)}{cos^2(x)} \\ \\
& = \frac{1}{cos^2(x)} \\ \\
& = sec^2(x).
\end{align*}

$$\therefore f'(x) = sec^2(x).$$

$\square$

Como corolario, se tiene que estas tres funciones revisadas también son continuas en sus respectivos dominios.

Funciones trigonométricas inversas

Revisaremos qué sucede para el caso de las funciones inversas de $sen(x)$ y $tan(x)$.

Teorema. Sea $f^{-1}(x) = arcsen(x)$, entonces $(f^{-1})'(x) = \frac{1}{\sqrt{1-x^2}}$ para $x \in (-1,1).$

Demostración

Sea $b \in (-1,1)$. Existe un único real $a \in (- \pi/2, \pi/2)$ tal que $f(a) = sen(a) = b$, es decir, $a = arcsen(b)$. Por el teorema de la derivada de la función inversa, tenemos que

\begin{align*}
(f^{-1})'(b) & = (arcsen(b))’ \\
& = \frac{1}{f'(a)} \\
& = \frac{1}{(sen(a)’)} \\ 
& = \frac{1}{cos(a)}.
\end{align*}

Como $sen^2(a)+cos^2(a) = 1$ y $cos(a)>0$ pues $a \in (- \pi/2, \pi/2)$, entonces se sigue que $cos(a)=\sqrt{1-sen^2(a)}$. Es decir $$(arcsen(x))’=\frac{1}{\sqrt{1-b^2}}.$$

$\square$

Teorema. Sea $f^{-1}(x)=arctan(x)$, entonces $(f^{-1})'(x) = \frac{1}{1+x^2}$ para $x \in (-\pi/2, \pi/2).$

Demostración.

Sea $b \in (-\pi/2,\pi/2)$. Existe un único real $a \in (-\pi/2, \pi/2)$ tal que $f(a) = tan(a) = b$. Nuevamente, por el teorema de la derivada de la función inversa, tenemos que

\begin{align*}
(f^{-1})'(b) & = (arctan(b))’ \\
& = \frac{1}{f'(a)} \\
& = \frac{1}{(tan(a))’} \\ 
& = \frac{1}{sec^2(a)}.
\end{align*}

Como $sec^2(a)-tan^2(a) = 1$, se tiene que $sec^2(a) = 1+tan^2(a)$. Así, de la expresión anterior se sigue que $$(arctan(b))’ = \frac{1}{1+b^2}.$$

$\square$

Ejemplos

Ejemplo 1. Encuentra la derivada de la función $f(x) = sen(e^x)cos(x)$.

\begin{align*}
f'(x) & = (sen(e^x)cos(x))’ \\
& = sen(e^x)(cos(x))’+(sen(e^x))’cos(x) \\
& = -sen(e^x)sen(x)+cos(e^x)(e^x)’cos(x) \\
& = -sen(e^x)sen(x)+e^xcos(e^x)cos(x).
\end{align*}

$$\therefore f'(x) =-sen(e^x)sen(x)+e^xcos(e^x)cos(x).$$

Ejemplo 2. Encuentra la derivada de $f(x) = arcsen(x^2)$.

\begin{align*}
f'(x) & = (arcsen(x^2))’ \\ \\
& = \frac{1}{\sqrt{1-(x^2)^2} } \cdot (x^2)’ \\ \\
& = \frac{2x}{\sqrt{1-x^4}}.
\end{align*}

$$\therefore f'(x) = \frac{2x}{\sqrt{1-x^4}}.$$

Más adelante…

En la siguiente entrada estudiaremos dos nuevos conceptos: las derivadas implícitas y las derivadas de orden superior. Éstas nos permitirán extender los casos en los cuales podemos aplicar la derivada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Prueba las siguientes derivadas en sus respectivos dominios:
    • $cot'(x) = -csc^2(x).$
    • $sec'(x) = tan(x) sec(x).$
    • $csc'(x) = -cot(x)csc(x).$
  • Prueba que
    • $(arccos(x))’ = -\frac{1}{\sqrt{1-x^2}}$, con $x \in (-1,1).$
    • $(arccot(x))’ = -\frac{1}{1+x^2}$, con $x \in (-\infty, \infty).$
  • Encuentra la derivada de las siguientes funciones
    • $f(x) = \frac{1}{1+sen(x)}.$
    • $f(x) = cos(2x) tan(2x).$
    • $f(x)=arcsen(\frac{x}{4}).$
    • $f(x)=arccos(\sqrt{1-x^2}).$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Polinomios de Taylor (Parte 1)

Por Karen González Cárdenas

Introducción

Recordemos que una función polinómica $p$ es de la forma:
$$p(x)=a_0+ a_1 x+ \ldots +a_n x^{n}$$
donde vemos que es fácil calcular el valor de $p$ para cualquier valor de $x$. Desafortunadamente, esto no es así con funciones como:
\begin{align*}
f(x)&= \sin(x) & g(x)&= \log(x) & h(x)&=e^{x}
\end{align*}

En esta entrada estudiaremos algunos resultados que nos ayudarán a encontrar polinomios que sean buenas aproximaciones a funciones como $f$, $g$ y $h$.

Revisitando a los polinomios

Si tenemos un polinomio:
$$p(x)=a_0+ a_1 x+ \ldots +a_n x^{n}$$
vemos que los coeficientes $a_i$ los podemos reescribir en términos de $p(x)$ y de sus derivadas en cero:
$$a_0=p(0).$$
Observación: Consideramos a la «derivada cero de $p$» como la función original.
$$p'(x)=a_1+2a_2 x+\ldots +n a_n x^{n-1} \Rightarrow a_1=p'(0)$$
\begin{align*}
p \dquote (x)=2a_2+ \ldots + n(n-1)a_nx^{n-2} &\Rightarrow 2a_2=p \dquote (0)\\
&\Rightarrow a_2=\frac{p \dquote (0)}{2}
\end{align*}

Si continuamos con este procedimiento vemos que para el k-ésimo coeficiente ocurre que:
$$p^{k}(x)=k! \cdot a_k \Rightarrow a_k=\frac{p^{(k)}(0)}{k!}$$

Observaciones:

  • Consideramos $0! =1$ y recordemos que k factorial se define como:
    $$k!= 1 \cdot 2 \cdot \ldots \cdot (k-1) \cdot k$$
    Así $6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 =720$.
  • Usaremos $p^{(k)}(0)$ para referirnos a la k-ésima derivada del polinomio en cero. Por lo que:
    $$p^{(0)}(0)=p(0)$$
  • $a_k$ está bien definido cuando $k=0$

Usando un desarrollo similar ahora para un polinomio de la forma:
$$p(x)=a_0+ a_1 (x-a)+a_2 (x-a)^{2}+ \ldots +a_n (x-a)^{n}$$
donde estamos reemplazando las potencias de $x$ por potencias de $x-a$.

Vemos que sus coeficientes $a_i$ en términos de $p$ en $a$ serían:
$$a_0=p(0)$$
$$p^{(1)}(x)=a_1+2a_2(x-a)+\ldots + n a_n (x-a)^{n-1} \Rightarrow a_1= p^{(1)} (a)$$
\begin{align*}
p^{(2)}(x)=2a_2+ \ldots +(n-1)(n) a_n (x-a)^{n-2} &\Rightarrow 2a_2 = p^{(2)}(a)\\
&\Rightarrow a_2 = \frac{p^{(2)}(a)}{2}
\end{align*}
\begin{align*}
p^{(3)}(x)= 6 a_3+ \ldots + (n-2)(n-1)(n)a_n(x-a)^{n-3} &\Rightarrow 6a_3 = p^{(3)}(a)\\
&\Rightarrow a_3 =\frac{ p^{(3)}(a)}{6}
\end{align*}
$$\vdots$$
Concluimos que:
$$a_k=\frac{p^{(k)}(a)}{k!}$$

Generalizando aún más…

Para generalizar más el planteamiento anterior, tomemos ahora una función $f$ que tiene sus $n$ derivadas en $a$:
$$f^{(1)}(a), \ldots , f^{(n)}(a).$$

Tenemos que los coeficientes $a_i$ en términos de $f(a)$ están dados por:
$$a_k=\frac{f^{(k)}(a)}{k!}$$
con $0 \leq k \leq n$.

Así definimos:
$$T_{n,a}(x)= a_0+a_1(x-a)+ \ldots + a_n(x-a)^{n}$$
al polinomio de Taylor de grado $n$ de la función $f$ en $a$.
Por lo que:
$$T_{n,a}^{(k)}(a)=f^{(k)}(a)\quad , 0\leq k \leq n.$$

Definición de polinomio de Taylor

Definición (Polinomio de Taylor): Sea $f: (x_0,y_0) \rightarrow \r$, $a \in (x_0,y_0)$ con $f$ n-veces derivable en $a$. El polinomio de Taylor para $f$ con centro en $a$ de grado $n$ se define como:
$$T_{n,a}(x)=\sum_{j=0}^{n} \frac{f^{(j)}(a)}{j!}(x-a)^{j}$$
donde $f^{(0)}(a)=f(a)$.

¿Es una buena aproximación?

Ya que hemos definido al polinomio de Taylor para una función $f$, queremos saber si éste es una buena aproximación. Para ello veamos la demostración del siguiente teorema:

Teorema: Sea $f: (x_0,y_0) \rightarrow \r$, $a \in (x_0,y_0)$ tal que $f$ es de clase $C^{(n)}$ en $a \Rightarrow$ existe el polinomio de Taylor $T_{n,a}$ con:
$$a_k=\frac{f^{k}(a)}{k!} \quad , 0 \leq k \leq n$$
que cumple con que:
$$\lim_{x \to a} \frac{f(x)-T_{n,a}(x)}{(x-a)^{n}}=0$$

Demostración: Iniciemos sustituyendo por definición a $T_{n,a}(x)$
\begin{align*}
\frac{f(x)-T_{n,a}(x)}{(x-a)^{n}} &= \frac{f(x)- \sum_{j=0}^{n} \frac{f^{(j)}(a)}{j!}(x-a)^{j}}{(x-a)^{n}}\\
&= \frac{f(x)- \sum_{j=0}^{n-1} \frac{f^{(j)}(a)}{j!}(x-a)^{j}}{(x-a)^{n}} – \frac{\frac{f^{(n)}(a)}{n!}(x-a)^{n}}{(x-a)^{n}}\\
&= \frac{f(x)- \sum_{j=0}^{n-1} \frac{f^{(j)}(a)}{j!}(x-a)^{j}}{(x-a)^{n}} – \frac{f^{(n)}(a)}{n!}
\end{align*}

Para facilitar un poco la redacción consideremos a:
\begin{align*}
S(x)&=\sum_{j=0}^{n-1} \frac{f^{(j)}(a)}{j!}(x-a)^{j}\\
h(x)&= (x-a)^{n}
\end{align*}

Por lo que tenemos:
$$\frac{f(x)-S(x)}{h(x)}- \frac{f^{(n)}(a)}{n!} .$$

Probemos que el límite cuando $x$ tiende a $a$ es cero:
$$\lim_{x \to a} \frac{f(x)-S(x)}{h(x)}- \frac{f^{(n)}(a)}{n!} =0.$$

Que es equivalente a probar que:
$$\lim_{x \to a} \frac{f(x)-S(x)}{h(x)}=\frac{f^{(n)}(a)}{n!}.$$
Observemos que para $h$ se tiene en sus derivadas los siguiente:
\begin{align*}
h^{(0)}(x)&= (x-a)^{n} = \frac{n! (x-a)^{n-0}}{(n-0)!}\\
h^{(1)}(x)&= n (x-a)^{n-1} = \frac{n! (x-a)^{n-1}}{(n-1)!}\\
h^{(2)}(x)&= n (n-1)(x-a)^{n-2} = \frac{n! (x-a)^{n-2}}{(n-2)!}\\
\end{align*}
$$\vdots$$
$$h^{(k)}(x)=\frac{n! (x-a)^{n-k}}{(n-k)!}$$

Y para $S(x)$ vemos que sus derivadas en $a$ son:
\begin{align*}
S(x)&=a_0+a_1 (x-a)+a_2(x-a)^{2}+ \ldots + a_{n-1}(x-a)^{n-1}\\
&\Rightarrow S(a)=a_0\\
S^{(1)}(x)&= a_1+2 a_2 (x-a)+ \ldots +(n-1)a_{n-1}(x-a)^{n-2}\\
&\Rightarrow S^{(1)}(a)=a_1\\
S^{(2)}(x)&= 2a_2+ \ldots + (n-1)(n-2)a_{n-1} (x-a)^{n-3}\\
&\Rightarrow S^{(2)}(a)=2 a_3
\end{align*}
$$\vdots$$

Reescribiendo los $a_i$ obtenemos:
\begin{align*}
S^{(0)}(a)&= \frac{f^{(0)}(a)}{0!}=f^{(0)}(a)\\
S^{(1)}(a)&= \frac{f^{(1)}(a)}{1!}=f^{(1)}(a)\\
S^{(2)}(a)&= \frac{f^{(2)}(a)}{2!}(2)=f^{(2)}(a)\\
\end{align*}

$$\vdots$$

\begin{align*}
S^{(k)}(a)&= \frac{f^{(k)}(a)}{k!}(k!)=f^{(k)}(a)
\end{align*}

De este modo al considerar los límites:
\begin{align*}
\lim_{x \to a}(f(x)-S(x)) &= f(a)- S(a)=0\\
\lim_{x \to a}(f^{(1)}(x)-S^{(1)}(x)) &= f^{(1)}(a)- S^{(1)}(a)=0\\
\end{align*}
$$\vdots$$
\begin{align*}
\lim_{x \to a}(f^{(n-2)}(x)-S^{(n-2)}(x)) &=0\\
\end{align*}

Y los límites para $h$:
\begin{align*}
\lim_{x \to a}h(x)&= g(a)= (a-a)^{n}=0\\
\lim_{x \to a} h^{(1)}(x)&=g^{(1)}(a)= \frac{n! (a-a)^{n-1}}{(n-1)!}=0\\
\end{align*}
$$\vdots$$
\begin{align*}
\lim_{x \to a} h^{(n-2)}(x)&=g^{( n-2 )}(a)= 0\\
\end{align*}
Del análisis anterior notamos que podemos aplicar la Regla de L’Hôpital que nos decía que teniendo que: $$\lim_{x \to a^+} f(x) = 0 = \lim_{x \to a^+} g(x).$$

Si $\lim\limits_{x \to a^+} \frac{f'(x)}{g'(x)} = L \in \RR$, entonces $\lim\limits_{x \to a^+} \frac{f(x)}{g(x)} = L$.

Así al hacerlo $n-1$ veces en el siguiente límite se da la igualdad:
\begin{align*}
\lim_{x \to a}\frac{f(x)-S(x)}{(x-a)^{n}}&=\lim_{x \to a}\frac{f^{(n-1)}(x)-S^{(n-1)}(x)}{\frac{n!(x-a)^{n-n+1}}{(n-n+1)!}}\\
&=\lim_{x \to a}\frac{f^{(n-1)}(x)-S^{(n-1)}(x)}{\frac{n!(x-a)}{(1)!}}\\
&=\lim_{x \to a}\frac{f^{(n-1)}(x)-S^{(n-1)}(x)}{n! (x-a)}\\
\end{align*}

Recordemos que $S(x)$ es un polinomio de grado $n-1$ por lo que al haberlo derivado $n-1$ veces lo que obtenemos para $S^{(n-1)}(x)$ es una constante que resulta ser:
$$ S^{(n-1)}(x) = f^{(n-1)}(a).$$

Sustituyendo en el límite:
\begin{align*}
\lim_ {x \to a}\frac{f^{(n-1)}(x)-S^{(n-1)}(x)}{n! (x-a)} &= \lim_{x \to a}\frac{ f^{(n-1)}(x)- f^{(n-1)}(a)}{n! (x-a) }\\
&= \frac{1}{n!}\left(\lim_{x \to a}\frac{ f^{(n-1)}(x)- f^{(n-1)}(a)}{x-a} \right )
\end{align*}

De este modo el límite resultante es por definición la n-ésima derivada de $f$ en $a$, es decir:
$$ \lim_{x \to a}\frac{ f^{(n-1)}(x)- f^{(n-1)}(a)}{x-a} = f^{(n)}(a).$$

Consecuentemente:
$$\lim_{x \to a}\frac{f(x)-S(x)}{(x-a)^{n}}=\frac{ f^{(n)}(a)}{n!}.$$

$\square$

Con la demostración terminada podemos afirmar que los polinomios de Taylor son una buena aproximación, ahora veamos algunos ejemplos.

Ejemplo 1

Comencemos por obtener el polinomio de Taylor para la función exponencial en $a=0$:
$$f(x)=e^{x}.$$
Veamos que todas las derivadas son de la forma:
$$f^{(k)}(x)=e^{x}.$$
Por lo que la k-ésima derivada valuada en $a=0$:
$$f^{(k)}(a)=e^{0}=1.$$
Sustituyendo en la definición de polinomio de Taylor tenemos:
$$T_{n,a}(x)=\sum_{j=0}^{n} \frac{1}{j!}x^{j}$$
Comencemos por ver cuáles serían los polinomios de Taylor de grado $0$,$1$ y $2$:
\begin{align*}
T_{0,0}(x)&=\frac{1}{0!}\\
T_{1,0}(x)&= \frac{1}{0!} + \frac{1}{1!}(x-0)\\
T_{2,0}(x)&= \frac{1}{0!} + \frac{1}{1!}(x-0) + \frac{1}{2!}(x-0)^{2}\\
\end{align*}

Al graficar dichos polinomios notamos que entre mayor es el grado del polinomio, mejor es la aproximación a la función:

Ejemplo 2

Ahora obtendremos el polinomio de Taylor de grado $5$ con centro en $a=0$ para:
$$g(x)=\sin(x).$$

Por lo que tenemos, calculamos las primeras cinco derivadas de $g$ y las evaluamos en cero:
\begin{align*}
g(x)&=\sin(0)=0\\
g^{(1)}(x)&=\cos(0)=1\\
g^{(2)}(x)&=-\sin(0)=0\\
g^{(3)}(x)&=-\cos(0)= -1\\
g^{(4)}(x)&=\sin(0)=0\\
g^{(5)}(x)&=\cos(0)=1\\
\end{align*}

Aplicando la definición de Taylor tenemos que su polinomio sería:
\begin{align*}
T_{5,0}&=\frac{0}{0!}(x-0)^{0}+\frac{1}{1!}(x-0)^{1}+\frac{0}{2!}(x-0)^{2}+\frac{(-1)}{3!}(x-0)^{3}+\frac{0}{4!}(x-0)^{4}+\frac{1}{5!}(x-0)^{5}\\
&=x-\frac{1}{3!}x^{3}+\frac{1}{5!}x^{5}
\end{align*}

Al graficar este polinomio $T_{5,0}=x-\frac{1}{3!}x^{3}+\frac{1}{5!}x^{5}$ vemos lo siguiente:

Ya que hemos revisado algunos ejemplos, en la siguiente sección te dejamos una lista de funciones de las que se te pide encontrar sus respectivos polinomios de Taylor siguiendo un procedimiento análogo.

Más adelante

Ahora que vimos la definición formal de los polinomios de Taylor, que resultan ser una buena aproximación para cualquier función $f$ con las características ya especificadas y algunos ejemplos, en la siguiente entrada veremos un resultado relacionado con su residuo.

Tarea moral

Obtener el polinomio de Taylor para las siguientes funciones:

  • $f(x)= \tan(x)$ de grado $3$ con $a=0$.
  • $g(x)= \sin(x)$ de grado $4$ con $a=\frac{\pi}{6}$.
  • $h(x)= e^{e^{x}}$ de grado $3$ con $a=0$.
  • $k(x)= \log(x+1)$ de grado $4$ con $a=0$.
  • $j(x)= \cos(x)$ de grado $m$ con $a=\frac{\pi}{2}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»