Archivo del Autor: Eduardo García Caballero

Álgebra Superior I: Transposición de matrices, matrices simétricas y antisimétricas

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido operaciones involucran a dos objetos a la vez, entre los que pueden estar escalares, vectores, o matrices. En esta entrada, exploraremos una operación que se aplica a una matriz a la vez: la transposición de matrices. Esta operación preserva el contenido de la matriz, pero modifica sus dimensiones y el orden de sus entradas de una manera particular. Además, exploraremos algunas matrices que cumplen propiedades especiales bajo esta operación.

Definición de transposición de matrices

Una forma intuitiva de comprender en concepto de transposición de una matriz es como aquella operación que refleja a una matriz por su diagonal. Por ejemplo, consideremos la matriz
\[
A=
\begin{pmatrix}
\fbox{7} & \sqrt{2} \\
-\tfrac{1}{2} & \fbox{3}
\end{pmatrix}
\]
en la cual hemos destacado los elementos de su diagonal. Su matriz transpuesta, la cual denotaremos como $A^T$, será
\[
A^T =
\begin{pmatrix}
\fbox{7} & -\tfrac{1}{2} \\
\sqrt{2} & \fbox{3}
\end{pmatrix}.
\]

En el caso de una matriz que no sea cuadrada, la transposición también intercambia el número de filas y el de columnas. Por ejemplo,
\[
B=
\begin{pmatrix}
\fbox{3} & 4 & \pi \\
0 & \fbox{-1} & 6
\end{pmatrix}
\]
es una matriz de $2 \times 3$, mientras que su matriz transpuesta
\[
B^T=
\begin{pmatrix}
\fbox{3} & 0 \\
4 & \fbox{-1} \\
\pi & 6
\end{pmatrix}
\]
es de tamaño $3 \times 2$.

Para dar una definición formal de la propiedad de transposición, consideremos a la matriz $A$ de tamaño $m \times n$. Diremos que la matriz traspuesta de $A$ es la matriz $A^T$ de tamaño $n \times m$, donde la entrada de $A^T$ en la posición $(i,j)$ es
\[
(A^T)_{ij} = a_{ji},
\]
para todo $1 \le i \le n$ y $1 \le j \le m$.

Por ejemplo, para el caso de
\[
C =
\begin{pmatrix}
\fbox{$c_{11}$} & c_{12} \\
c_{21} & \fbox{$c_{22}$} \\
c_{31} & c_{32}
\end{pmatrix},
\]
su matriz traspuesta es
\[
C^T =
\begin{pmatrix}
(C^T)_{11} & (C^T)_{12} & (C^T)_{13} \\
(C^T)_{21} & (C^T)_{22} & (C^T)_{23} \\
\end{pmatrix}
=
\begin{pmatrix}
\fbox{$c_{11}$} & c_{21} & c_{31} \\
c_{12} & \fbox{$c_{22}$} & c_{32}
\end{pmatrix},
\]
mientras que la matriz transpuesta de
\[
D =
\begin{pmatrix}
\fbox{$d_{11}$} & d_{12} & d_{13} \\
d_{21} & \fbox{$d_{22}$} & d_{23} \\
d_{31} & d_{32} & \fbox{$d_{33}$}
\end{pmatrix}
\]
es
\[
D^T =
\begin{pmatrix}
(D^T)_{11} & (D^T)_{12} & (D^T)_{13} \\
(D^T)_{21} & (D^T)_{22} & (D^T)_{23} \\
(D^T)_{31} & (D^T)_{32} & (D^T)_{33}
\end{pmatrix}
=
\begin{pmatrix}
\fbox{$d_{11}$} & d_{21} & d_{31} \\
d_{12} & \fbox{$d_{22}$} & d_{32} \\
d_{13} & d_{23} & \fbox{$d_{33}$}
\end{pmatrix}.
\]

Como puedes observar, empleando la definición de matriz traspuesta, se sigue cumpliendo que la transposición se puede ver como la operación de reflejar una matriz con respecto a su diagonal.

Propiedades de transposición de matrices

A continuación, demostraremos algunas propiedades que cumplen las matrices
\[
A=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]
(Las demostraciones para cualesquiera otros tamaños de matrices se desarrollan de manera análoga).

Veamos qué sucede al realizar dos veces seguidas la trasposición de $A$. Observamos que
\[
A^T =
\begin{pmatrix}
(A^T)_{11} & (A^T)_{12} & (A^T)_{13} \\
(A^T)_{11} & (A^T)_{22} & (A^T)_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32}
\end{pmatrix},
\]
y, entonces,
\[
(A^T)^T
=
\begin{pmatrix}
((A^T)^T)_{11} & ((A^T)^T)_{12} \\
((A^T)^T)_{21} & ((A^T)^T)_{22} \\
((A^T)^T)_{31} & ((A^T)^T)_{32}
\end{pmatrix}
=
\begin{pmatrix}
(A^T)_{11} & (A^T)_{21} \\
(A^T)_{12} & (A^T)_{22} \\
(A^T)_{13} & (A^T)_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
=
A.
\]

En general, al transponer dos veces seguidas una matriz obtendremos como resultado la matriz original: $(A^T)^T = A$.

Por otra parte, observemos que
\[
AB
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix},
\]
de modo que
\[
(AB)^T =
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{21}b_{11} + a_{22}b_{21} & a_{31}b_{11} + a_{32}b_{21} \\
a_{11}b_{12} + a_{12}b_{22} & a_{21}b_{12} + a_{22}b_{22} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\]
Por su parte, veamos que
\begin{align*}
B^T A^T
&=
\begin{pmatrix}
b_{11} & b_{21} \\
b_{12} & b_{22}
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
b_{11}a_{11} + b_{21}a_{12} & b_{11}a_{21} + b_{21}a_{22} & b_{11}a_{31} + b_{21}a_{32} \\
b_{12}a_{11} + b_{22}a_{12} & b_{12}a_{21} + b_{22}a_{22} & b_{12}a_{31} + b_{22}a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{21}b_{11} + a_{22}b_{21} & a_{31}b_{11} + a_{32}b_{21} \\
a_{11}b_{12} + a_{12}b_{22} & a_{21}b_{12} + a_{22}b_{22} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\end{align*}
Por lo tanto,
\[
(AB)^T = B^T A^T.
\]

Finalmente, supongamos que $C = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible. Entonces se cumple que $ad – bc \ne 0$, y $C$ tiene como inversa a
\[
C^{-1} =
\begin{pmatrix}
\tfrac{d}{ad – bc} & \tfrac{-b}{ad – bc} \\
\tfrac{-c}{ad – bc} & \tfrac{a}{ad – bc}
\end{pmatrix},
\]
Por lo tanto,
\[
(C^{-1})^T =
\begin{pmatrix}
\tfrac{d}{ad – bc} & \tfrac{-c}{ad – bc} \\
\tfrac{-b}{ad – bc} & \tfrac{a}{ad – bc}
\end{pmatrix}.
\]

Por su parte, observemos que $C^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ cumple que $ad – cb = ad – bc \ne 0$, con lo cual garantizamos que es también invertible —la transpuesta de una matriz invertible es también invertible—. Más aún, veamos que
\begin{align*}
(C^T)^{-1}&= \frac{1}{ad-bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} \\[5pt]
&= \begin{pmatrix}
\tfrac{d}{ad – bc} & \tfrac{-c}{ad – bc} \\
\tfrac{-b}{ad – bc} & \tfrac{a}{ad – bc}
\end{pmatrix}.
\end{align*}
Por lo tanto, $(C^{-1})^T = (C^T)^{-1}$ —la inversa de una matriz traspuesta corresponde a la traspuesta de la inversa de la orginal—.

Matrices simétricas y antisimétricas

Ahora que conocemos la definición de matriz transpuesta y algunas de sus propiedades, observemos que existen matrices que se comportan de manera especial bajo esta operación.

Por ejemplo, veamos que si
\[
A =
\begin{pmatrix}
4 & 9 & 0 \\
9 & \frac{1}{2} & -1 \\
0 & -1 & \sqrt{2}
\end{pmatrix},
\]
entonces,
\[
A^T=
\begin{pmatrix}
4 & 9 & 0 \\
9 & \frac{1}{2} & -1 \\
0 & -1 & \sqrt{2}
\end{pmatrix}
= A.
\]

A una matriz $A$ que cumple que $A^T = A$ se le denomina matriz simétrica. Otros ejemplos de matrices simétricas son
\[
\begin{pmatrix}
4 & 0 \\
0 & -5
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
-8 & 1 & 2 \\
1 & 0 & 3 \\
2 & 3 & -\pi
\end{pmatrix}.
\]
Una observación importante es que las matrices simétricas únicamente pueden ser cuadradas.

Por otra parte, veamos que la matriz
\[
B=
\begin{pmatrix}
0 & 5 & 5 \\
-5 & 0 & 5 \\
-5 & -5 & 0
\end{pmatrix}
\]
tiene como transpuesta a
\[
B^T =
\begin{pmatrix}
0 & -5 & -5 \\
5 & 0 & -5 \\
5 & 5 & 0
\end{pmatrix}
=
-B.
\]

A una matriz $A$ que cumple que $A^T = -A$ se le denomina matriz antisimétrica. Otros ejemplos de matrices antisimétricas son
\[
\begin{pmatrix}
0 & -2 \\
2 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 1 & -2 \\
-1 & 0 & 3 \\
2 & -3 & 0
\end{pmatrix}.
\]
Al igual que sucede con las matrices simétricas, las matrices antisimétricas sólo pueden ser cuadradas.

Otra propiedad importante de las matrices antisimétricas es que todos los elementos de su diagonal tienen valor 0. ¿Puedes probar por qué sucede esto?

Más adelante…

Con las operaciones entre vectores y matrices que hemos visto hasta ahora podemos obtener varios resultados aplicables a distintas áreas de las matemáticas. En la siguiente entrada abordaremos un tema que, a primera vista, parece no relacionarse mucho con los conceptos que hemos aprendido hasta ahora, pero que, en realidad, resulta ser uno de los temas con mayor aplicación de los conceptos de vectores y matrices: los sistemas de ecuaciones lineales.

Tarea moral

  1. Sea $A$ una matriz de $2\times 2$ con entradas reales. Muestra $AA^T$ siempre es una matriz simétrica y que las entradas en la diagonal de $AA^T$ siempre son números mayores o iguales a cero.
  2. Prueba que los elementos de la diagonal de una matriz antisimétrica tienen valor 0.
  3. Muestra que si una matriz es simétrica e invertible, entonces su inversa también es simétrica. ¿Es cierto lo mismo para las antisimétricas?
  4. ¿Existe alguna matriz que sea al mismo tiempo simétrica y antisimétrica?
  5. Prueba que cualquier matriz $A$ se puede escribir como $A = B+C$, con $B$ simétrica y $C$ antisimétrica.

Entradas relacionadas

Álgebra Superior I: Matrices invertibles

Por Eduardo García Caballero

Introducción

En la entrada anterior definimos el producto de matrices con matrices y exploramos algunas de sus propiedades, siendo varias de estas familiares: el producto de matrices es asociativo, conmutativo y tiene elemento neutro. En esta entrada exploraremos una pregunta que quedó abierta: ¿el producto de matrices cumple con tener inversos?

Definición de matrices invertibles

Diremos que una matriz cuadrada $A$ es invertible si y sólo si tiene inverso multiplicativo; es decir, si existe una matriz $B$ tal que $AB = BA = \mathcal{I}$.

Observemos para que la definción anterior tenga sentido, es indispensable que $A$ sea cuadrada, pues veamos que si $A$ es de tamaño $m \times n$, entonces para que los productos $AB$ y $BA$ estén definidos, $B$ tendrá que ser de tamaño $n \times m$. Así, $AB$ será de tamaño $m\times n$ y $BA$ de tamaño $n\times n$, y como $AB = BA$, entonces $m = n$, y, por tanto, $AB = BA = \mathcal{I}_n$ (y con ello también observamos que $B$ tiene que ser cuadrada de tamaño $n \times n$).

Un ejemplo de una matriz de $2 \times 2$ que es invertible es
\[
A
=
\begin{pmatrix}
1 & -2 \\
-3 & 5
\end{pmatrix}
\]
que tiene como inversa a la matriz
\[
B
=
\begin{pmatrix}
-5 & -2 \\
-3 & -1
\end{pmatrix},
\]
pues
\begin{align*}
AB
&=
\begin{pmatrix}
1 & -2 \\
-3 & 5
\end{pmatrix}
\begin{pmatrix}
-5 & -2 \\
-3 & -1
\end{pmatrix}\\
&=
\begin{pmatrix}
(1)(-5) + (-2)(-3) & (1)(-2) + (-2)(-1) \\
(-3)(-5) + (5)(-3) & (-3)(-2) + (5)(-1)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2
\end{align*}
y
\begin{align*}
BA
&=
\begin{pmatrix}
-5 & -2 \\
-3 & -1
\end{pmatrix}
\begin{pmatrix}
1 & -2 \\
-3 & 5
\end{pmatrix}\\
&=
\begin{pmatrix}
(-5)(1) + (-2)(-3) & (-5)(-2) + (-2)(5) \\
(-3)(1) + (-1)(-3) & (-3)(-2) + (-1)(5)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2.
\end{align*}
Por lo tanto,
\[
AB = BA = \mathcal{I}_2.
\]

Algo que seguramente te preguntarás es si cualquier matriz cuadrada tiene un inverso multiplicativo. A diferencia de otros tipos de operaciones con inversos, el producto de matrices no siempre cumple con tenerlos: un ejemplo de esto es la matriz
\[
A=
\begin{pmatrix}
2 & 1 \\
0 & 0
\end{pmatrix}
\]
la cual, al multiplicarla por cualquier matriz
\[
B
=
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
por la derecha, nos da como resultado
\[
AB
=
\begin{pmatrix}
2 & 1 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
=
\begin{pmatrix}
2a + c & 2b + ,d \\
0 & 0
\end{pmatrix},
\]
y como en cualquier caso obtenemos que su entrada en la posición $(2,2)$ es $0$, tenemos que $AB$ es distinta a $\mathcal{I}_2$, pues la entrada en la posición $(2,2)$ de esta última es $1$.

Propiedades de matrices invertibles

A continuación exploraremos algunas de las propiedades que cumplen las matrices invertibles.

Primeramente, veamos que si una matriz $A$ de $n \times n$ es invertible, entonces su inversa será única. Para demostrar esto, supongamos que $B$ y $C$ son ambas inversas multiplicativas de $A$; es decir, $AB = BA = \mathcal{I}_n$ y $AC = CA = \mathcal{I}_n$. Entonces,
\begin{align*}
AB &= AC \\[5pt]
B(AB) &= B(AC) \\[5pt]
(BA)B &= (BA)C \\[5pt]
\mathcal{I}_n B &= \mathcal{I}_n C \\[5pt]
B &= C.
\end{align*}

Como la matriz inversa de $A$ es única, usualmente la denotamos como $A^{-1}$.

Por otra parte, veamos que si $A$ y $B$ son matrices invertibles, con inversas $A^{-1}$ y $B^{-1}$, respectivamente, entonces, si podemos multiplicar $A$ y $B$ (es decir, si $A$ y $B$ son del mismo tamaño), entonces $AB$ es invertible, pues se cumple que
\[
(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A\mathcal{I}_nA^{-1} = AA^{-1} = \mathcal{I}_n,
\]
y también que
\[
(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}\mathcal{I}_nB = B^{-1}B = \mathcal{I}_n,
\]
es decir, $B^{-1}A^{-1}$ es la matriz inversa de $AB$, lo cual denotamos como $(AB)^{-1} = B^{-1}A^{-1}$.

Finalmente, recordando la interpretación geométrica que dimos a la multiplicación de matrices por vectores, y la propiedad de que $A(Bu) = (AB)u$, entonces notamos que
\[
A^{-1}(Au) = (A^{-1}A)u = \mathcal{I}u = u.
\]

Como la transformación correspondiente a $A$ envía el vector $u$ al vector $Au$, y como el resultado de aplicar $(A^{-1}A)u$ deja al vector $u$ en su lugar, esto nos dice que la transformación correspondiente a $A^{-1}$ es aquella que regresa el vector $Au$ a su posición original.

En la siguiente imagen se visualiza esta propiedad para el caso en el que
\[
A
=
\begin{pmatrix}
3 & 1 \\
4 & 2
\end{pmatrix}
\qquad
\text{y}
\qquad
u
=
\begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

Formula para inversa de matrices de $2 \times 2$

Más arriba vimos que hay matrices que sí tienen inversa, mientras que otras no tienen. Para el caso de matrices de $2 \times 2$, tendremos que
\[
A
=
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
es invertible si y sólo si se cumple que $ad-bc \ne 0$.

En dado caso, la inversa de $A$ será la matriz
\[
A^{-1}
=
\frac{1}{ad-bc}
\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
=
\begin{pmatrix}
\frac{d}{ad-bc} & \frac{-b}{ad-bc} \\
\frac{-c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.
\]

Por ejemplo, veamos que si
\[
A =
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
=
\begin{pmatrix}
1 & 2 \\
-2 & 3
\end{pmatrix},
\]
entonces $ad – bc = (1)(3) – (2)(-2) = 3 – (-4) = 7 \ne 0$, por lo que podemos garantizar que $A$ tiene matriz inversa, la cual es
\[
A^{-1}
=
\frac{1}{ad-bc}
\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
=
\frac{1}{7}
\begin{pmatrix}
3 & -2 \\
2 & 1
\end{pmatrix}
=
\begin{pmatrix}
3/7 & -2/7 \\
2/7 & 1/7
\end{pmatrix}.
\]

Verificamos que
\begin{align*}
AA^{-1}
&=
\begin{pmatrix}
1 & 2 \\
-2 & 3
\end{pmatrix}
\begin{pmatrix}
3/7 & -2/7 \\
2/7 & 1/7
\end{pmatrix}\\
&=
\begin{pmatrix}
(1)(3/7) + (2)(2/7) & (1)(-2/7) + (2)(1/7) \\
(-2)(3/7) + (3)(2/7) & (-2)(-2/7) + (3)(1/7)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2
\end{align*}
y
\begin{align*}
A^{-1}A
&=
\begin{pmatrix}
3/7 & -2/7 \\
2/7 & 1/7
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
-2 & 3
\end{pmatrix}\\
&=
\begin{pmatrix}
(3/7)(1) + (-2/7)(-2) & (3/7)(2) + (-2/7)(3) \\
(2/7)(1) + (1/7)(-2) & (2/7)(2) + (1/7)(3)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2.
\end{align*}

De manera similar, veamos que la matriz
\[
\begin{pmatrix}
3 & 4 \\
1 & 2
\end{pmatrix}
\]
es invertible pues $(3)(2) – (4)(1) = 2 \ne 0$. ¿Puedes calcular su inversa?

Por el contrario, veamos que en la matriz
\[
\begin{pmatrix}
6 & 4 \\
3 & 2
\end{pmatrix}
\]
tenemos que $(6)(2) – (4)(3) = 12 -12 = 0$, y, por tanto, no es invertible.

Para el caso de matrices de mayor tamaño, también existen condiciones y fórmulas para calcular sus inversas, sin embargo, estas no resultan tan sencillas. Será necesario que comprendamos más propiedades de las matrices para poder obtenerlas.

Más adelante…

En esta entrada conocimos una propiedad más que cumplen las matrices respecto a su producto, que es la de tener inverso multiplicativas; también vimos las condiciones bajo las cuales una matriz de $2 \times 2$ puede tener inverso, y revisamos su fórmula.

En la siguiente entrada, conoceremos una nueva operación, la cual se distinguirá de todas las que hemos visto hasta ahora, pues esta operación involucra a una única matriz a la vez.

Tarea moral

  1. ¿Para qué valores de $a$ se cumple que
    \[
    \begin{pmatrix}
    5 & a \\
    2 & 2-a
    \end{pmatrix}
    \]
    es invertible?
  2. Muestra que si $A$, $B$ y $C$ son matrices invertibles del mismo tamaño, entonces
    \[
    (ABC)^{-1} = C^{-1}B^{-1}A^{-1}.
    \]
  3. Muestra que si $A$ es una matriz invertible y $k$ es un entero positivo, entonces $A^k$ también es invertible y $(A^k)^{-1}=(A^{-1})^k$.
  4. ¿Por qué la matriz
    \[
    \begin{pmatrix}
    3 & 4 & 0 \\
    7 & 2 & 0 \\
    0 & 0 & 0
    \end{pmatrix}
    \]
    no es invertible?
  5. Muestra que en efecto el criterio que dimos para que una matriz $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tenga inversa es suficiente y necesario. Para la parte de que es suficiente, tendrás que ver que si $ad-bc\neq 0$, la matriz propuesta en la entrada siempre funciona como inversa. Para ver que es necesario, supón que $ad-bc=0$. En este caso, $ad=bc$ y podrás encontrar a partir de $a,b,c,d$ a dos vectores distintos $u$ y $v$ tales que $Au=Av$. Esto mostrará que la transformación asociada a $A$ no es inyectiva y por tanto no podrá tener inversa, así que $A$ tampoco tendrá inversa.

Entradas relacionadas

Álgebra Superior I: Producto de matrices con matrices

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido varias operaciones que involucran escalares, vectores y matrices. En esta entrada aprenderemos sobre una de las operaciones más importantes en el álgebra lineal: el producto de matrices con matrices.

Definición de producto de matrices

Para poder efectuar el producto de dos matrices, hay que asegurarnos de que el número de columnas de la primera matriz sea igual al número de filas de la segunda matriz.

El resultado de una matriz $A$ de tamaño $m \times n$ por una matriz $B$ de tamaño $n \times \ell$ será la matriz $C = AB$ de tamaño $m \times \ell$, donde la entrada $c_{ij}$ de $C$ está dada por la fórmula
\[
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}.
\]

A primera vista esta fórmula puede parecer complicada, sin embargo, practicando con algunos ejemplos verás que es muy fácil de implementar.

  • Producto de matrices de tamaño $2 \times 2$:

Sean
\[
A
=
\begin{pmatrix}
1 & 3 \\
5 & 7
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & 4 \\
6 & 8
\end{pmatrix}.
\]

Como estamos multiplicando una matriz de tamaño $2 \times 2$ por una matriz de tamaño $2 \times 2$, sabemos que el resultado será otra matriz de tamaño $2 \times 2$. Ahora, iremos calculando una por una sus entradas.

Sea $C = AB$. Para calcular la entrada $c_{11}$ observamos la primera fila de $A$ y la primera columna de $B$, las cuales son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
de modo que $c_{11} = (1)(2)+(3)(6) = 20$:
\[
AB
=
\begin{pmatrix}
20 & \phantom{28} \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

Para la entrada $c_{12}$, nos fijamos en la primera columna de $A$ y en la segunda columna de $B$, que son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{12} = (1)(4) + (3)(8) = 28$:
\[
AB
=
\begin{pmatrix}
20 & 28 \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

De manera similar, observemos la segunda fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
obteniendo $c_{21} = (5)(2) + (7)(6) = 52$, mientras que la segunda fila de $A$ y la segunda columna de $B$ son
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{22} = (5)(4) + (7)(8) = 76$.

Por lo tanto,
\[
AB
=
\begin{pmatrix}
20 & 28 \\
52 & 76
\end{pmatrix}.
\]

En general, el resultado del producto de las matrices
\[
A
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]
es
\[
AB
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $3 \times 2$ por matriz de $2 \times 2$:

Supongamos que
\[
A
=
\begin{pmatrix}
3 & 5 \\
1 & 0 \\
4 & 3
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
7 & 8 \\
5 & 2
\end{pmatrix}.
\]

En este caso, como estamos multiplicando una matriz de tamaño $3 \times 2$ por una matriz de tamaño $2 \times 2$, la matriz resultante tendrá tamaño $3 \times 2$.

Podemos obtener sus entradas de manera similar al caso anterior. Si $C = AB$, entonces la entrada $c_{12}$ la podemos encontrar revisando la primera fila de $A$ y la segunda columna de $B$,
\[
A
=
\begin{pmatrix}
3 & 5 \\
\phantom{1} & \phantom{0} \\
\phantom{4} & \phantom{3}
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{7} & 8 \\
\phantom{5} & 2
\end{pmatrix}.
\]
de modo que $c_{12} = (3)(8) + (5)(2) = 34$. Por su parte, para obtener la entrada $c_{31}$ nos fijamos en la tercera fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{3} & \phantom{5} \\
\phantom{1} & \phantom{0} \\
4 & 3
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
7 & \phantom{8} \\
5 & \phantom{2}
\end{pmatrix}.
\]
obteniendo $c_{31} = (4)(7) + (3)(5) = 43$.

¿Podrías comprobar que
\[
AB
=
\begin{pmatrix}
46 & 34 \\
7 & 8 \\
43 & 38
\end{pmatrix}?
\]

Así, para el caso general de matrices de $3 \times 2$ por $2 \times 2$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $4 \times 2$ por matriz de $2 \times 3$:

¿Podrías verificar que la siguiente fórmula es correcta?
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\
a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23}
\end{pmatrix}.
\]

Propiedades del producto de matrices

A continuación revisaremos algunas de las propiedades que cumple la multiplicación de matrices. Para demostrar las siguientes propiedades, consideraremos la matriz $A$ de tamaño $3 \times 2$ y las matrices $B$ y $C$ de tamaño $2 \times 2$, aunque se pueden probar para matrices de cualesquier otro tamaño entre las cuales se puedan efectuar las operaciones.

Veamos que si efectuamos la multiplicación de una matriz de tamaño $m \times n$ por una matriz de tamaño $n \times 1$ siguiendo el algoritmo descrito anteriormente, el resultado coincide con el de multiplicar la matriz de tamaño $m \times n$ por un vector de tamaño $n$. Por ejemplo, si multiplicamos $A$ por una matriz $U$ de tamaño $2 \times 1$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_{11} \\
u_{12}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_{11} + a_{12}u_{21} \\
a_{21}u_{11} + a_{22}u_{21} \\
a_{31}u_{11} + a_{32}u_{21}
\end{pmatrix}.
\]

Esta es una observación importante pues todo lo que demostremos para el producto de matrices también lo tendremos para el producto de matriz por vector.

Veamos que la multiplicación de matrices es asociativa:

\begin{align*}
(AB)C
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \\
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}b_{11} + a_{12}b_{21})c_{11} + (a_{11}b_{12} + a_{12}b_{22})c_{21}
& (a_{11}b_{11} + a_{12}b_{21})c_{12} + (a_{11}b_{12} + a_{12}b_{22})c_{22} \\
(a_{21}b_{11} + a_{22}b_{21})c_{11} + (a_{21}b_{12} + a_{22}b_{22})c_{21}
& (a_{21}b_{11} + a_{22}b_{21})c_{12} + (a_{21}b_{12} + a_{22}b_{22})c_{22} \\
(a_{31}b_{11} + a_{32}b_{21})c_{11} + (a_{31}b_{12} + a_{32}b_{22})c_{21}
& (a_{31}b_{11} + a_{32}b_{21})c_{12} + (a_{31}b_{12} + a_{32}b_{22})c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}c_{11} + b_{12}c_{21}) + a_{12}(b_{21}c_{11} + b_{22}c_{21})
& a_{11}(b_{11}c_{12} + b_{12}c_{22}) + a_{12}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{21}(b_{11}c_{11} + b_{12}c_{21}) + a_{22}(b_{21}c_{11} + b_{22}c_{21})
& a_{21}(b_{11}c_{12} + b_{12}c_{22}) + a_{22}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{31}(b_{11}c_{11} + b_{12}c_{21}) + a_{32}(b_{21}c_{11} + b_{22}c_{21})
& a_{31}(b_{11}c_{12} + b_{12}c_{22}) + a_{32}(b_{21}c_{12} + b_{22}c_{22})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}c_{11} + b_{12}c_{21} & b_{11}c_{12} + b_{12}c_{22} \\
b_{21}c_{11} + b_{22}c_{21} & b_{21}c_{12} + b_{22}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
A(BC).
\end{align*}

De manera muy similar, si $u$ es un vector de tamaño 2, podemos ver que se cumple que $A(Bu) = (AB)u$. ¿Puedes demostrarlo? Hazlo por lo menos para matrices $A$ y $B$ ambas de $2\times 2$.

Quizás tengas la impresión de que hay que hacer demasiadas cuentas y que sería sumamente difícil demostrar estas propiedades para matrices más grandes. Sin embargo, en cursos posteriores verás cómo trabajar apropiadamente con la notación para poder hacer estas demostraciones más fácilmente.

El producto de matrices es asociativo. Sin embargo, no es conmutativo. Por ejemplo, consideremos las matrices
\[
E=
\begin{pmatrix}
5 & 7 \\
-3 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
F=
\begin{pmatrix}
1 & 2 \\
9 & -1
\end{pmatrix}.
\]


Veamos que
\[
EF =
\begin{pmatrix}
68 & 3 \\
-3 & -6
\end{pmatrix}
\ne
\begin{pmatrix}
-1 & 7 \\
48 & 63
\end{pmatrix}
=
FE.
\]

En términos de combinar el producto de matrices con otras operaciones, tenemos que el producto de matrices por la izquierda se distribuye sobre la suma de matrices:
\begin{align*}
A(B+C)
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}+c_{11} & b_{12}+c_{12} \\
b_{21}+c_{21} & b_{22}+c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}+c_{11}) + a_{12}(b_{21}+c_{21})
& a_{11}(b_{12}+c_{21}) + a_{12}(b_{22}+c_{22}) \\
a_{21}(b_{11}+c_{11}) + a_{22}(b_{21}+c_{21})
& a_{21}(b_{12}+c_{21}) + a_{22}(b_{22}+c_{22}) \\
a_{31}(b_{11}+c_{11}) + a_{32}(b_{21}+c_{21})
& a_{31}(b_{12}+c_{21}) + a_{32}(b_{22}+c_{22}) \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11}+a_{11}c_{11} + a_{12}b_{21}+a_{12}c_{21}
& a_{11}b_{12}+a_{11}c_{11} + a_{12}b_{22}+a_{12}c_{22} \\
a_{21}b_{11}+a_{21}c_{11}+ a_{22}b_{21}+a_{22}c_{21}
& a_{21}b_{12}+a_{21}c_{12}+ a_{22}b_{22}+a_{22}c_{22} \\
a_{31}b_{11}+a_{31}c_{11} + a_{32}b_{21}+a_{32}c_{21}
& a_{31}b_{12}+a_{31}c_{12} + a_{32}b_{22}+a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\
a_{21}c_{11} + a_{22}c_{21} & a_{21}c_{12} + a_{22}c_{22} \\
a_{31}c_{11} + a_{32}c_{21} & a_{31}c_{12} + a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
AB + AC.
\end{align*}

El producto también se distribuye sobre la suma cuando la suma aparece a la izquierda. ¿Podrías probar que si $D$ es una matriz de tamaño $3 \times 2$, entonces se cumple $(A+D)B = AB + DB$?

En entradas anteriores vimos que $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarla por un vector de tamaño $n$. Resulta que $\mathcal{I}_n$ también tiene esta propiedad al multiplicarla por la izquierda por una matriz de tamaño $n\times m$. Por ejemplo, veamos que al multiplicar $\mathcal{I}_3$ por la izquierda por $A$, obtenemos
\begin{align*}
\mathcal{I}_3 A
&=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} + 0a_{21} + 0a_{31} & 1a_{12} + 0a_{22} + 0a_{32} \\
0a_{11} + 1a_{21} + 0a_{31} & 0a_{12} + 1a_{22} + 0a_{32} \\
0a_{11} + 0a_{21} + 1a_{31} & 0a_{12} + 0a_{22} + 1a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
A.
\end{align*}

¿Podrías probar que $A\mathcal{I}_2 = A$ (es decir, que $\mathcal{I}_2$ es neutro por la derecha para $A$)?

Habiendo visto que el producto de matrices es asociativo, conmutativo y tiene neutros, probablemente te estarás preguntando si existen inversos en la multiplicación de matrices. Este cuestionamiento lo dejaremos para la siguiente entrada.

Relación con la composición de transformaciones

Como vimos en la entrada anterior, una forma de visualzar el producto de una matriz $A$ por un vector $u$ es como una transformación que envía el vector $u$ a un único vector $Au$.

Teniendo en mente esto, veamos que la propiedad de que $A(Bu) = (AB)u$ resulta aún más interesante. Para esto, veamos que el siguiente ejemplo: sean
\[
A
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix},
\qquad
\text{y}
\qquad
u
=
\begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

Si multiplicamos $B$ por $u$, vemos que corresponde a la transformación que envía $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ al vector $Bu = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

Ahora, si multiplicamos $A$ por el vector $Bu$, vemos que corresponde a la transformación que envía $Bu$ al vector $A(Bu) = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$ (Acabamos de obtener el resultado de aplicar a $u$ la composición de las transformaciones $B$ y $A$).

Por otra parte, si realizamos la multiplicación
\[
AB
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix}
=
\begin{pmatrix}
6 & 0 \\
4 & 2
\end{pmatrix},
\]
la transformación asociada a $AB$ envía $u$ al vector $(AB)u = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$.

¡La composición de las transformaciones asociadas a $B$ y $A$ aplicada al vector $u$ coincide con la transformación asociada a la matriz $AB$ aplicada al mismo vector!

Si probamos esto para un vector arbitrario, nos daremos cuenta de que en todos los casos se cumple lo mismo. En realidad, esto no es una coincidencia: como aprenderás en tus cursos de álgebra lineal, la composición de transformaciones lineales está directamente asociada al producto de matrices.

Potencias de matrices

Podemos ver que si una matriz $A$ es cuadrada, al tener el mismo número de filas que de columnas, entonces podemos realizar la multiplicaciones $AA$, $AAA$, $AAAA$, etc., que por asociatividad no importa en qué orden multipliquemos. Esto nos sugiere que podemos cacular potencias de matrices.

Para una matriz cuadrada $A$, definiremos de manera recursiva la potencia $A^n$:

  • Definimos $A^0 = \mathcal{I}$.
  • Dada $A^n$, con $n$ un número natural, definimos $A^{n+1} = A^n A$.

Por ejemplo, si
\[
A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\]
calculemos $A^3$ empleando la definición recursiva. Para esto, iremos calculando una por una las potencias de $A$, hasta llegar a $A^3$:
\begin{align*}
A^0
&=
\mathcal{I}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\\[5pt]
A^1
&=
A^0A
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\\[5pt]
A^2
&=
A^1 A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(2)(2) + (1)(3) & (2)(1) + (1)(4) \\
(3)(2) + (4)(3) & (3)(1) + (4)(4)
\end{pmatrix}
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix},
\\[5pt]
A^3
&=
A^2A
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(7)(2) + (6)(3) & (7)(1) + (6)(4) \\
(18)(2) + (19)(3) & (18)(1) + (19)(4)
\end{pmatrix}
=
\begin{pmatrix}
32 & 31 \\
93 & 94
\end{pmatrix}.
\end{align*}

Prueba calcular algunas potencias de la matriz \(
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}.
\) ¿Notas algún patrón especial?

Más adelante…

En esta entrada aprendimos sobre el producto de matrices con matrices y conocimos algunas de sus propiedades. En la siguiente entrada abordaremos la pregunta sobre si existen los inversos en la multiplicación de matrices.

Tarea moral

  1. Realiza el producto de matrices $$\begin{pmatrix} -1 & -2 & -3 \\ 0 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$
  2. Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza las siguientes operaciones por separado, sin usar la asociatividad del producto de matrices. ¿Cuál de las dos operaciones te resultó más fácil de hacer?
    • $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
    • $$(((AA)A)A)\begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$
  3. Completa las pruebas faltantes de las propiedades de la multiplicación de matrices.
  4. Demuestra la siguiente ley de exponentes para matrices: $A^mA^n=A^{m+n}$.
  5. Prueba que si
    \[
    A =
    \begin{pmatrix}
    a_{11} & 0 \\
    0 & a_{22}
    \end{pmatrix},
    \]
    y $k$ es un entero mayor o igual que $0$, entonces
    \[
    A^k
    =
    \begin{pmatrix}
    {a_{11}}^k & 0 \\
    0 & {a_{22}}^k
    \end{pmatrix}
    \]
    (Sugerencia: realizarlo por inducción sobre $k$, utilizando la definición recursiva).
  6. Encuentra matrices $A$ y $B$ de $2\times 2$ para las cuales $A^2-B^2\neq (A+B)(A-B)$.

Entradas relacionadas

Álgebra Superior I: Producto de matrices con vectores

Por Eduardo García Caballero

Introducción

Anteriormente conocimos dos operaciones que podemos realizar utilizando vectores o matrices: la suma entre vectores/matrices y el producto escalar. Como recordarás, estas operaciones involucran exclusivamente vectores o exclusivamente matrices. En esta entrada veremos una operación que involucra a ambos objetos matemáticos a la vez: el producto de una matriz por un vector.

Definición de producto de matrices con vectores

Una condición indispensable para poder realizar el producto matriz-vector es que la cantidad de columnas de la matriz sea la misma que la cantidad de entradas del vector. Basándonos en esto, podríamos multiplicar
\[
\begin{pmatrix}
3 & \tfrac{1}{2} \\
2 & 5
\end{pmatrix}
\begin{pmatrix}
\pi \\
4
\end{pmatrix}
\qquad
\text{o}
\qquad
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
-3 \\
\tfrac{2}{3} \\
5
\end{pmatrix},
\]
pero no podríamos realizar la operación
\[
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
\pi \\
4
\end{pmatrix}.
\]

Como te habrás podido dar cuenta, en este tipo de producto es usual representar los vectores en su forma de “vector vertical” o “vector columna”.

El resultado de multiplicar una matriz por un vector será un nuevo vector, cuyo tamaño corresponde a la cantidad de filas de la matriz original.

Para obtener este nuevo vector, se sigue un algoritmo especial, el cual conocerás en entradas futuras. Sin embargo, a continuación te presentamos las fórmulas que definen a algunos casos especiales de esta operación, lo cual te permitirá obtener el producto en casos con una cantidad pequeña de entradas.

  • Producto de una matriz de tamaño $2 \times 2$ por un vector de tamaño $2$:

\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 \\
a_{21}u_1 + a_{22}u_2
\end{pmatrix}.
\]

  • Producto de una matriz de tamaño $3 \times 2$ por un vector de tamaño $2$:

\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 \\
a_{21}u_1 + a_{22}u_2 \\
a_{31}u_1 + a_{32}u_2
\end{pmatrix}.
\]

  • Producto de una matriz de tamaño $2 \times 3$ por un vector de tamaño $3$:

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3
\end{pmatrix}.
\]

  • Producto de una matriz de tamaño $3 \times 3$ por un vector de tamaño $3$:

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3 \\
a_{31}u_1 + a_{32}u_2 + a_{33}u_3
\end{pmatrix}.
\]

¿Observas algún patrón en estas fórmulas?

Veamos algunos ejemplos numéricos de cómo usar estas fórmulas:

\(
\bullet
\begin{pmatrix}
3 & \tfrac{1}{2} \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
-\tfrac{1}{3} \\
4
\end{pmatrix}
=
\begin{pmatrix}
(3)(-\tfrac{1}{3}) + (\tfrac{1}{2})(4) \\
(2)(-\tfrac{1}{3}) + (1)(4)
\end{pmatrix}
=
\begin{pmatrix}
-1 + 2 \\
-\tfrac{2}{3} + 4
\end{pmatrix}
=
\begin{pmatrix}
1 \\
\tfrac{10}{3}
\end{pmatrix}
\)

\(
\bullet
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
-3 \\
\tfrac{2}{3} \\
5
\end{pmatrix}
=
\begin{pmatrix}
(1)(-3) + (7)(\tfrac{2}{3}) + (\sqrt{2})(5) \\
(9)(-3) + (\tfrac{1}{3})(\tfrac{2}{3}) + (-2)(5)
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{5+15\sqrt{2}}{3} \\
-\tfrac{331}{3}
\end{pmatrix}.
\)

Breve exploración geométrica

Como probablemente hayas visto en tu curso de Geometría Analítica I, el producto de matrices por vectores se puede emplear para representar distintas transformaciones de vectores en el plano y en el espacio.

Si multiplicamos una matriz diagonal por un vector, entonces el resultado corresponderá a “redimensionar” el vector en sus distintas direcciones. Por ejemplo, observamos que el producto
\[
\begin{pmatrix}
3 & 0 \\
0 & 2
\end{pmatrix}
\begin{pmatrix}
3 \\
3
\end{pmatrix}
=
\begin{pmatrix}
9 \\
6
\end{pmatrix}
\]
corresponde a redimensionar el vector original al triple de manera horizontal y al doble de manera vertical.

Por otra parte, multiplicar por una matriz de la forma
\[
\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}
\]
ocasiona que el vector rote un ángulo $\theta$ en sentido contrario a las manecillas del reloj; por ejemplo,
\[
\begin{pmatrix}
\cos(30º) & -\sin(30º) \\
\sin(30º) & \cos(30º)
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{\sqrt{3}}{2} & -\tfrac{1}{2} \\
\tfrac{1}{2} & \tfrac{\sqrt{3}}{2}
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
=
\begin{pmatrix}
(\tfrac{\sqrt{3}}{2})(5) + (-\tfrac{1}{2})(4) \\
(\tfrac{1}{2})(5) + (\tfrac{\sqrt{3}}{2})(4)
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{5\sqrt{3}-4}{2} \\
\tfrac{5+4\sqrt{3}}{2}
\end{pmatrix}.
\]

Propiedades algebraicas del producto de una matriz por un vector

A continuación, exploraremos algunas de las propiedades que cumple el producto matriz-vector. Estas propiedades las deduciremos para matrices de $2 \times 3$ por vectores de tamaño $3$, pero la deducción para otros tamaños de matrices y vectores se realiza de manera análoga.

Primeramente, observemos que para matrices $A$ y $B$ de tamaño $2\times 3$, y para un vector $u$, se cumple que
\begin{align*}
(A+B)u
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
\right)
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13}\\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}+b_{11})u_1 + (a_{12}+b_{12})u_2+(a_{13}+b_{13})u_3 \\
(a_{21}+b_{21})u_1 + (a_{22}+b_{22})u_2+(a_{23}+b_{23})u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}u_1+b_{11}u_1 + a_{12}u_2+b_{12}u_2 + a_{13}u_3+b_{13}u_3 \\
a_{21}u_1+b_{21}u_1 + a_{22}u_2+b_{22}u_2 + a_{23}u_3+b_{23}u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}u_1+a_{12}u_2+a_{13}u_3 \\
a_{21}u_1+a_{22}u_2+a_{23}u_3
\end{pmatrix}
+
\begin{pmatrix}
b_{11}u_1+b_{12}u_2+b_{13}u_3 \\
b_{21}u_1+b_{22}u_2+b_{23}u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
Au + Bu,
\end{align*}
es decir, el producto matriz-vector se distribuye sobre la suma de matrices (esto también se conoce como que el producto matriz-vector abre sumas).

Por otra parte, podemos probar que el producto matriz-vector se distribuye sobre la suma de vectores; es decir, si $A$ es una matriz de $2 \times 3$, y $u$ y $v$ son vectores de tamaño $3$, entonces
\[
A(u+v) = Au + Av.
\]

Además, veamos que si $A$ es una matriz de $2 \times 3$, $r$ es un escalar, y $u$ un vector de tamaño $3$, entonces
\begin{align*}
A(ru)
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\left(
r
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
ru_1 \\
ru_2 \\
ru_3 \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}ru_1 + a_{12}ru_2 + a_{13}ru_3 \\
a_{21}ru_1 + a_{22}ru_2 + a_{23}ru_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
r(a_{11}u_1) + r(a_{12}u_2) + r(a_{13}u_3) \\
r(a_{21}u_1) + r(a_{22}u_2) + r(a_{23}u_3)
\end{pmatrix}
\\[5pt]
&=
r
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3
\end{pmatrix}
\\[5pt]
&=
r
\left(
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
r(Au)
\end{align*}
y, más aún,
\begin{align*}
A(ru)
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\left(
r
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
ru_1 \\
ru_2 \\
ru_3 \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}ru_1 + a_{12}ru_2 + a_{13}ru_3 \\
a_{21}ru_1 + a_{22}ru_2 + a_{23}ru_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(ra_{11})u_1 + (ra_{12})u_2 + (ra_{13})u_3 \\
(ra_{21})u_1 + (ra_{22})u_2 + (ra_{23})u_3
\end{pmatrix}
\\[5pt]
&=
\left(
\begin{pmatrix}
ra_{11} & ra_{12} & ra_{13} \\
ra_{21} & ra_{22} & ra_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\left(
r
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\right)
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
(rA)u.
\end{align*}

Por lo tanto $A(ru) = r(Au) = (rA)u$. Esta propiedad se conoce como que el producto matriz-vector saca escalares.

Como el producto de matrices por vectores abre sumas y saca escalares, se dice que es lineal. Un hecho bastante interesante, cuya demostración se dejará hasta los cursos de álgebra lineal, es que el regreso de esta afirmación también se cumple: ¡A cualquier transformación lineal se le puede asociar una matriz $A$ de modo que aplicar la transformación a un vector $v$ es lo mismo que hacer el producto $Av$!

Otras propiedades de este producto

En entradas anteriores definimos algunos vectores y matrices especiales.

Como recordarás, definimos la matriz identidad de tamaño $3 \times 3$ como
\[
\mathcal{I}_3
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Observemos que al multiplicar $\mathcal{I}_3$ por el vector
\[
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\]
obtendremos
\[
\mathcal{I}_3 u
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
1u_1 + 0u_2 + 0u_3 \\
0u_1 + 1u_2 + 0u_3 \\
0u_1 + 0u_2 + 1u_3
\end{pmatrix}
=
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
u.
\]
Como su nombre lo sugiere, la matriz $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarlo por un vector de tamaño $n$ (de hecho, como veremos en la siguiente entrada, ¡la matriz $I_n$ también cumple esta propiedad en otras operaciones!).

Por otra parte, recordemos que definimos el vector canónico $\mathrm{e}_i$ de tamaño $n$ como el vector en el que su $i$-ésima entrada es $1$ y sus demás entradas son $0$. Como ejemplo, veamos que
\begin{align*}
A\mathrm{e}_1
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} +0a_{12} +0a_{13} \\
1a_{21} +0a_{22} +0a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} \\
a_{21}
\end{pmatrix},
\end{align*}
donde este resultado corresponde a al primera columna de la matriz.

De manera análoga, podemos ver que
\[
A\mathrm{e}_2 =
\begin{pmatrix}
a_{12} \\
a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
A\mathrm{e}_3 =
\begin{pmatrix}
a_{13} \\
a_{23}
\end{pmatrix}
\]
corresponden a la segunda y tercera columna de la matriz, respectivamente.

En general, para matrices de tamaño $m \times n$ y el vector $\mathrm{e}_i$ de tamaño $n$, el resultado de $A\mathrm{e}_i$ corresponde al vector cuyas entradas son las que aparecen en la $i$-ésima columna de la matriz.

Más adelante…

En esta entrada conocimos el producto de matrices con vectores, exploramos su interpretación geométrica y revisamos algunas de las propiedades algebraicas que cumple. Esta operación se añade a las que aprendimos en entradas anteriores, ampliando nuestra colección de herramientas.

En la siguiente entrada descubriremos una operación que nos permitirá sacar aún más poder a las operaciones que hemos conocido hasta ahora: el producto de matrices.

Tarea moral

  1. Obtén el resultado de las siguientes multipicaciones:

\(
\begin{pmatrix}
1 & -2 & 3 \\
1 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
4 \\
5 \\
6
\end{pmatrix},
\)

\(
\begin{pmatrix}
2 & 5 \\
3 & \tfrac{1}{2}
\end{pmatrix}
\begin{pmatrix}
4 \\
2
\end{pmatrix}.
\)

  1. Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza la siguiente operación: $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
  2. ¿Cuál matriz permite rotar un vector en el plano 45º? ¿Cuál 60º?
  3. Deduce las propiedades del producto matriz-vector para matrices de $3 \times 2$ y vectores de tamaño $2$.
  4. Una matriz desconocida $A$ de $3\times 3$ cumple que $Ae_1=\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, que $Ae_2=\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ y que $Ae_3=\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$. ¿Cuánto es $A\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$?

Entradas relacionadas

Álgebra Superior I: Cálculo de determinantes

Por Eduardo García Caballero

Introducción

En la entrada anterior introdujimos el concepto de determinante de matrices cuadradas. Dimos la definición para matrices de $2\times 2$. Aunque no dimos la definición en general (pues corresponde a un curso de Álgebra Lineal I), dijimos cómo se pueden calcular los determinantes de manera recursiva. Pero, ¿hay otras herramientas para hacer el cálculo de determinantes más sencillo?

En esta entrada hablaremos de más propiedades de los determinantes. Comenzaremos viendo que si en una matriz tenemos dos filas o columnas iguales, el determinante se hace igual a cero. Luego, veremos que los determinantes son lineales (por renglón o columna), que están muy contectados con las operaciones elementales y platicaremos de algunos determinantes especiales.

Linealidad por filas o columnas

El determinante «abre sumas y saca escalares», pero hay que ser muy cuidadosos, pues no lo hace para toda una matriz, sino sólo renglón a renglón, o columna a columna. Enunciemos esto en las siguientes proposiciones.

Proposición. El determinante saca escalares renglón por renglón o columna por columna. Por ejemplo, pensemos en sacar escalares por renglón. Si $k$ es un número real y tenemos una matriz de la forma
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & & \vdots \\
ka_{i1} & ka_{i2} & \cdots & ka_{in} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix},
\]
entonces
\[
\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & & \vdots \\
ka_{i1} & ka_{i2} & \cdots & ka_{in} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
=
k\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}.
\]

No podemos dar la demostración muy formalmente, pues necesitamos de más herramientas. Pero puedes convencerte de que esta proposición es cierta pensando en lo que sucede cuando se calcula el determinante recursivamente en la fila $i$. En la matriz de la izquierda, usamos los coeficientes $ka_{i1},\ldots,ka_{in}$ para acompañar a los determinantes de las matrices de $(n-1)\times (n-1)$ que van saliendo. Pero entonces en cada término aparece $k$ y se puede factorizar. Lo que queda es $k$ veces el desarrollo recursivo de la matriz sin las $k$’s en el renglón $i$.

Ejemplo. Calculemos el determinante de la matriz $A=\begin{pmatrix} 2 & 2 & -1 \\ 0 & 2 & 3 \\ -3 & 2 & 1\end{pmatrix}$. En la primera columna hay un $0$, así que nos conviene usar esta columna para encontrar el determinante. Aplicando la regla recursiva, obtenemos que:

\begin{align*}
\det(A)=\begin{vmatrix} 2 & 2 & -1 \\ 0 & 2 & 3 \\ -3 & 2 & 1\end{vmatrix} &= (2) \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} – (0) \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} + (-3) \begin{vmatrix} 2 & -1 \\ 2 & 3 \end{vmatrix}\\
&=2(2\cdot 1 – 3 \cdot 2) – 0 (2 \cdot 1 – (-1)\cdot 2) – 3 (2\cdot 3 – (-1)\cdot 2)\\
&=2(-4)-0(4)-3(8)\\
&=-32.
\end{align*}

¿Qué sucedería si quisiéramos ahora el determinante de la matriz $B=\begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 3 \\ -3 & 1 & 1\end{pmatrix}$? Podríamos hacer algo similar para desarrollar en la primera fila. Pero esta matriz está muy relacionada con la primera. La segunda columna de $B$ es $1/2$ veces la segunda columna de $A$. Por la propiedad que dijimos arriba, tendríamos entonces que $$\det(B)=\frac{1}{2}\det(A)=\frac{-32}{2}=-16.$$

$\triangle$

Ejemplo. Hay que tener mucho cuidado, pues el determinante no saca escalares con el producto escalar de matrices. Observa que si $A=\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, entonces $\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 2\cdot 1 – 1\cdot 1 = 1$. Sin embargo, $$\det(2A)=\begin{vmatrix} 4 & 2 \\ 2 & 2 \end{vmatrix}=4\cdot 2 – 2 \cdot 2 = 4\neq 2\det(A).$$

En vez de salir dos veces el determinante, salió cuatro veces el determinante. Esto tiene sentido de acuerdo a la propiedad anterior: sale un factor $2$ pues la primera fila es el doble, y sale otro factor $2$ porque la segunda fila también es el doble.

$\square$

Proposición. El determinante abre sumas renglón por renglón, o columa por columna. Por ejemplo, veamos el caso para columnas. Si tenemos una matriz de la forma
\[
\begin{pmatrix}
a_{11} & \cdots & a_{1i} + b_{1i} & \cdots & a_{1n} \\
a_{21} & \cdots & a_{2i} + b_{2i} & \cdots & a_{2n} \\
\vdots & & \vdots & & \vdots \\
a_{n1} & \cdots & a_{ni} + b_{ni} & \cdots & a_{nn}
\end{pmatrix},
\]
entonces este determinante es igual a
\begin{align*}
\operatorname{det}
\begin{pmatrix}
a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\
a_{21} & \cdots & a_{2i} & \cdots & a_{2n} \\
\vdots & & \vdots & & \vdots \\
a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
\end{pmatrix}
+
\operatorname{det}
\begin{pmatrix}
a_{11} & \cdots & b_{1i} & \cdots & a_{1n} \\
a_{21} & \cdots & b_{2i} & \cdots & a_{2n} \\
\vdots & & \vdots & & \vdots \\
a_{n1} & \cdots & b_{ni} & \cdots & a_{nn}
\end{pmatrix}.
\end{align*}

Una vez más, no podemos dar una demostración muy formal a estas alturas. Pero como en el caso de sacar escalares, también podemos argumentar un poco informalmente qué sucede. Si realizamos el cálculo de determinantes en la columna $i$, entonces cada término de la forma $a_{ji}+b_{ji}$ acompaña a un determinante $D_{ji}$ de una matriz de $(n-1)\times (n-1)$ que ya no incluye a esa columna. Por ley distributiva, cada sumando es entonces $(a_{ji}+b_{ji})D_{ji}=a_{ji}D_{ji}+b_{ji}D_{ji}$ (acompañado por un $+$ o un $-$). Agrupando en un lado los sumandos con $a_{ji}$’s y por otro los sumandos con $b_{ji}$’s obtenemos la identidad deseada.

Ejemplo. Las matrices $\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$ y $\begin{pmatrix} 2 & 5 \\ 2 & 1 \end{pmatrix}$ tienen determinantes $1$ y $-8$ respectivamente (verifícalo). De acuerdo a la propiedad anterior, el determinante de la matriz $$\begin{pmatrix} 5 + 2 & 2 + 5 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 7 \\ 2 & 1 \end{pmatrix}$$

debería ser $1 + (-8) = -7$. Y sí, en efecto $7\cdot 1 – 2 \times 7 = -7$.

$\triangle$

Hay que tener mucho cuidado, pues en esta propiedad de la suma las dos matrices tienen que ser iguales en casi todas las filas (o columnas), excepto en una. En esa fila (o columna) es donde se da la suma. En general, no sucede que $\det(A+B)=\det(A)+\det(B)$.

Ejemplo. Puedes verificar que las matrices $A=\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{pmatrix}$ y $B=\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{pmatrix}$ tienen ambas determinante $1$. Sin embargo, su suma es la matriz de puros ceros, que tiene determinante $0$. Así, $$\det(A)+\det(B)=2\neq 0 = \det(A+B).$$

$\triangle$

El determinante y operaciones elementales

El siguiente resultado nos dice qué sucede al determinante de una matriz cuando le aplicamos operaciones elementales.

Teorema. Sea $A$ una matriz cuadrada.

  • Si $B$ es una matriz que se obtiene de $A$ al reescalar un renglón con el escalar $\alpha$, entonces $\det(B)=\alpha\det(A)$.
  • Si $B$ es una matriz que se obtiene de $A$ al intercambiar dos renglones, entonces $\det(B)=-\det(A)$.
  • Si $B$ es una matriz que se obtiene de $A$ al hacer una transvección, entonces $\det(B)=\det(A)$.

No nos enfocaremos mucho en demostrar estas propiedades, pues se demuestran con más generalidad en el curso de Álgebra Lineal I. Sin embargo, a partir de ellas podemos encontrar un método de cálculo de determinantes haciendo reducción gaussiana.

Teorema. Sea $A$ una matriz cuadrada. Supongamos que para llevar $A$ a su forma escalonada reducida $A_{red}$ se aplicaron algunas transvecciones, $m$ intercambios de renglones y $k$ reescalamientos por escalares no cero $\alpha_1,\ldots,\alpha_k$ (en el orden apropiado). Entonces $$\det(A)=\frac{(-1)^m\det(A_{red})}{\alpha_1\alpha_2\cdots\alpha_k}.$$ En particular:

  • Si $A_{red}$ no es la identidad, entonces $\det(A_{red})=0$ y entonces $\det(A)=0$.
  • Si $A_{red}$ es la identidad, entonces $\det(A_{red})=1$ y entonces $$\det(A)=\frac{(-1)^m}{\alpha_1\alpha_2\cdots\alpha_k}.$$

Veamos un ejemplo.

Ejemplo. Calculemos el determinante de la matriz $A=\begin{pmatrix} 2 & 2 & -2 \\ 0 & 2 & 3 \\ -3 & 2 & 1\end{pmatrix}$ usando reducción gaussiana. Multiplicamos la primera fila por $\alpha_1=1/2$ y la sumamos tres veces a la última (transvección no cambia el determinante):

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \\ 0 & 5 & -2\end{pmatrix}$$

Multiplicamos por $\alpha_2=1/5$ la segunda fila y la intercambiamos con la tercera (va $m=1$).

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{2}{5} \\ 0 & 2 & 3\end{pmatrix}.$$

Restamos dos veces la segunda fila a la tercera (transvección no cambia el determinante)

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{2}{5} \\ 0 & 0 & \frac{19}{5}\end{pmatrix},$$

y multiplicamos la tercera fila por $\alpha_3=5/19$:

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{2}{5}\\ 0 & 0 & 1\end{pmatrix}.$$

Hacemos transvecciones para hacer cero las entradas arriba de la diagonal principal (transvecciones no cambian el determinante): $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}.$$

Ya llegamos a la identidad. Los reescalamientos fueron por $1/2$, $1/5$ y $5/19$ y usamos en total $1$ intercambio. Así, $$\det(A)=\frac{(-1)^1}{(1/2)(1/5)(5/19)}=-38.$$

$\triangle$

Es recomendable que calcules el determinante del ejemplo anterior con la regla recursiva de expansión por menores para que verifiques que da lo mismo.

Algunos determinantes especiales

A continuación enunciamos otras propiedades que cumplen los determinantes. Todas estas puedes demostrarlas suponiendo propiedades que ya hemos enunciado.

Proposición. Para cualquier entero positivo $n$ se cumple que la matriz identidad $\mathcal{I}_n$ tiene como determinante $\operatorname{det}(\mathcal{I}_n) = 1$.

Este resultado es un caso particular de una proposición más general.

Proposición. El determinante de una matriz diagonal es igual al producto de los elementos de su diagonal; es decir,
\[
\operatorname{det}
\begin{pmatrix}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{pmatrix}
=
a_{11} a_{12} \cdots a_{nn}.
\]

Para probar esta proposición, puedes usar la regla recursiva para hacer la expansión por la última fila (o columna) y usar inducción.

Proposición. $\operatorname{det}(A^T) = \operatorname{det}(A)$.

Este resultado también sale inductivamente. Como los determinantes se pueden expandir por renglones o columnas, entonces puedes hacer una expansión en alguna fila de $A$ y será equivalente a hacer la expansión por columnas en $A^T$.

Proposición. Si $A$ es una matriz invertible, entonces $\operatorname{det}(A^{-1}) = \dfrac{1}{\operatorname{det}(A)}$.

Para demostrar este resultado, se puede usar la proposición del determinante de la identidad, y lo que vimos la entrada pasada sobre que $\det(AB)=\det(A)\det(B)$.

Los argumentos que hemos dado son un poco informales, pero quedará en los ejercicios de esta entrada que pienses en cómo justificarlos con más formalidad.

Ejemplos interesantes de cálculo de determinantes

Las propiedades anteriores nos permiten hacer el cálculo de determinantes de varias maneras (no sólo expansión por menores). A continuación presentamos dos ejemplos que usan varias de las técnicas discutidas arriba.

Ejemplo. Calculemos el siguiente determinante:

$$\begin{vmatrix} 1 & 5 & 3 \\ 2 & 9 & 1 \\ 5 & 4 & 3 \end{vmatrix}.$$

Como aplicar transvecciones no cambia el determinante, podemos restar la primera fila a la segunda, y luego cinco veces la primera fila a la tercera y el determinante no cambia. Así, este determinante es el mismo que

$$\begin{vmatrix} 1 & 5 & 3 \\ 0 & -1 & -5 \\ 0 & -21 & -12 \end{vmatrix}.$$

Multiplicar la segunda fila por $-1$ cambia el determinante en $-1$. Y luego multiplicar la tercera por $-1$ lo vuelve a cambiar en $-1$. Entonces haciendo ambas operaciones el determinante no cambia y obtenemos que el determinante es igual a

$$\begin{vmatrix} 1 & 5 & 3 \\ 0 & 1 & 5 \\ 0 & 21 & 12 \end{vmatrix}.$$

En esta matriz podemos expandir por la primera columna en donde hay dos ceros. Por ello, el determinante es

$$\begin{vmatrix} 1 & 5 \\ 21 & 12 \end{vmatrix}= (1\cdot 12) – (5 \cdot 21) = -93.$$

$\triangle$

Ejemplo. Calculemos el siguiente determinante:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}.$$

Hacer transvecciones no cambia el determinante, entonces podemos sumar todas las filas a la última sin alterar el determinante. Como $1+2+3+4=10$, obtenemos:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 10 & 10 & 10 & 10 \end{vmatrix}.$$

Ahora, la última fila tiene un factor $10$ que podemos factorizar:

$$10\cdot \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{vmatrix}.$$

Ahora, podemos restar la primera columna a todas las demás, sin cambiar el determinante:

$$10\cdot \begin{vmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & -1 \\ 3 & 1 & -2 & 1 \\ 1 & 0 & 0 & 0 \end{vmatrix}.$$

Luego, podemos sumar la segunda fila a la tercera sin cambiar el determinante:

$$10\cdot \begin{vmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & -1 \\ 5 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix}.$$

Expandiendo por la última fila:

$$-10\cdot \begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & -1 \\ 2 & 0 & 0 \end{vmatrix}.$$

Expandiendo nuevamente por la última fila:

$$-10 \cdot 2 \cdot \begin{vmatrix} 2 & 3 \\ 2 & -1 \end{vmatrix}.$$

El determinante de $2\times 2$ que queda ya sale directo de la fórmula como $2\cdot (-1)-3\cdot 2 = -8$. Así, el determinante buscado es $(-10)\cdot 2 \cdot (-8)=160$.

$\triangle$

Más adelante…

Los determinantes son una propiedad fundamental de las matrices. En estas entradas apenas comenzamos a platicar un poco de ellos. Por un lado, son muy importantes algebraicamente pues ayudan a decidir cuándo una matriz es invertible. Se pueden utilizar para resolver sistemas de $n$ ecuaciones lineales en $n$ incógnitas con algo conocido como la regla de Cramer. Por otro lado, los determinantes también tienen una interpretación geométrica que es sumamente importante en geometría analítica y en cálculo integral de varias variables. En cursos posteriores en tu formación matemática te los seguirás encontrando.

Tarea moral

  1. Calcula el siguiente determinante: $$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 4 & 0 \end{vmatrix}.$$ Intenta hacerlo de varias formas, aprovechando todas las herramientas que hemos discutido en esta entrada.
  2. También se pueden obtener determinantes en matrices en donde hay variables en vez de escalares. Encuentra el determinante de la matriz $$\begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}.$$
  3. Encuentra todas las matrices $A$ de $2\times 2$ que existen tales que $$\det(A+I_2)=\det(A)+1.$$
  4. Demuestra todas las propiedades de la sección de «Algunos determinantes especiales». Ahí mismo hay sugerencias de cómo puedes proceder.
  5. Revisa las entradas Álgebra Lineal I: Técnicas básicas de cálculo de determinantes y Seminario de Resolución de Problemas: Cálculo de determinantes para conocer todavía más estrategias y ejemplos de cálculo de determinantes.

Entradas relacionadas