Archivo del Autor: Ayax Calderón

Álgebra Lineal II: El teorema espectral y de descomposición polar complejos

Por Ayax Calderón

Introducción

Ya hablamos de qué son las transformaciones adjuntas en el caso de los espacios hermitianos, que podemos pensar como el equivalente complejo a los espacios euclideanos. A partir de esto, hablamos de quienes son las transformaciones que preservan el producto interior hemitiano (y por lo tanto la norma hermitiana): las transformaciones unitarias.

Lo que haremos ahora es dar el análogo al teorema espectral real, pero para el caso complejo. En el caso real el resultado es para transformaciones o matrices simétricas. En el caso complejo eso no funcionará. Primero, tenemos que introducir a las transformaciones hermitianas, que serán las que sí tendrán un teorema espectral. Ya eligiendo la noción correcta, las demostraciones se parecen mucho a las del caso real, así que solamente las esbozaremos y en caso de ser necesario haremos aclaraciones pertinentes para la versión compleja.

Transformaciones hermitianas

La noción correcta que necesitamos para enunciar y demostrar el teorema espectral es la siguiente.

Definición. Sea $V$ un espacio hermitiano con un producto interior hermitiano $\langle \cdot , \cdot \rangle$. Diremos que una transformación lineal $T:V\to V$ es hermitiana si
$$\langle T(x),y \rangle=\langle x,T(y) \rangle$$ para cualesquiera $x,y\in V$.

Diremos que una matriz $A\in M_n(\mathbb{C})$ es hermitiana si $A=A^*$, donde $A^*=\overline{^tA}$.

La conexión entre las transformaciones hermitianas y las matrices hermitianas es la siguiente.

Teorema. Sea $V$ un espacio hermitiano y $\mathcal{B}=\{e_1,\dots, e_n\}$ una base ortonormal de $V$. Las transformación $T$ es hermitiana si y sólo si la matriz $A=Mat_{\mathcal{B}}(T)$ es hermitiana.

Demostración. Recordemos que si $\mathcal{B}$ es una base ortonormal de $V$, entonces cualquier $x\in V$ se puede expresar como $$x=\displaystyle\sum_{i=1}^n \langle x,e_i \rangle e_i.$$

Entonces $$T(e_j)=\displaystyle\sum_{i=1}^n\langle T(e_j),e_i \rangle e_i$$ y por lo tanto $$A_{ij}=\langle T(e_j),e_i \rangle .$$

Hagamos ahora sí la demostración del si y sólo si. Supongamos primero que $T$ es hermitiana. Tenemos entonces que:

\begin{align*}
A_{ji}&=\langle T(e_i),e_j\rangle\\
&=\langle e_i, T(e_j) \rangle\\
&=\overline{\langle T(e_j),e_i \rangle}\\
&=\overline{A_{ij}}.
\end{align*}

La tercer igualdad se sigue pues para el producto interior hermitiano al intercambiar las entradas se conjuga. Así $A$ es hermitiana.

Supongamos ahora que $A$ es hermitiana, entonces
\begin{align*}
\langle T(x),y \rangle &=\displaystyle\sum_{i=1}^n\sum_{j=1}^n \langle T(x_ie_i),y_je_j \rangle \\
&=\sum_{i=1}^n\sum_{j=1}^n x_i\overline{y_j}A_{ji}\\
&=\sum_{i=1}^n\sum_{j=1}^n x_i\overline{y_j}\overline{A_{ij}}\\
&=\sum_{i=1}^n\sum_{j=1}^n \langle x_ie_i, T(y_j)e_j \rangle\\
&=\langle x,T(y) \rangle.
\end{align*}

Por lo tanto $T$ es hermitiana.

$\square$

El teorema espectral complejo

En el siguiente teorema resumimos tanto los resultados auxiliares para demostrar el teorema espectral en el caso complejo (1 y 2), como el teorema espectral mismo (3).

Teorema. Sea $V$ un espacio hermitiano y $T:V\to V$ una transformación lineal hermitiana. Entonces las siguientes afirmaciones son verdaderas:

  1. Todos los eigenvalores de $T$ son reales.
  2. Si $W$ es un subespacio de $V$ estable bajo $T$, entonces $W^\bot$ también es estable bajo $T$, y las restricciones de $T$ a $W$ y $W^\bot$ son transformaciones lineales hermitianas sobre estos subespacios.
  3. Existe una base ortonormal de $V$ formada por eigenvectores de $T$.

Demostración.

  1. Sea $t$ un eigenvalor de $T$, entonces $T(x)=tx$ para algún vector no nulo $x\in V$. Como $T$ es hermitiana, tenemos lo siguiente. $$t||x||^2=\langle x, tx \rangle =\langle x, T(x) \rangle = \langle T(x), x \rangle = \langle tx,x\rangle = \overline{t}||x||^2.$$ Como $x\neq 0$, podemos cancelar $||x||$ de ambos lados para obtener $t=\overline{t}$ y por lo tanto $t$ es real. Compara esta demostración con la del caso real, ¡en esta ocasión es mucho más sencillo!
  2. Sea $y\in W^\bot$, entonces
    $$\langle x,T(y) \rangle=\langle T(x),y \rangle=0 \hspace{2mm} \forall x\in W,$$
    pues $T(x)\in W$ ya que $W$ es $T$-estable. Entonces $T^*(y)\in W^\bot$ y así $T(W^\bot)\subseteq W^\bot$. Además, $$\langle T_W(x),y \rangle =\langle T(x),y \rangle=\langle x,T(y) \rangle=\langle x,T_W(y) \rangle\hspace{2mm}\forall x,y\in W.$$ Por lo tanto $T_W$ es hermitiana. La prueba de que $T_{W^\bot}$ es hermitiana es análoga.
  3. Por el teorema fundamental de álgebra tenemos que el polinomio característico de $T$ se divide en $\mathbb{C}$. Entonces, por el teorema de Schur existe una base ortonormal $\mathcal{B}$ de $V$ tal que $A= Mat_{\mathcal{B}}(T)$ es una matriz triangular superior. Recordemos que $Mat_{\mathcal{B}}(T^*)=Mat_{\mathcal{B}}(T)^*$, se sigue que
    $$A=Mat_{\mathcal{B}}(T)=Mat_{\mathcal{B}}(T^*)=Mat_{\mathcal{B}}(T)^*=A^*.$$
    Entonces $A$ y $A^*$ son simultaneamente triangulares superiores y por lo tanto $A$ es diagonal. Por ello, $\mathcal{B}$ es una base formada por eigenvectores de $T$.

$\square$

Resulta que el recíproco del último inciso del teorema anterior también es cierto:

Teorema. Si $V$ es un espacio hermitiano y $T:V\to V$ es una transformación lineal hermitiana tal que existe una base $\mathcal{B}$ de $V$ formada por eigenvectores de $T$ con eigenvalores reales, entonces $T$ es hermitiana.

Demostración. Sea $A=Mat_{\mathcal{B}}(T)$. Como los elementos de $\mathcal{B}=\{e_1,\dots, e_n\}$ son eigenvectores de $T$, entonces $A$ es una matriz diagonal. Como por hipótesis todo eigenvector es real, entonces $A$ es de entradas reales, pues $a_{ii}=t_i$. Se sigue que $A=A^*$ y por lo tanto $T$ es hermitiana.

$\square$

Finalmente, enunciamos la versión del teorema espectral para matrices.

Teorema (teorema espectral complejo). Sea $A\in M_n(\mathbb{C})$ una matriz hermitiana. Existe una matriz unitaria $P$ y una matriz diagonal $D$ con entradas reales tal que $A=P^{-1}DP$.

El teorema de descomposición polar complejo

A partir del teorema espectral complejo se puede demostrar también un teorema de descomposición polar complejo. El resultado es el siguiente.

Teorema (descomposición polar compleja). Sea $A\in M_n(\mathbb{C})$ una matriz invertible. Entonces existen una única matriz unitaria $U$ y una única matriz hermitiana $H$ con eigenvalores positivos tales que $A=UH$.

También hay una versión para cuando la transformación no es invertible. La discusión y las pruebas son análogas a lo que se platicó en la entrada de descomposición polar.

Más adelante…

Con esta entrada terminamos la tercera unidad de nuestro curso. En esta tercera unidad las transformaciones que estudiamos cumplen propiedades bonitas: ser ortogonales, diagonales, unitarias, etc. A partir de ello hay clasificaciones muy detalladas: la clasificación de matrices ortogonales, el teorema espectral, el teorema de descomposición polar. En la cuarta unidad hablaremos de otra manera en la que podemos «simplificar» cualquier transformación lineal o matriz: mediante formas canónicas. La ventaja es que la cantidad de matrices que podremos simplificar será mucho mayor, aunque la ligera desventaja es que ya no tendremos una forma «diagonal» sino una «casi diagonal».

Tarea moral

  1. Encuentra una diagonalización de $\begin{pmatrix} 1+i & 2i \\ -2i & 1-i \end{pmatrix}$. Encuentra la descomposición polar de $\begin{pmatrix} 1+i & 1-i \\ 2i & 2-i\end{pmatrix}.$
  2. Sea $U:V\to V$ una transformación lineal sobre un espacio hermitiano $V$. Demuestra o da un contraejemplo de la siguiente afirmación: Si $\norm{U(x)}=\norm{x}$ para cualquier $x\in B$, donde $B$ es una base ortonormal de $V$, entonces $U$ es unitaria.
  3. Demuestra que una matriz unitaria y triangular superior necesariamente es diagonal.
  4. Sea $A$ una matriz cuadrada con descomposición polar $A=WP$. Demuestra que $A$ es normal si y sólo si $WP^2=P^2W$.
  5. Bajo las mismas hipótesis del inciso anterior y haciendo uso de éste, demuestra que $A$ es normal si y sólo si $WP=PW$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: El teorema de descomposición polar real

Por Ayax Calderón

Introducción

En la entrada anterior enunciamos y demostramos el teorema espectral para matrices simétricas reales. Una de las consecuencias de este teorema es el teorema de descomposición polar. Se puede pensar en el teorema de descomposición polar como al análogo a un resultado muy conocido de números complejos: cualquier número complejo se puede pensar de la forma $z=e^{i\theta}r$ con $r\geq 0$ real. Geométricamente, el complejo se obtiene «rotando tanto como el argumento y luego alargando de acuerdo a la norma».

Así mismo, veremos que toda matriz $A$ tendrá una expresión de la forma $A=US$ donde $U$ es una matriz ortogonal (que juega el papel de «la rotación») y $S$ es una matriz simétrica positiva (que por el teorema espectral recordemos que es básicamente «alargar en varias direcciones»). Este resultado es increíble: ¡nos dice cómo son todas, todas las matrices reales en términos de matrices muy sencillas: las ortogonales (que conocemos muy bien) y las simétricas (que por el teorema espectral también conocemos muy bien)!

Caso invertible del teorema de descomposición polar

Recordemos un resultado de la entrada anterior, que era una de las partes de nuestro teorema de clasificación de matrices positivas. Nos dice que las matrices simétricas positivas «tienen raíz cuadrada».

Proposición. Sea $A$ una matriz simétrica positiva. Entonces existe una matriz simétrica $B$ tal que $B^2=A$.

Como recordatorio, para obtener a $B$ lo que hicimos fue diagonalizar a $A$ de la forma $A=P^{-1}DP$ con $D$ matriz diagonal cuyas entradas eran $\lambda_1,\ldots,\lambda_n$ los eigenvalores de $A$. Como $A$ era positiva, sus eigenvalores eran no negativos, así que podíamos construir $D’$ con entradas $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}$. Después, vimos que $B=P^{-1}D’P$ servía para que $B^2=A$. Observa que además $B$ es positiva pues sus eigenvalores son no negativos.

Como observación adicional, si $A$ fuera positiva definida entonces sus eigenvalores serían positivos, y entonces $B$ también tendría eigenvalores positivos. Así, $B$ sería positiva definida también. De hecho, se puede demostrar que en este caso la matriz $B$ es única (bajo la condición de ser simétrica positiva definida y raíz de $A$). Probar esto queda como parte de los ejercicios de la entrada.

Estamos listos para enunciar y demostrar el teorema de descomposición polar en el caso de matrices invertibles.

Teorema (De descomposición polar, caso invertible). Sea $A\in M_n(\mathbb{R})$ una matriz invertible. Entonces existe una única pareja $(U,S)$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva definida para la que se cumple que $A=US$.

Demostración. Tomemos $A\in M_n(\mathbb{R})$ una matriz invertible. La matriz $^tAA$ es simétrica y positiva definida. Por la discusión anterior, existe una única matriz simétrica positiva definida $S$ tal que $^tAA=S^2$. Como $A$ es invertible, $S$ también lo es, así que definamos $$U=AS^{-1}.$$

Afirmamos que $(U,S)$ cumplen con lo requerido. Ya justificamos que $S$ es simétrica positiva definida. Además, de $U=AS^{-1}$ se obtiene inmediatamente $US=A$. Sólo falta verificar que $U$ es ortogonal. Para ello, al multiplicarla con su transpuesta obtenemos lo siguiente:
\begin{align*}
^tUU&=\hspace{.5mm}^tS^{-1}\hspace{.5mm}^tAAS^{-1}\\
&=S^{-1}S^2S^{-1}\\
&=I_n.
\end{align*}

Veamos ahora la unicidad. Supongamos que $A=U’S’$ con $U’$ ortogonal y $S’$ simétrica positiva definida, Entonces
$$^tAA=S’\hspace{.5mm}^tU’U’S’={S’}^2.$$

De esta manera, $S’$ es precisamente la raíz cuadrada de $^tAA$, que por la discusión anterior es única. Deducimos entonces que $S’=S$ y por lo tanto $U’=A{S’}^{-1}=AS^{-1}=U$.

$\square$

Caso general del teorema de descomposición polar

Es natural preguntarse qué sucede cuando la matriz $A$ no es invertible. Resulta que en ese caso aún podemos encontrar una descomposición, aunque perdemos un poco de las propiedades de las matrices y la unicidad. Por ejemplo, si $A=O_n$, entonces $A=UO_n$ para cualquier matriz ortogonal $U$ y entonces tenemos muchas posibles descomposiciones.

Teorema (De descomposición polar, caso general). Cualquier matriz $A\in M_n(\mathbb{R})$ se puede escribir de la forma $A=US$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva.

¿Por qué falla nuestra demostración? Todavía tenemos que $^tAA$ es positiva, así que podríamos tomar una raíz cuadrada $S$. El problema es que como $A$ no es invertible, entonces $S$ tampoco lo es. Por ello, no podemos definir $U=AS^{-1}$ como lo hicimos con anterioridad. Sin embargo, podemos ser astutos y «cambiar tantito» a $A$ para que sí se vuelva invertible. De hecho, podemos tomar muchas matrices que se acercan a $A$ y sí son invertibles. Con ello podemos usar un «argumento al límite». Formalicemos estas ideas.

Demostración. Consideremos las matrices $A_k=A+\frac{1}{k}I_n$. Recordemos que $\det(A+\lambda I_n)$ es un polinomio de grado $n$ así que tiene a lo más $n$ raíces. Por ello, existe un $k_0$ tal que para toda $k>k_0$ la matriz $A_k$ es invertible. Al aplicar el teorema de descomposición polar a cada una de dichas $A_k$, obtenemos una matriz ortogonal $U_k$ y una simétrica positiva definida $S_k$ tales que

$$A_k=U_kS_k.$$

Las entradas de cada $U_k$ cumplen que están en el intervalo $[-1,1]$ (pues la suma de las entradas de cada fila es igual a $1$). Así, $U_k$ es una sucesión de matrices en el compacto de matrices con entradas $[-1,1]$. En un compacto toda sucesión tiene una subsucesión convergente, así que podemos elegir una subsucesión de estas matrices, digamos $U_{k_1}, U_{k_2},\ldots$ que converge a una matriz $U$.

Se puede ver que el producto de matrices es continúo y obtener inversas de matrices también es continuo (por ejemplo, por las fórmulas de inversa por matriz de adjuntos). De este modo, aplicando límite $j\to \infty$ a la igualdad $^tU_{k_j}U_{k_j}=I_n$ obtenemos que $^tU=I_n$, de modo que $U$ es ortogonal.

Del mismo modo, como trasponer es continuo, $S_{k_1}, S_{k_2},\ldots$ converge a una matriz simétrica $S$. Finalmente, usando nuevamente la continuidad del producto de matrices obtenemos

\begin{align*}
A&=\lim_{j\to \infty} A_{k_j}\\
&=\lim_{j\to \infty} U_{k_j} S_{k_j}\\
&=US.
\end{align*}

Sólo nos falta demostrar que $S$ es positiva, pero si tomamos $X\in\mathbb{R}^n$, entonces pasando al límite $j\to \infty$ en la desigualdad $^tXS_{k_j}X > 0$ obtenemos $^tXSX\geq 0$. Aquí es donde se podría perder que $S$ es positiva definida, pero seguimos teniendo que $S$ es positiva.

$\square$

Más adelante…

Tanto el teorema espectral como el teorema de descomposición polar son resultados de caracterización fundamentales en álgebra lineal y finalmente nos dan una respuesta a la pregunta de, geométricamente, cómo son todas las posibles transformaciones lineales. En las siguientes secciones se esbozarán los resultados análogos para el caso complejo.

Después de ello, en la cuarta unidad del curso cubriremos otro teorema que nos permitirá decir «cómo son todas las matrices». Quizás no todas las matrices sean directamente similares a una matriz diagonal. Pero enunciaremos y demostraremos el teorema de Jordan que dirá que cualquier matriz es similar a una «casi diagonal», a la que llamaremos diagonal por bloques.

Tarea moral

  1. Sean que $A$ y $B$ son matrices simétricas. Demuestra que $A$ y $B$ conmutan si y sólo si existe una misma matriz $P$ tal que $PAP^{-1}$ y $PBP^{-1}$ son diagonales (a esto se le conoce como que $A$ y $B$ sean «simultáneamente diagonalizables»)
  2. Usando el ejercicio anterior, demuestra que si $A$ es simétrica positiva definida, y se cumple $B^2=A=C^2$ con $B$ y $C$ matrices simétricas positivas definidas, entonces $B=C$.
  3. Sean $A,B\in M_n(\mathbb{R})$ matrices tales que $^tAA=^tBB$. Demuestra que existe una matriz ortogonal $U\in M_n(\mathbb{R})$ tal que $B=UA$.
  4. Encuentra la descomposición polar de $$\begin{pmatrix}
    11 & -5\\
    -2 & 10 \end{pmatrix}.$$
  5. Sea $A$ una matriz cuadrada con descomposición polar $A=WP$. Demuestra que $A$ es normal si y sólo si $WP^2=P^2W$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: El teorema espectral real

Por Ayax Calderón

Introducción

Por lo que estudiamos en la primera parte de este curso, ya sabemos cuándo una matriz arbitraria es diagonalizable. Lo que haremos ahora es enunciar y demostrar el teorema espectral en el caso real. Una de las cosas que nos dice es que las matrices simétricas reales son diagonalizables. Pero nos dice todavía más. También nos garantiza que la manera en la que se diagonalizan es a través de una matriz ortogonal. Esto combina mucho de la teoría que hemos cubierto. Además, gracias al teorema espectral podremos, posteriormente, demostrar el famoso teorema de descomposición polar que nos dice cómo son todas las matrices.

El lema de eigenvalores de matrices simétricas

Comencemos enunciando algunas propiedades que tienen las matrices y transformaciones simétricas. El primero habla de cómo son los eigenvalores de las matrices simétricas.

Lema. Sea $A\in M_n({\mathbb{R}})$ una matriz simétrica. Entonces todas las raíces del polinomio característico de $A$ son números reales.

Demostración. Tomemos $A\in M_n(\mathbb{R})$ y sea $\lambda$. Su polinomio característico está en $\mathbb{R}[x]$, así que por el teorema fundamental del álgebra todas sus raíces están en $\mathbb{C}$. Sea $t$ una raíz del polinomio característico de $A$.

Pensemos a $A$ como un elemento de $M_n(\mathbb{C})$. Como $\det (tI_n-A)=0$, entonces $t$ es eigenvalor y por lo tanto hay un eigenvector $X\in\mathbb{C}^n$ no nulo tal que $AX=tX$. Como el vector tiene entradas complejas, lo podemos escribir como $X=Y+iZ$ para dos vectores $Y,Z\in \mathbb{R}^n$. Así mismo, podemos escribir a $t$ como $t=a+ib$ con $a$ y $b$ números reales.

Con esta notación, de la igualdad $AX=tX$ se sigue que

\begin{align*}
AY+iAZ&=AX\\
&=(a+ib)(Y+iZ)\\
&=aY-bZ+i(aZ+bY).
\end{align*}

Igualando las partes imaginarias y las partes reales obtenemos que

\begin{equation}\label{1}
AY=aY-bZ, \hspace{4mm} AZ=aZ+bY.
\end{equation}

Usemos ahora que $A$ es simétrica. Tenemos que
\begin{equation}\label{2}
\langle AY,Z \rangle=\langle Y, AZ \rangle.
\end{equation}

Sustituyendo la primera igualdad de \eqref{1} en el lado izquierdo de \eqref{2}, y la segunda igualdad de \eqref{1} en el lado derecho de \eqref{2}, obtenemos que:

\begin{equation*}
\langle aY-bZ,Z \rangle=\langle Y, aZ+bY \rangle,
\end{equation*}

y usando la linealidad del producto interior, se obtiene que

\begin{equation*}
a\langle Y,Z \rangle – b\langle Z,Z\rangle =a\langle Y, Z \rangle + b \langle Y , Y \rangle.
\end{equation*}

Se sigue que
$$b(||Y||^2+||Z||^2)=0$$ y como $Y$ o $Z$ es distinto de cero (de lo contrario tendríamos que $X=0$), entonces concluimos que $b=0$ y con ello que $t$ es un número real.

$\square$

El lema de estabilidad de transformaciones simétricas

El segundo lema que veremos nos dice qué sucede cuando una transformación lineal es simétrica y tomamos un subespacio estable bajo ella. Recuerda que un subespacio $W$ de un espacio vectorial $V$ es estable bajo una transformación lineal $T:V\to V$ si $T(W)\subseteq W$.

Lema. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica sobre $V$. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces

  1. $W^\bot$ también es estable bajo $T$.
  2. Las restricciones de $T$ a $W$ y $W^\bot$ son transformaciones lineales simétricas sobre estos espacios.

Demostración.

1. Tomemos $x\in W^\bot$. Nos gustaría ver que $T(x)\in W^\bot$. Para ello, tomemos $y\in W$. Como $W$ es estable bajo $T$, tenemos $T(y)\in W$. Como $x\in W^\bot$, tenemos que $\langle x,T(y) \rangle =0$. Usando esto y la simetría de $T$, obtenemos entonces
$$\langle T(x),y \rangle = \langle x,T(y) \rangle=0,$$
que es lo que queríamos probar.

2. Sea $T|_W$ la restricción de $T$ a$W$. Para $x,y\in W$ tenemos que
$$\langle T|_W(x),y \rangle=\langle T(x),y \rangle=\langle x,T(y) \rangle =\langle x,T|_W(y) \rangle ,$$ por lo tanto $T|_W$ es simétrica sobre $W$. Análogamente se ve que el resultado se cumple para $W^\bot$.

$\square$

El teorema espectral real

Con los dos lemas anteriores podemos ahora sí enfocarnos en demostrar el teorema principal de esta entrada.

Teorema (el teorema espectral real). Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica. Entonces existe una base ortonormal de $V$ conformada por eigenvectores de $T$.

Demostración. Procederemos por inducción fuerte sobre $n=\dim V$. Si $n=1$, entonces el polinomio característico de $T$ es de grado $1$ y tiene coeficientes reales, por lo que tiene una raíz real $t$. Si $v$ es un eigenvector de $T$ con eigenvalor $t$, entonces $\frac{v}{||v||}$ también es eigenvector de $T$ y forma una base ortonormal de $V$. Esto termina el caso $n=1$.

Ahora supongamos que el resultado se satisface hasta dimensión $n-1$ y tomemos $V$ de dimensión $n$. Sea $B=\{e_1,e_2,\dots e_n\}$ una base ortonormal de $V$. Sea $A$ la matriz asociada a $T$ con respecto a $B$. Como $T$ es simétrica, entonces $A$ también lo es. Su polinomio característico no es constante, de modo que por el teorema fundamental del álgebra tiene por lo menos una raíz $t$, y por el primer lema de la sección anterior, se tiene que $t$ es real y por lo tanto es un eigenvalor.

Sea $W=\ker (t\text{id} -T)$ el $t$-eigenespacio de $T$. Si $W=V$, entonces $T=t\text{id}$ y así $B$ es una base ortonormal de $V$ compuesta por eigenvectores de $T$. De otro modo, $W\neq V$ y por lo tanto $k:=\dim W<n$. Tenemos que $V=W\oplus W^\bot$ y sabemos que los eigenespacios son estables bajo la transformación correspondiente. Así, por el segundo lema de la sección anterior $W^\bot$ también es estable bajo $T$ y la restricción de $T$ a $W^\bot$ es simétrica.

Podemos entonces aplicar la hipótesis inductiva a $T_{|W^\bot}$ para encontrar una base ortonormal $C=\{f_1^\bot,f_2^\bot\dots,f_{n-k}^\bot\}$ de $W^\bot$ compuesta por eigenvectores de $T$. Escogiendo una base ortonormal $D=\{f_1,f_2,\dots,f_k\}$ de $W$ (que automaticamente está formada por eigenvectores de $T$). La base $C\cup D$ de $V$ es entonces la base de eigenvectores que buscábamos.

$\square$

El teorema espectral también puede enunciarse en términos de matrices. Hacemos esto a continuación.

Observación. Si $A\in M_n(\mathbb{R})$ es una matriz simétrica, entonces la transformación lineal $T:X\mapsto AX$ sobre $\mathbb{R}^n$ es simétrica. Aplicando el teorema anterior, podemos encontrar una base ortonormal de $V$ con respecto a la cual la matriz asociada a $T$ es diagonal. Como la base canónica de $V$ es ortonormal, y como la matriz de cambio de pase entre dos bases ortonormlaes es ortogonal, obtenemos el siguiente resultado fundamental.

Teorema (el teorema espectral para matrices reales). Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces $A$ es diagonalizable y, más específicamente, existen una matriz ortogonal $P\in M_n(\mathbb{R})$ y una matriz diagonal $D\in M_n(\mathbb{R})$ tales que $$A=P^{-1}DP.$$

Así, $A$ es simultáneamente, mediante una misma matriz $P$, tanto similar como congruente a una matriz diagonal.

Aplicación a caracterizar las matrices simétricas positivas

Ya hemos dado algunas caracterizaciones para las matrices simétricas positivas. Veamos algunas caracterizaciones adicionales.

Teorema. Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B\in M_n(\mathbb{R})$.
  4. $A=\hspace{.5mm}^tCC$ para alguna matriz $C\in M_n(\mathbb{R})$.

Demostración. 1) implica 2). Supongamos que $A$ es positiva y que $t$ es un eigenvalor de $A$ con eigenvector $v$. Como $Av=tv$, obtenemos que

\begin{align*}
t||v||^2&= t\langle v,v \rangle\\
&= \langle v, tv \rangle\\
&= \langle v, Av \rangle\\
&= \hspace{.5mm}^tvAv\\
&\geq 0,
\end{align*}
por lo tanto $t\geq 0$.

2) implica 3). Sean $t_1,\dots, t_n$ todas las raíces del polinomio característico de $A$, escritos con su multiplicidad correspondiente. Por el primer lema de la sección anterior, todos ellos son reales, y estamos suponiendo que son no negativos. Por el teorema espectral podemos encontrar una matriz $P$ y una diagonal $D$ tal que $A=P^{-1}DP$, y por lo que vimos de teoría de diagonalización, $D$ precisamente tiene como entradas en su diagonal a $t_1,t_2,\dots,t_n$. Sea $D’$ la matriz diagonal con entradas $c_i=\sqrt{t_i}$ y sea $B=P^{-1}D’P$. Como $P$ es ortogonal, $B$ es simétrica

Y además, por construcción, $B^2=P^{-1}{D’}^2P=P^{-1}DP=A$, como queríamos.

3) implica 4). Basta con tomar la matriz $B$ de (3) y tomar $C=B$. Como $B$ es simétrica, $A=B^2=\hspace{.5mm}^tBB$.

4) implica 1). Esto ya lo habíamos demostrado en un resultado anterior de caracterización de matrices simétricas.

$\square$

Más adelante…

Hemos enunciado y demostrado el teorema espectral. Lo que nos dice es muy interesante: una matriz simétrica básicamente consiste en cambiar de base a una base muy sencilla $e_1,\ldots,e_n$ (ortonormal) a traves de la matriz $P$. Luego, en esa base pasa algo muy simple: en la dirección de $e_i$, simplemente alargamos de acuerdo al eigenvalor $\lambda_i$.

Como consecuencia, veremos en la siguiente entrada que esto nos permite entender no sólo a las matrices simétricas, sino a todas, todas las matrices. Al teorema que veremos a continuación se le conoce como el teorema de descomposición polar.

Tarea moral

  1. La matriz $\begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin\theta \end{pmatrix}$ es real y simétrica, de modo que es diagonalizable. ¿Cuál es su diagonalización?
  2. Da un ejemplo de una matriz simétrica con coeficientes complejos que no sea diagonalizable.
  3. Sea $T$ una transformación lineal sobre un espacio euclidiano $V$, y supón que $V$ tiene una base ortonormal conformada por eigenvectores de $T$. Demuestra que $T$ es simétrica (por lo que el recíproco del teorema espectral se satisface).
  4. Considera la matriz $$A=\begin{pmatrix}
    1 & -2 & -2\\
    -2 & 1 & -2\\
    -2 & -2 &1\end{pmatrix}.$$
    Explica por qué $A$ es diagonalizable en $M_n(\mathbb{R})$ y encuentra una matriz $P$ tal que $P^{-1}AP$ es diagonal.
  5. Adapta el teorema de caracterización de matrices positivas visto en esta entrada a una versión para matrices positivas definidas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Adjunciones complejas y transformaciones unitarias

Por Ayax Calderón

Introducción

Lo que hemos trabajado en esta unidad tiene su análogo para espacios hermitianos. En esta entrada haremos una recapitulación de los resultados que demostramos en el caso real, pero ahora los enunciaremos para el caso complejo. Las demostraciones son similares al caso real, pero haremos el énfasis correspondiente cuando haya distinciones para el caso complejo.

Adjunciones en espacios hermitianos

Uno de los ejercicios de la entrada Dualidad y representación de Riesz en espacios euclideanos consiste en enunciar y demostrar el teorema de representación de Riesz para espacios hermitianos. Si recuerdas, eso es justo lo que se necesita para hablar de la adjunción, de modo que en espacios hermitianos también podemos definir la adjunción como sigue.

Definición. Sea $V$ un espacio hermitiano con producto interior hermitiano $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

En el caso real la matriz de la transformación adjunta en una base ortonormal era la transpuesta. En el caso complejo debemos tomar la transpuesta conjugada.

Proposición. Sea $V$ un espacio hermitiano con producto interior hermitiano $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Sea $\mathcal{B}$ una base ortonormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)=\text{Mat}_{\mathcal{B}}(T)^\ast.$$

La demostración queda como ejercicio.

Transformaciones unitarias e isometrías

En espacios hermitianos también podemos hablar de las transformaciones lineales que preservan la distancia: las isometrías. En el caso real, las isometrías de un espacio a sí mismo las llamábamos ortogonales, pero en el caso complejo usaremos otro nombre.

Definición. Sean $V_1, V_2$ espacios hermitianos sobre $\mathbb{C}$ con productos interiores hermitianos $\langle \cdot,\cdot \rangle_1,\langle \cdot,\cdot \rangle_2$. Diremos que una transformación lineal $T:V_1\to V_2$ es una isometría si es un isomorfismo de espacios vectoriales y para cualesquiera $x,y\in V_1$ se cumple que $$\langle T(x), T(y) \rangle_2 = \langle x,y\rangle_1.$$ Si $V_1$ $V_2$ son un mismo espacio hermitiano $V$, diremos que $T$ es una transformación unitaria.

Diremos que una matriz $A\in M_n(\mathbb{C})$ se dice unitaria si $AA^\ast=I_n$. Puede demostrarse que si una matriz $A$ es unitaria, entonces la transformación $X\mapsto AX$ también lo es. Así mismo, se puede ver que si $T$ es una transformación unitaria, entonces cualquier representación matricial en una base ortonormal es unitaria.

Equivalencias de matrices y transformaciones unitarias

Así como en el caso real, hay muchas maneras de pensar a las transformaciones y a las matrices unitarias. Puedes pensar en los siguientes resultados como los análogos a las descripciones alternativas en el caso real.

Teorema. Sea $T:V\to V$ una transformación lineal. Las siguientes afirmaciones son equivalentes:

  1. $T$ es unitaria es decir, $\langle T(x),T(y) \rangle = \langle x,y \rangle$ para cualesquiera $x,y\in V$.
  2. $||T(x)||=||x||$ para cualquier $x\in V$.
  3. $T^*\circ T = Id$.

Teorema. Sea $A\in M_n(\mathbb{C})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es unitaria.
  2. Las filas de $A$ forman una base ortonormal de $\mathbb{C}^n$.
  3. Las columnas de $A$ forman una base ortonormal de $\mathbb{C}^n$.
  4. Para cualquier $x\in \mathbb{C}^n$, se tiene que $$||Ax||=||x||$.

Propiedades de grupo y caracterización de unitarias

Así como en el caso real las transformaciones ortogonales forman un grupo bajo la composición, en el caso complejo las transformaciones unitarias también forman un grupo bajo la composición. Si hablamos de matrices unitarias, entonces forman un grupo bajo el producto de matrices. Es posible clasificar a las matrices unitarias así como se clasificó a las matrices ortogonales, sin embargo los resultados son notablemente más difíciles de expresar.

Más adelante…

En la siguiente entrada hablaremos de quiénes son las transformaciones complejas para las que se puede enunciar el teorema espectral en el caso complejo. Veremos el resultado correspondiente y haremos énfasis en las diferencias que debemos tomar en cuenta.

Tarea moral

  1. Demuestra que si $A$ es una matriz unitaria, entonces $|\det A|=1$.
  2. Prueba que para que una transformación lineal $T$ de un espacio hermitiano sea unitaria, basta que a los vectores de norma $1$ los mande a vectores de norma $1$.
  3. Describe las matrices $A\in M_n(\mathbb{C})$ que son simultaneamente diagonales y unitarias.
  4. Demuestra que el producto de dos matrices unitarias es una matriz unitaria y que la inversa de una matriz unitaria es unitaria.
  5. Revisa nuevamente la entrada y realiza todas las demostraciones faltantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Problemas de isometrías y grupo ortogonal

Por Ayax Calderón

Introducción

Un ejemplo importante de transformaciones ortogonales

Una clase importante de transformaciones ortogonales es la de las simetrías ortogonales. Sea $V$ un espacio euclidiano y $W$ un subespacio de $V$. Entonces $V=W\oplus W^\bot$, por lo que podemos definir la simetría $s_W$ sobre $W^\bot$ con respecto a $W$. Recuerda que cualquier $v\in V$ se puede escribir como $v=w+w^\bot$, con $(w,w^\bot)\in W\times W^\bot$, entonces $$s_W(v)=w-w^\bot,$$ de manera que $s_W$ fija puntualmente a $W$ y $-s_W$ fija puntualmente a $W^\bot$.

Para garantizar que $s_W$ es una transformación ortogonal, bastará con verificar que $||s_W(v)||=||v||$ para todo $v\in V$, o equivalentemente
$$||w-w^\bot||=||w+w^\bot|| \hspace{1.5mm}\forall (w,w^\bot)\in W\times W^\bot.$$ Pero por el teorema de Pitágoras se tiene que si elevemos ambos lados a cuadrado se obtiene $||w||^2+||w^\bot||^2$ y se sigue el resultado deseado.

Las simetrías ortogonales se pueden distinguir fácilmente entre las transformaciones ortogonales, pues estas son precisamente las transformaciones ortogonales auto-adjuntas.

Caracterización sobre bases ortonormales

Problema. Sea $V$ un espacio euclidiano y $T:V\to V$ una tranformación lineal. Las siguientes afirmaciones son equivalentes:

  1. $T$ es ortogonal.
  2. Para cualquier base ortonormal $e_1,\dots ,e_n$ de $V$, los vectores $T(e_1),\dots ,T(e_n)$ forman una base ortonormal de $V$.
  3. Existe una base ortonormal de $e_1,\dots ,e_n$ de $V$ tal que $T(e_1),\dots ,T(e_n)$ es una base ortonormal de $V$.

Solución. Supongamos que 1. es cierto y sea $e_1,\dots ,e_n$ una base ortonormal de $V$. Entonces para cada $i,j\in[1,n]$ tenemos
$$\langle T(e_i),T(e_j) \rangle =\langle e_i,e_j \rangle.$$
Se sigue que $T(e_1),\dots ,T(e_n)$ es una familia ortonormal, y como $dim V=n$, entonces es una base ortonormal de $V$. Entonces 1. implica 2. y claramente 2. implica 3.
Supongamos que 3. es cierto. Sea $x\in V$ y escribamos $x=x_1e_1+x_2e_2+\dots +x_ne_n$. Como $e_1,\dots ,e_n$ y $T(e_1),\dots ,T(e_n)$ son bases ortonormales de $V$, tenemos
$$||T(x)||^2=||x_1T(e_1)+\dots +x_nT(e_n)||^2=x_1^2+\dots +x_n^2=||x||^2.$$
Por lo tanto $||T(x)||=||x||$ para todo $x\in V$ y $T$ es ortogonal.

$\square$

El grupo de transformaciones ortogonales en el plano

Definición. Diremos que una isometría $T$ es una isometría positiva si $\det T=1$. Por otro lado, diremos que $T$ es una isometría negativa si $\det T=-1$ En términos geométricos, las isometrías positivas preservan la orientación del espacio, mientras que las isometrías negativas la invierten.

Definición. Sea $B=\{e_1,\dots,e_n\}$ una base ortonormal de un espacio euclidiano $V$. Si $B’=\{f_1,\dots,f_n\}$ es otra base ortonormal de $V$, entonces la matriz de cambio de base de $B$ a $B’$ es ortogonal y por lo tanto $\det P\in\{-1,1\}$. Diremos que $B’$ está orientada positivamente con respecto a $B$ si $\det P=1$ y conversamente diremos que $B’$ está orientada negativamente con respecto a $B$ si $\det P=-1$.

Si $V=\mathbb{R}^n$ está equipado con el producto interior usual, entonces siempre tomamos como $B$ a la base canónica y sólo decimos que una base ortonormal es positiva o negativa.

Observación. El polinomio característo de la matriz
$$\begin{pmatrix}
I_p & 0 & 0 & \dots & 0\\
0 & -I_q & 0 & \dots & 0\\
0 & 0 & R_{\theta_1} & \dots & 0\\
\vdots & \vdots & \vdots &\ddots & \vdots\\
0 & 0 & 0 &\dots & R_{\theta_k}
\end{pmatrix}$$
es
$$(x-1)^p(x+1)^q\cdot\displaystyle\prod_{i=1}^k (x^2-2\cos\theta_i x+1).$$
Las raíces complejas del polinomio $x^2-2\cos\theta_i x+1$ son $e^{i\theta}$ y $e^{-i\theta}$, y tienen modulo $1$. Por lo tanto, todos los eigenvalores complejos de una matriz ortogonal tienen módulo $1$.

Estudiando el grupo ortogonal en dimensiones pequeñas

Empezamos analizando el caso de dimensión $2$. Sea $A\in M_2(\mathbb{R})$ una matriz dada por
$$A=\begin{pmatrix}
a & b\\
c & d\end{pmatrix}$$ que satisface $A^tA=I_2$. Sabemos que $\det A\in\{-1,1\}$, así que consideramos ambos casos.

Si $\det A=1$, entonces la inversa de $A$ simplemente es
$$A^{-1}=\begin{pmatrix}
d & -b\\
-c & a\end{pmatrix}$$
y como $A$ es ortogonal, entonces $A^{-1}=\hspace{.5mm}^tA$, por lo que $a=d$ y $b=-c$, lo que nos dice que $A$ es de la forma
$$A=\begin{pmatrix}
a & -c\\
c & a\end{pmatrix}.$$
Más aún, tenemos que $a^2+c^2=1$, por lo que existe un único $\theta\in(-\pi,\pi]$ tal que $A=\cos\theta$ y $c=\sin\theta$. Por lo tanto
$$A=R_{\theta}=\begin{pmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta \end{pmatrix}.$$
La transformación lineal correspondiente es
\begin{align*}
T:\mathbb{R}^2&\to\mathbb{R}^2\\
(x,y)&\mapsto (\cos\theta x – \sin\theta y, \sin\theta x+ \cos\theta y)
\end{align*}
y geométricamente corresponde a una rotación de ángulo $\theta$. Además
\begin{equation}\label{rot}
R_{\theta_1}\cdot R_{\theta_2}=R_{\theta_1+\theta_2}=R_{\theta_2}\cdot R_{\theta_1}.
\end{equation}
Una consecuencia importante es que la matriz asociada a $T$ con respecto a cualquier base ortonormal positiva de $\mathbb{R}^2$ aún es $R_\theta$, pues la matriz de cambio de base de la base canónica a la nueva base ortonormal positiva sigue siendo una rotación. Análogamente, si en el argumento anterior tomamos una base ortonormal negativa, entonces la matriz asociada a $T$ es $R_{-\theta}$. La relación \eqref{rot} también muestra que para calcular el ángulo de la composición de dos rotaciones basta con tomar la suma de los ángulos y restar un múltiplo adecuado de $2\pi$ tal que el ángulo obtenido quede en el intervalo $(-\pi,\pi]$.

Si $\det A=-1$. Entonces
$$A^{-1}=\begin{pmatrix}
-d & b\\
c & -a\end{pmatrix}$$ y como $A$ es ortogonal, entonces $d=-a$ y $b=c$. También tenemos que $a^2+b^2=1$, por lo que existe un único número real $\theta\in(-\pi,\pi]$ tal que $a=\cos\theta$ y $b=\sin\theta$. Entonces
$$A=S_\theta:=\begin{pmatrix}
\cos\theta & \sin\theta\\
\sin\theta & -\cos\theta \end{pmatrix}.$$
Notemos que $S_\theta$ es simétrica y ortogonal, por lo tanto $S_\theta^2=I_2$ y que la transformación correspondiente es
\begin{align*}
T:\mathbb{R}^2&\to\mathbb{R}^2\\
(x,y)&\mapsto (cos\theta x+\sin\theta y, \sin \theta x-\cos\theta y)
\end{align*}
es una simetría ortogonal. Para encontrar la recta con respecto a la cual $T$ es una simetría ortogonal, bastará con resolver el sistema $AX=X$. El sistema es equivalente a
$$\sin\left(\frac{\theta}{2}\right)\cdot x=\cos \left(\frac{\theta}{2}\right)\cdot y$$ y por lo tanto la recta $AX=X$ está generada por el vector
$$e_1=\left( \cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right) \right)$$ y la correspondiente recta ortogonal está generada por el vector
$$e_2=\left(-\sin\left(\frac{\theta}{2}\right),\cos\left(\frac{\theta}{2}\right)\right),$$
y los vectores $e_1,e_2$ forman una base ortonormal de $\mathbb{R}^2$ para la cual la matriz asociada a $T$ es
$$\begin{pmatrix}
1 & 0\\
0 & -1\end{pmatrix}$$
y además $$S_{\theta_1}\cdot S_{\theta_2}=R_{\theta_1-\theta_2}$$
lo que significa que la composición de dos simetrías ortogonales es una rotación. Similarmente tenemos que
$$S_{\theta_1}R_{\theta_2}\hspace{3mm} R_{\theta_1}S_{\theta_2}=S_{\theta_1+\theta_2},$$
por lo que la composición de una rotación y una simetría ortogonal es una simetría ortogonal.

Gracias a todo lo anterior, estamos listos para enunciar el siguiente teorema:

Teorema. Sea $A\in M_2(\mathbb{R})$ una matriz ortogonal.

  1. Si $\det A=1$, entonces
    $$A=R_\theta=\begin{pmatrix}
    \cos\theta & -\sin\theta\\
    \sin\theta &\cos\theta\end{pmatrix}$$
    para único número real $\theta\in(-\pi,\pi]$, y la correspondiente transformación lineal $T$ sobre $\mathbb{R}^2$ es una rotación de ángulo $\theta$. Cualesquiera dos matrices de esa forma conmutan y la matriz asociada a $T$ con respecto a cualquier base ortonormal positiva de $\mathbb{R}^2$ es $R_\theta$.
  2. Si $\det A=-1$, entonces
    $$A=S_\theta=\begin{pmatrix}
    \cos\theta & \sin\theta\\
    \sin\theta &-\cos\theta\end{pmatrix}$$
    para un único número real $\theta\in(-\pi,\pi]$. La matriz $A$ es simétrica y la correspondiente transformación lineal sobre $\mathbb{R}^2$ es la simetría ortogonal con respecto a la recta generada por el vector $\left(\cos\left(\frac{\theta}{2}\right),\sin\left(\frac{\theta}{2}\right)\right)$.

El grupo de transformaciones ortogonales en el espacio

En la entrada anterior estudiamos el grupo de transformaciones ortogonales en dimensión $2$.

Ahora estudiaremos el caso $\dim V=3$, para esto haremos uso del teorema de clasificación de la entrada anterior, así como el estudio que hicimos para el caso de dimensión $2$. Siguendo la misma idea que desarrollamos en el teorema de clasificiación, consideramos enteros $p,q,k$ tales que $$p+q+2k=3,$$ por lo que necesariamente $p\neq 0$ o $q\neq 0$. También podemos probar esto de manera máss directa, observando que el polinomio caracterísitico de $T$ es de grado $3$, por lo que debe tener una raíz real, y por ende un eigenvalor real, el cual será igual a $1$ o $-1$, pues tiene módulo $1$.

Intercambiando $T$ con $-T$ se tiene que simplemente se intercambian los papeles de $p$ y $q$. Supongamos que $p\geq 1$, esto significa que $T$ tiene al menos un punto fijo $v$. Entonces $T$ fija la recta $D=span (v)$ e induce una isometría sobre el plano ortogonal a $D$. Esta isometría se puede clasificar con el último teorema de la entrada anterior. Por lor tanto, hemos reducido el caso de dimensión $3$ al caso de dimensión $2$. Podemos ser más explicitos si consideramos los siguientes casos.

  • $id\in\{T,-T\}$.
  • Tenemos que $\dim \ker (T-id)=2$. Si $e_2,e_1$ es una base ortonormal del plano $\ker (T-id)=2$ y completamos a una base ortonormal de $V$ $\{e_1,e_2,e_3\}$, entonces $T$ fija puntualmente al subespacio generado por $e_2,e_3$ y deja invariante a la recta generada por $e_1$. Por lo tanto la matriz asociada a $T$ con respecto a la base ortonormal es
    $$ \begin{pmatrix}
    t & 0 & 0\\
    0 & 1 & 0\\
    0 & 0 & 1
    \end{pmatrix}$$
    para algun número real $t$, el cual forzosamente es $-1$, pues sabemos que debe ser $1$ o $-1$, pero si fuera $1$, entonces $T$ sería la indentidad. Por lo tanto $T$ es una simetría ortogonal con respecto al plano $\ker (T-id)$. Además, $\det T=-1$, por lo que $T$ es una isometría negativa.
  • Tenemos que $\dim\ker (T-id)$ es la recta generado por algún vector $e_1$ de norma $1$. Completamos $e_1$ a una base ortonormal $\{e_1,e_2,e_3\}$ . Entonces la isometría $T$ inducida sobre es subespacio generado por $\{e_2,e_3\}$ no tiene puntos fijos, ya que todos los puntos fijos de $T$ están sobre $span(e_1)$, por lo tanto $T$ es una rotación de ángulo $\theta$, para un único $\theta\in(-\pi,\pi]$. Además, la matriz asociada a $T$ con respecto a la base ortonormal es
    $$ \begin{pmatrix}
    1 & 0 & 0\\
    0 & \cos\theta & -\sin\theta\\
    0 & \sin\theta & \cos\theta
    \end{pmatrix}.$$
    Diremos que $T$ es la rotación de ángulo $\theta$ alrededor del eje $\mathbb{R}e_1$. Notemos que $\det T=1$, por lo que $T$ es una isometría positiva. Además, el ángulo $\theta$ satisface $$1+2\cos\theta=Tr(A),$$,aunque, al ser el coseno una función par, $-\theta$ también satisface la ecuación anterior. Para encontrar a $\theta$ necesitamos hallar a $\sin\theta$. Para ello verificamos que
    $$\det_{(e_1,e_2,e_3)}(e_1,e_2,T(e_2))=\begin{vmatrix}
    1 & 0 & 0\\
    0 & 1 & \cos\theta\\
    0 & 0 & \sin\theta
    \end{vmatrix}=\sin\theta.$$
  • Supongamos que $\ker(T-id)=\{0\}$. Una posibilidad es que $T=-id$. Supongamos que $T\neq id $. Como $T$ o $-T$ tienen un punto fijo y $T$ tiene puntos fijos, entonces necesariamente $-T$ tiene un punto fijo. Sea $e_1$ un vector de norma $1$ fijado por $-T$, por lo tanto $T(e_1)=-e_1$. Completando $e_1$ a una base ortonormal de $V$ dando un argumento similar al del caso anterior, obtenemos que la matriz asociada a $T$ con respecto a la base ortonormal es
    $$\begin{pmatrix}1- & 0 & 0\\
    0 & \cos\theta & -\sin\theta\\
    0 & \sin\theta & \cos\theta
    \end{pmatrix}=R_\theta \cdot \begin{pmatrix}
    1 & 0 & 0\\
    0 & \cos\theta & -\sin\theta\\
    0 & \sin\theta & \cos\theta
    \end{pmatrix}$$
    para algún $\theta \in (-\pi,\pi]$. Por lo tanto $T$ es la composición de una rotación de ángulo $\theta$ y una simetría ortogonal con respecto al eje de rotación. También notemos que $\det T=-1$, por lo que $T$ es una isometría negativa.
    También podemos mirarlo desde el punto de vista de las matrices. Consideremos una matriz ortogonal $A\in M_3(\mathbb{R})$ y la transformación lineal asociada
    \begin{align*}
    T:V&\to V\\
    X&\mapsto AX
    \end{align*}, donde $V=\mathbb{R}^3$ está equipado con el producto interior usual. Excluiremos los casos triviales $A=\pm I_3$. Para estudiar la isometría $T$, primero revisamos si esta es positiva o negativa, calculando el determinante.
    Supongamos que $T$ es positiva. Ahora veremos si $A$ es simétrica. Para ellos consideremos los siguentes dos casos:
  • Si $A$ es simétrica, entonces $A^2=I_3$ (pues $A$ es ortogonal y simétrica) y por lo tanto $T$ es una simetría ortogonal. Afirmamos que $T$ es una simetría ortogonal con respecto a una recta. En efecto, como $A^2=I_3$, todos los eigenvalores de $A$ son $1$ o $-1$. Más aún, los eigenvalores no son iguales, ya que estamos excluendo los casos $A=\pm I_3$, y el producto de ellos es 1, pues $\det A=1$. Por lo tanto, un eigenvalor es igual a $1$ y los otros dos son iguales a $-1$. Se sigue que la matriz asociada a $T$ con respecto a la base ortonormal $\{e_1,e_2,e_3\}$ es
    $$\begin{pmatrix}
    1 & 0 & 0\\
    0 & -1 & 0\\
    0 & 0 & -1
    \end{pmatrix}$$ y $T$ es la simetría ortogonal con respecto a la recta generado por $e_1$. Para encontrar esta recta de manera explícita, necesitamos calcular $\ker(A-I_3)$ resolviendo el sistema $AX=X$.
  • Si $A$ no es simétrica, entonces $A$ es una rotación de ángulo $\theta$ ara un único $\theta\in(-\pi,\pi]$. Podemos encontrar el eje de rotación resolviendo el sistema $AX=X$: si $Ae_1=e_1$ para algún vector $e_1$, entonces el eje de rotación está generado por $e_1$. Para encontrar el ángulo de rotación usamos la siguiente ecuación
    \begin{equation}\label{angulo}
    1+2\cos\theta=Tr(A),
    \end{equation}
    la cual determina a $\theta$ en valor absoluto (pues $\theta$ y $-\theta$ son soluciones por la paridad del coseno). Ahora escogemos un vector $e_2$ ortogonal a $e_1$ y de norma $1$ y definimos $e_3=(u_2v_3-u_3v_2,u_3v_1-u_1v_3,u_1v_2-u_2v_1)$, donde $e_1=(u_1,u_2,u_3)$ y $e_2=(v_1,v_2,v_3)$. Entonces $e_1,e_2,e_3$ es una base ortonormal positiva de $\mathbb{R}^3$ y $\det_{(e_1,e_2,e_3)}(e_1,e_2,Ae_2)$ nos da el valor de $\sin\theta$, con lo cual podremos determinar a $\theta$ de manera única. En la práctica bastará con encontrar el signo de $\det_{(e_1,e_2,e_3)}(e_1,e_2,Ae_2)$, ya que esto nos dará el signo de $\sin\theta$, lo cual determina $\theta$ de manera única gracias a la ecuación \eqref{angulo}.

Finalmente, si se supone que $T$ es negativa, entoces $-T$ es positiva y por lo tanto todo el estudio que acabamos de hacer se puede aplicar a $-T$.

Para finalizar, veremos un ejemplo concreto.

Ejemplo. Demuestra que a matriz
$$A=\frac{1}{3}\begin{pmatrix}
2 & 2 & 1\\
-2 & 1 & 2\\
1 & -2 & 2
\end{pmatrix}$$ es ortogonal y estudia su isometría correspondiente en $\mathbb{R}^3$.

Solución. El cálculo para verificar que $A$ es ortogonal es muy sencillo y se deja como tarea moral. Luego vemos que $\det A=1$, por lo que la isometría asociada es positiva. Como $A$ no es simétrica, se sigue que $T$ es una rotación. Para encontrar el eje necesitamos resolver el sistema $AX=X$, el cual es equivalente a
\begin{align*}
\begin{cases}
2x+2y+z &= 3x\\
-2x+y+2z &=3y\\
x-2y+2z &=3z
\end{cases}
\end{align*} y entonces $x=z$ y $y=0$. Por lo tanto, el eje de rotación está generado por el vector $(1,0,1)$. Normalizandolo obtenemos el vector
$$e_1=\frac{1}{\sqrt{2}}(1,0,1),$$ que genera al eje de $T$.
sea $\theta$ el ángulo de rotación, tal que
$$1+2\cos\theta=Tr(A)=\frac{5}{3},$$ y por lo tanto
$$cos\theta=\frac{1}{3}.$$
Falta determinar el signo de $\sin \theta$. Para ello, escogemos un vector ortogonal a $e_1$, digamos $$e_2=(0,1,0)$$ y calculamos el signo de
$$\det (e_1,e_2,Ae_2)=\frac{1}{3\sqrt{2}}\begin{vmatrix}
1 & 0 & 2\\
0 & 1 & 0\\
1 & 0 & -2
\end{vmatrix}=-\frac{4}{3\sqrt{2}}<0,$$ por lo que $\sin\theta<0$ y finalmente $\theta=-\arccos\frac{1}{3}$.

$\square$

Más adelante…

Tarea moral

  1. Verifica que la matriz $A$ del ejemplo anterior es ortogonal.
  2. Encuentra la matriz asociada a la simetría ortogonal en $\mathbb{R}^3$ con respecto a la recta generada por el vector $(1,2,3)$.
  3. Encuentra la matriz asociada a la simetría ortogonal en $\mathbb{R}^3$ con respecto al plano generad por los vectores $(1,1,1)$ y $(0,1,0)$.
  4. Sea $V=\mathbb{R}^3$.¿En qué casos una rotación sobre $V$ conmuta con una simetríai ortogonal?

Entradas relacionadas