Archivo de la etiqueta: transpuesta

Álgebra Lineal I: Propiedades de determinantes

Por Ayax Calderón

Introducción

Para esta entrada enunciaremos y demostraremos algunas de las propiedades más importantes de los determinantes tanto para transformaciones lineales como para matrices. Estas propiedades de determinantes y en general el concepto de determinante tiene numerosas aplicaciones en otras áreas de las matemáticas como el cálculo de volúmenes $n-$dimensionales o el wronskiano en ecuaciones diferenciales, sólo por mencionar algunos, por eso es importante analizar a detalle el determinante de los distintos tipos de matrices y transformaciones lineales que conocemos.

Como recordatorio, veamos qué hemos hecho antes de esta entrada. Primero, transformaciones multilineales. De ellas, nos enfocamos en las que son alternantes y antisimétricas. Definimos el determinante para un conjunto de vectores con respecto a una base, y vimos que, en cierto sentido, son las únicas formas $n$-lineal alternantes en un espacio vectorial de dimensión $n$. Gracias a esto, pudimos mostrar que los determinantes para transformaciones lineales están bien definidos, y con ellos motivar la definición de determinante para matrices.

El determinante es homogéneo

La primera de las propiedades de determinantes que enunciaremos tiene que ver con «sacar escalares» del determinante.

Teorema. Sea $A$ una matriz en $M_n(F)$.

  1. Si multiplicamos un renglón o una columna de $A$ por un escalar $\lambda$, entonces su determinante se multiplica por $\lambda$.
  2. Se tiene que $\det(\lambda A)=\lambda^n A$.

Demostración. 1. Sea $A_j$ la matriz obtenida me multiplicar el $j$-ésimo renglón por $\lambda$. Siguiendo la definición de determinante vista en la entrada de ayer (determinantes de matrices) vemos que
\begin{align*}
\det A_j&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots \lambda a_{j\sigma(j)}\dots a_{n\sigma(n)}\\
&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda a_{1\sigma(1)}\dots a_{n\sigma(n)}\\
&= \lambda \det A.
\end{align*}

La demostración para la $j$-ésima columna queda como tarea moral.

2. Sea $\lamda A=[\lambda a_{ij}]$, entonces por definición tenemos

\begin{align*}
\det (\lambda A)&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)(\lambda a_{1\sigma(1)})\dots (\lambda a_{n\sigma(n)})\\
&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda^n a_{1\sigma(1)}\dots a_{n\sigma(n)}\\
&=\lambda^n \cdot \det A
\end{align*}

De manera alternativa, podemos aplicar el primer inciso $n$ veces, una por cada renglón.

$\square$

Aquí arriba hicimos la prueba explícita a partir de la definición. Una forma alternativa de proceder es notar que el determinante de una matriz es precisamente el determinante $\det$ (de vectores) con respecto a la base canónica de $F^n$ evaluada en los renglones de $A$. Al multiplicar uno de los renglones por $\lambda$, el vector entrada de $\det$ se multiplica por $\lambda$. El resultado se sigue inmediatamente de que $\det$ es una forma $n$-lineal.

El determinante es multiplicativo

Quizás de entre las propiedades de determinantes, la más importante es que es multiplicativo. Mostraremos esto a continuación.

Teorema. Sea $V$ un espacio vectorial de dimensión finita y transformaciones lineales $T_1:V\to V$, $T_2:V\to V$. Se tiene que $$\det(T_1\circ T_2) = \det T_1\cdot \det T_2.$$

Demostración. Sea $(v_1,\dots , v_n)$ una base cualquiera de $V$. Del resultado visto en la entrada anterior y la definición de determinante, se sigue que
\begin{align*}
\det (T_1 \circ T_2)&= \det _{(v_1,\dots , v_n)}(T_1(T_2(v_1)),\dots , T_1(T_2(v_n)))\\
&=\det T_1 \cdot \det_{(v_1,\dots , v_n)}(T_2(v_1), \dots , T_2(v_n))\\
&= \det T_1 \cdot \det T_2.
\end{align*}

$\square$

Observa cómo la demostración es prácticamente inmediata, y no tenemos que hacer ningún cálculo explícito en términos de coordenadas. La demostración de que el determinante es multiplicativo para las matrices también es muy limpia.

Teorema. Sean $A$ y $B$ matrices en $M_n(F)$. Se tiene que $$\det(AB)=\det A \cdot \det B.$$

Demostración. Sean $V=F^n$, $T_1:V\to V$ la transformación lineal definida por $x\mapsto Ax$ y similarmente $T_2:V\to V$ la transformación lineal definida por $x\mapsto Bx$. Sabemos que $A, B, AB$ son las matrices asociadas a $T_1, T_2, T_1\circ T_2$ con respecto a la base canónica, respectivamente.

Recordemos que para una transformación lineal $T$ en $V$, $\det T = \det A_T$, para una matriz que la represente en cualquier base. Entonces

\begin{align*}
\det(AB)&=\det A_{T_1\circ T_2}\\
&= \det T_1\circ T_2\\
&=\det T_1 \cdot \det T_2\\
&=\det A_{T_1} \cdot \det A_{T_2} \\
&= \det A \cdot \det B.
\end{align*}

$\square$

Nota que hubiera sido muy complicado demostrar que el determinante es multiplicativo a partir de su definición en términos de permutaciones.

El determinante detecta matrices invertibles

Otra de las propiedades fundamentales del determinante es que nos ayuda a detectar cuándo una matriz es invertible. Esto nos permite agregar una equivalencia más a la lista de equivalencias de matrices invertibles que ya teníamos.

Teorema. Una matriz $A$ en $M_n(F)$ es invertible si y sólo si $\det A\neq 0$.

Demostración. Supongamos que $A$ es invertible, entonces existe $B\in M_n(F)$ tal que $AB=I_n=BA$.
Así,

$1=\det I_n = \det (AB) = \det A \cdot \det B$.

Como el lado izquierdo es $1$, ambos factores del lado derecho son distintos de $0$. Por lo tanto $\det A \neq 0.$ Nota que además esta parte de la prueba nos dice que $\det A^{-1}=(\det A)^{-1}$.

Ahora supongamos que $\det A \neq 0$. Sea $(e_1, \dots , e_n)$ la base canónica de $F^n$ y $C_1,\dots , C_n$ las columnas de $A$. Como $\det_{(e_1,\ldots,e_n)}$ es una forma lineal alternante, sabemos que si $C_1,\ldots,C_n$ fueran linealmente dependientes, la evaluación daría cero. Ya que la columna $C_i$ es la imagen bajo $A$ de $e_i$, entonces

$\det A =\det _{(e_1,\dots , e_n)}(C_1, \dots , C_n) \neq 0$.

Por lo tanto los vectores $C_1, \dots , C_n$ son linealmente independientes y así $\text{rank}(A)=n$. Se sigue que $A$ es una matriz invertible.

$\square$

Determinante de transformación y matriz transpuesta

Una cosa que no es totalmente evidente a partir de la definición de determinante para matrices es que el determinante no cambia si transponemos una matriz o una transformación lineal. Esta es la última de las propiedades de determinantes que probaremos ahora.

Teorema. Sea $A$ una matriz en $M_n(F)$. Se tiene que $$\det({^tA})=\det A.$$

Demostración. Por definición

$\det({^tA})=\displaystyle\sum_{\sigma \in S_n}\text{sign}(\sigma^{-1})a_{\sigma^{-1}(1)1 \dots a_{\sigma^{-1}(n)n}}.$

Luego, para cualquier permutación $\sigma$ se tiene

$$a_{\sigma(1)1}\dots a_{\sigma(n)n}=a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}$$

pues $a_{i\sigma^{-1}(i)}=a_{\sigma(j)j}$, donde $j=\sigma^{-1}(i)$.
También vale la pena notar que $$\text{sign}(\sigma^{-1})=\text{sign}(\sigma)^{-1}=\text{sign}(\sigma).$$

De lo anterior se sigue que

\begin{align*}
\det({^tA})&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma^{-1})a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}\\
&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots a_{n\sigma(n)}\\
&=\det A.
\end{align*}

$\square$

Teorema. Sea $V$ un espacio vectorial de dimensión finita $T:V\to V$ una transformación lineal. Se tiene que $$\det(^t T) = \det T.$$

Demostración. Sea $A$ la matriz asociada a $T$, entonces $^tA$ es la matriz asociada a $^tT$. Luego $$\det (^tT)=\det (^tA)=\det A = \det T.$$

$\square$

Veamos un ejemplo de un problema en el que podemos aplicar algunas de las propiedades anteriores.

Problema. Sea $A\in M_n(F)$ una matriz antisimétrica para algún $n$ impar. Demuestra que $\det(A)=0$.

Demostración. Como $A=-A^t$, entonces $\det A = \det (- {^tA})$, pero $\det A = \det ({^tA})$.
Se sigue que
\begin{align*}
\det ({^tA}) &= \det (-{^tA})\\
&=(-1)^n \det ({^tA})\\
&=-\det ({^tA}).
\end{align*}

Concluimos $\det (^tA)=0$

$\square$

Más adelante…

En esta entrada enunciamos y demostramos varias propiedades de los determinantes. Ahora, vamos a ponerlas en práctica resolviendo algunos problemas.

En las siguientes entradas, que constituyen la parte final del curso, vamos a hablar de diferentes técnicas para calcular el determinante de una matriz y obtendremos sus eigenvalores y eigenvectores. Vamos a ver cómo esto nos conduce a uno de los teoremas más importantes del curso de Álgebra Lineal I: el teorema espectral.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que al multiplicar una columna de una matriz por $\lambda$, entonces su determinante se multiplica por $\lambda$.
  • Demuestra que si una matriz tiene dos columnas iguales, entonces su determinante es igual a cero.
  • Analiza cómo es el determinante de una matriz antisimétrica $A\in M_n(F)$ con $n$ par.
  • Formaliza la frase «el determinante detecta transformaciones invertibles» en un enunciado matemático. Demuéstralo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Ortogonalidad y transformación transpuesta

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya estudiamos la noción de espacio dual y la de ortogonalidad. También vimos cómo a partir de la ortogonalidad podemos definir subespacios como intersección de hiperplanos. Como veremos a continuación, la ortogonalidad también nos permite definir qué quiere decir que consideremos la «transformación transpuesta» de una transformación lineal.

Antes de comenzar, vale la pena recordar también que cada transformación lineal entre espacios de dimensión finita puede ser expresada mediante una matriz que depende de la elección de bases de los espacios vectoriales. Como tal vez te imaginarás, la transformación transpuesta tendrá como matriz a la matriz transpuesta de la transformación original.

Esta intuición nos dice que hay que tener cuidado. Supongamos que estamos trabajando sobre un campo $F$. Si tenemos espacios vectoriales $V$ de dimensión $n$, $W$ de dimensión $m$ y una tranformación lineal $T:V\to W$, recordemos que, tras elegir bases, $T$ está representada por una matriz $A$ en $M_{m,n}(F)$, es decir, con $m$ filas y $n$ columnas.

Pero la matriz transpuesta $^t A$ es de $n$ filas y $m$ columnas, así que típicamente no representará a una transformación de $V$ a $W$, pues las dimensiones no necesariamente coinciden. Podríamos intentar construir una transformación de $W$ a $V$ para que las dimensiones coincidan, pero resulta que esto no es «tan natural», por razones en las que no profundizaremos.

Lo que sí resulta muy natural y fácil de definir es una transformación de $W^\ast$ a $V^\ast$, lo cual tendrá sentido pues ya probamos que $\dim W^\ast = \dim W$ y $\dim V^\ast = \dim V$, así que será representada por una matriz en $M_{n,m}$. Es un poco más difícil conceptualmente, pero las consecuencias matemáticas son más bonitas y útiles. Sin decir más, comenzamos con la teoría.

Definición y ejemplo de transformación transpuesta

Para definir «transformación transpuesta», le hacemos como sigue.

Definición. Sean $V$ y $W$ espacios vectoriales sobre un campo $F$ y sea $T:V\to W$ una transformación lineal. Definimos la transformación transpuesta de $T$, como la transformación $^tT:W^\ast \to V^\ast$ tal que a cada forma lineal $l$ en $W^\ast$ la manda a la forma lineal $^tT(l)$ en $V^\ast$ para la cual $$(^tT(l))(v)=l(T(v)).$$

Otra forma de escribir a la definición es mediante la notación de emparejamiento canónico: $$\langle ^tT(l),v\rangle=\langle l, T(v)\rangle.$$

Veamos un ejemplo para entender mejor la definición.

Ejemplo. Considera a $V=M_{2}(\mathbb{R})$ y $W=\mathbb{R}^2$. Considera la transformación lineal $T:V\to W$ dada por $$T\begin{pmatrix} a& b\\ c&d\end{pmatrix}=(a+b,c+d).$$

La transformación $^t T$ va a mandar a una forma lineal $l$ de $W$ a una forma lineal $^tT(l)$ de $V$. Las formas lineales $l$ en $W$ se ven de la siguiente forma $$l(x,y)=rx+sy.$$ La forma lineal $^tT(l)$ en $V$ debe satisfacer que $^tT(l)=l\circ T$. En otras palabras, para cualquier matriz $\begin{pmatrix} a& b\\ c&d\end{pmatrix}$ se debe tener
\begin{align*}
(^t T(l)) \begin{pmatrix} a& b\\ c&d\end{pmatrix} &= l(a+b,c+d)\\
&=r(a+b)+s(c+d)\\
&=ra+rb+sc+sd.
\end{align*}

Si tomamos la base canónica $E_{11}$, $E_{12}$, $E_{21}$, $E_{22}$ de $V$ y la base canónica $e_1,e_2$ de $W$, observa que la transformación $T$ tiene como matriz asociada a la matriz $$\begin{pmatrix} 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\end{pmatrix}$$ (recuerda que se obtiene poniendo como columnas a los vectores coordenada de las imágenes de la base).

Por otro lado, los vectores de la base dual $e_1^\ast$ y $e_2^\ast$ «leen las coordenadas», de modo que $e_1^\ast(x,y)=x$ y $e_2^\ast(x,y)=y$. Por lo que vimos arriba, $(^t T)(e_1)$ es entonces la forma lineal $a+b$ y $(^t T)(e_2)$ es la forma lineal $c+d$. En términos de la base dual en $V^\ast$, estos son $E_{11}^\ast + E_{12}^\ast$ y $E_{21}^\ast+ E_{22}^\ast$ respectivamente. De esta forma, la transformación $^t T$ tiene matriz asociada $$\begin{pmatrix}1&0\\1&0\\0&1\\0&1\end{pmatrix}.$$

$\triangle$

Nota que en el ejemplo la transformación transpuesta tiene como matriz a la matriz transpuesta de la transformación original. Esto es algo que queremos que pase siempre, y más abajo lo demostramos.

Propiedades básicas de transformación transpuesta

Observa que la definición no necesita que $V$ y $W$ sean de dimensión finita. A continuación enunciamos y probamos algunos resultados que se valen también en el contexto de dimensión infinita.

Teorema 1. Tomemos $V$,$W$,$Z$ espacios vectoriales sobre un campo $F$ y $c$ en $F$. Sean $T_1,T_2: V \to W$ transformaciones lineales. Sea $T_3:W\to Z$ una transformación lineal. Se cumple todo lo siguiente:

  1. $^tT_1$ es una transformación lineal.
  2. $^t(T_1+cT_2)= {^tT_1} + c^tT_2$.
  3. $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$.
  4. Si $V=W$ y $T_1$ es invertible, entonces $^t T_1$ también lo es y $(^t T_1)^{-1}= {^t (T_1^{-1})}$.

Para tener un poco más de intuición, observa cómo estas propiedades son análogas a las de transposición para matrices.

Demostración. Las partes 1 y 2 se demuestran usando cuidadosamente las definiciones. Haremos la demostración de $1$ y la demostración de $2$ queda como tarea moral. Para probar $1$, necesitamos probar que $^tT_1:W^\ast \to V^\ast$ es lineal, así que tomemos $l_1$, $l_2$ en $W^\ast$ y $a$ un escalar en $F$. Tenemos que demostrar que $$ ^tT_1(l_1+a l_2)= {^tT_1(l_1)}+ a ^tT_1(l_2).$$

Ésta es una igualdad de formas lineales en $V^\ast$, y para mostrar su validez tenemos que mostrar que se vale en cada $v\in V$. Por un lado,
\begin{align*}
^tT_1(l_1+a l_2)(v) &= (l_1+a l_2)(T_1(v))\\
&=l_1(T_1(v))+a l_2(T_1(v)).
\end{align*}

Por otro lado,
\begin{align*}
(^tT_1(l_1)+ a ^tT_1(l_2))(v)&= {^tT_1(l_1)(v)}+ a ^tT_1(l_2)(v)\\
&= l_1(T_1(v)) + a l_2(T_1(v)).
\end{align*}

En ambos casos obtenemos el mismo resultado, así que $^tT_1(l_1+a l_2)$ y $^tT_1(l_1)+ a ^tT_1(l_2)$ son iguales, mostrando que $^t T_1$ es lineal.

Pasemos a la parte 3. La igualdad $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$ es una igualdad de transformaciones de $Z^\ast$ a $V^\ast$. Para verificar su veracidad, hay que ver que son iguales en cada elemento en su dominio. Tomemos entonces una forma lineal $l$ en $Z^\ast$. Queremos verificar la veracidad de $$ ^t(T_3\circ T_1)(l) = (^t T_1 \circ ^t T_3)(l),$$ que es una igualdad de formas lineales en $V^\ast$, de modo que tenemos que verificarla para cada $v$ en $V$. Por un lado,

\begin{align*}
^t(T_3\circ T_1)(l)(v)&=l((T_3\circ T_1)(v))\\&=l(T_3(T_1(v))),
\end{align*}

Por otro,
\begin{align*}
(^t T_1 \circ ^t T_3)(l)(v)&=(^tT_1(^t T_3 (l)))(v)\\&=(^t T_3 (l))(T_1(v))\\&=l(T_3(T_1(v))).
\end{align*}

En ambos casos obtenemos el mismo resultado.

Para la parte 4 basta notar que si $V=W$ y $T_1$ es invertible, entonces tiene una inversa $S:V\to V$, y por la parte $3$ tenemos que $$^t S\circ ^t T_1 = {^t(T_1\circ S)} = {^t \text{Id}_V} = \text{Id}_{V^\ast},$$

mostrando que $^t T_1$ tiene inversa $^tS$. Observa que estamos usando que la transpuesta de la transformación identidad es la identidad. Esto no lo hemos probado, pero lo puedes verificar como tarea moral.

$\square$

La matriz transpuesta es la matriz de la transformación transpuesta

Cuando estamos trabajando en espacios de dimensión finita, podemos mostrar que la matriz que le toca a la transformación transpuesta es precisamente la transpuesta de la matriz que le toca a la transformación original. Hacemos esto más preciso en el siguiente resultado.

Teorema 2. Sea $T:V\to W$ una transformación lineal entre espacios de dimensión finita y $B$ y $B’$ bases de $V$ y $W$ respectivamente. Si $A$ es la matriz de $T$ con respecto a $B$ y $B’$, entonces $^t A$ es la matriz de la transformación $^t T:W^\ast \to V^\ast$ con respecto a las bases duales $B’^\ast$ y $B^\ast$.

Demostración. Necesitamos definir algo de notación. Llamemos $n=\dim V$, $m=\dim W$, $B=\{b_1,\ldots, b_n\}$, $B’=\{c_1,\ldots, c_m\}$ y $A=[a_{ij}]$. Recordemos que la matriz $A$ está hecha por las coordenadas de las imágenes de la base $B$ en términos de la base $B’$, es decir, que por definición tenemos que para toda $j=1,\ldots, n$: \begin{equation}T(b_j)=\sum_{i=1}^{m} a_{ij} c_i.\end{equation}

La transformación $^t T:W^\ast \to V^\ast$ va de un espacio de dimensión $m$ a uno de dimensión $n$, así que en las bases $B’^\ast$ y $B^\ast$ se puede expresar como una matriz de $n$ filas y $m$ columnas. Afirmamos que ésta es la matriz $^t A$. Para ello, basta mostrar que las coordenadas de las imágenes de la base $B’^\ast$ en términos de la base $B^\ast$ están en las filas de $A$, es decir, que para todo $i=1, \ldots, m$ tenemos que $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast.$$

La anterior es una igualdad de formas lineales en $V^\ast$, de modo que para ser cierta tiene que ser cierta evaluada en todo $v$ en $V$. Pero por linealidad, basta que sea cierta para todo $b_j$ en la base $B$. Por un lado, usando (1),

\begin{align*}
^tT(c^\ast_i)(b_j)&=c^\ast_i(T(b_j))\\
&=c^\ast_i \left(\sum_{k=1}^{m} a_{kj} c_i\right)\\
&=\sum_{k=1}^{m} a_{kj} c^\ast_i(c_k)\\
&=a_{ij},
\end{align*}

en donde estamos usando que por definición de base dual $c_i^\ast (c_i)= 1$ y $c_j^\ast (c_i)=0$ si $i\neq j$. Por otro lado,

\begin{align*}
\left(\sum_{k=1}^{n} a_{ik} b_k^\ast\right)(b_j)&= \sum_{k=1}^{n} a_{ik} b_k^\ast(b_j)\\
&=a_{ij},
\end{align*}

en donde estamos usando linealidad y la definición de base dual para $B$.

Con esto concluimos la igualdad $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast,$$ que muestra que podemos leer las coordenadas de las evaluaciones de $^t T$ en $B’^\ast$ en términos de la base $B^\ast$ en las filas de $A$, por lo tanto podemos leerlas en las columnas de $^t A$. Esto muestra que $^t A$ es la matriz correspondiente a esta transformación en términos de las bases duales.

$\square$

Kernel e imagen de la transformación transpuesta

Finalmente, el siguiente resultado nos habla acerca de cómo están relacionadas las transformaciones transpuestas y la ortogonalidad.

Teorema 3. Sea $T:V\to W$ una transformación lineal entre espacios vectoriales de dimensión finita. Entonces

$$\ker (^t T) = (\Ima (T))^\bot,\quad \ker (T)=(\Ima (^t T))^\bot$$

y

$$\Ima (^t T) = (\ker(T))^\bot\,\quad \Ima (T)=(\ker(^t T))^\bot.$$

Demostración. Demostraremos la igualdad $\ker (^t T) = (\Ima (T))^\bot$. Notemos que $l \in \ker(^t T)$ si y sólo si $(^t T)(l)=0$, lo cual sucede si y sólo si $l\circ T = 0$. Pero esto último sucede si y sólo si para todo $v$ en $V$ se tiene que $l(T(v))=0$, que en otras palabras quiere decir que $l(w)=0$ para todo $w$ en $\Ima (T)$. En resumen, $l\in \ker(^t T)$ pasa si y sólo si $l$ se anula en todo $\Ima (T)$ es decir, si y sólo si está en $(\Ima (T))^\bot$.

El resto de las igualdades se demuestran de manera análoga, o alternativamente, usando la bidualidad canónica. Es un buen ejercicio hacerlo y se deja como tarea moral.

$\square$

Más adelante…

En esta entrada enunciamos un resultado muy importante: dada una transformación lineal $T$, su transformación transpuesta tiene como matriz asociada la matriz transpuesta de la matriz asociada de $T$. Este resultado nos permitirá calcular fácilmente la transpuesta de una transformación, como veremos en la entrada de problemas de este tema.

En la siguiente entrada del blog hablaremos por primera vez de formas bilineales: vamos a ver cómo nuestra discusión de transformaciones lineales facilitará mucho abordar este tema.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la transpuesta de la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=T(7x+8y,6x+7y)$ es invertible. Encuentra a su transpuesta y a la inversa de la transpuesta explícitamente.
  • Muestra la parte $2$ del Teorema 1.
  • Muestra que la transpuesta de la transformación identidad es la identidad.
  • Demuestra el resto de las igualdades del Teorema 3.
  • Encuentra la transpuesta de la transformación traza que va de $M_n(\mathbb{R})$ a los reales. Recuerda que esta transformación manda a una matriz $A=[a_{ij}]$ a la suma de sus entradas en la diagonal principal, es decir $$A\mapsto a_{11}+a_{22}+\ldots+a_{nn}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»