Introducción
En la entrada anterior dimos la definición de determinante para ciertos vectores con respecto a una base. En esta entrada continuamos con la construcción de determinantes. Primero, basados en la teoría que desarrollamos anteriormente, definiremos determinantes de transformaciones lineales. Luego, mediante la cercanía entre transformaciones lineales y matrices, definimos determinantes de matrices.
Determinantes de transformaciones lineales
Ahora definiremos el determinante para transformaciones lineales. Antes de esto, necesitamos hacer algunas observaciones iniciales y demostrar un resultado.
Si tomamos un espacio vectorial $V$ de dimensión finita $n\geq 1$ sobre un campo $F$, una transformación lineal $T:V\to V$ y una forma $n$-lineal $f:V^n\to F$, se puede mostrar que la transformación $$T_f:V^n\to F$$ dada por $$T_f(x_1,\ldots,x_n)=f(T(x_1),\ldots,T(x_n))$$ también es una forma $n$-lineal. Además, se puede mostrar que si $f$ es alternante, entonces $T_f$ también lo es. Mostrar ambas cosas es relativamente sencillo y queda como tarea moral.
Teorema. Sea $V$ un espacio vectorial de dimensión finita $n\geq 1$ sobre el campo $F$. Para cualquier transformación lineal $T:V\to V$ existe un único escalar $\det T$ en $F$ tal que $$f(T(x_1),\ldots,T(x_n))=\det T\cdot f(x_1,\ldots, x_n)$$ para cualquier forma $n$-lineal alternante $f:V^n\to F$ y cualquier elección $x_1,\ldots,x_n$ de vectores en $V$.
Demostración. Fijemos una base $B=(b_1,\ldots,b_n)$ cualquiera de $V$. Llamemos $g$ a la forma $n$-lineal alternante $\det_{(b_1,\ldots,b_n)}$. Por la discusión de arriba, la asignación $T_g:V^n\to F$ dada por $$(x_1,\ldots,x_n)\mapsto g(T(x_1),\ldots,T(x_n))$$ es una forma $n$-lineal y alternante.
Por el teorema que mostramos en la entrada de determinantes de vectores, se debe cumplir que $$T_g = T_g(b_1,\ldots,b_n) \cdot g.$$ Afirmamos que $\det T:= T_g(b_1,\ldots, b_n)$ es el escalar que estamos buscando.
En efecto, para cualquier otra forma $n$-lineal alternante $f$, tenemos por el mismo teorema que $$f=f(b_1,\ldots,b_n) \cdot g.$$ Usando la linealidad de $T$ y la igualdad anterior, se tiene que
\begin{align*}
T_f &= f(b_1,\ldots,b_n)\cdot T_g\\
&=f(b_1,\ldots,b_n) \cdot \det T \cdot g\\
&= \det T \cdot f.
\end{align*}
Con esto se prueba que $\det T$ funciona para cualquier forma lineal $f$. La unicidad sale eligiendo $(x_1,\ldots,x_n)=(b_1,\ldots,b_n)$ y $f=g$ en el enunciado del teorema, pues esto forza a que $$\det T = g(T(b_1),\ldots,T(b_n)).$$
$\square$
Ahora sí, estamos listos para definir el determinante de una transformación lineal.
Definición. El escalar $\det T$ del teorema anterior es el determinante de la transformación lineal $T$.
Para obtener el valor de $\det T$, podemos entonces simplemente fijar una base $B=(b_1,\ldots,b_n)$ y el determinante estará dado por $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n)).$$ Como el teorema también prueba unicidad, sin importar que base $B$ elijamos este número siempre será el mismo.
Ejemplo 1. Vamos a encontrar el determinante de la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $$T(x,y,z)=(2z,2y,2x).$$ Para ello, usaremos la base canónica de $\mathbb{R}^3$. Tenemos que
\begin{align*}
T(1,0,0)&=(0,0,2)=2e_3\\
T(0,1,0)&=(0,2,0)=2e_2\\
T(0,0,1)&=(2,0,0)=2e_1.
\end{align*}
De acuerdo al teorema anterior, podemos encontrar al determinante de $T$ como $$\det T = \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1).$$
Como el determinante (para vectores) es antisimétrico, al intercambiar las entradas $1$ y $3$ su signo cambia en $-1$. Usando la $3$-linealidad en cada entrada, podemos sacar un factor $2$ de cada una. Así, tenemos:
\begin{align*}
\det T &= \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1)\\
&= -\det_{(e_1,e_2,e_3)}(2e_1,2e_2,2e_3)\\
&=-8\det_{(e_1,e_2,e_3)}(e_1,e_2,e_3)\\
&=-8.
\end{align*}
Concluimos entonces que el determinante de $T$ es $-8$.
$\triangle$
Ejemplo 2. Vamos ahora a encontrar el determinante de la transformación $T:\mathbb{R}_n[x]\to \mathbb{R}_n[x]$ que deriva polinomios, es decir, tal que $T(p)=p’$. Tomemos $q_0=1,q_1=x,\ldots,q_n=x^n$ la base canónica de $\mathbb{R}_n[x]$.
Notemos que, $T(1)=0$, de modo que los vectores $T(1),\ldots,T(x^n)$ son linealmente dependientes. Así, sin tener que hacer el resto de los cálculos, podemos deducir ya que $$\det_{(q_0,\ldots,q_n)}(T(q_0),\ldots,T(q_n))=0.$$ Concluimos entonces que $\det T = 0$.
$\triangle$
Determinantes de matrices
La expresión $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n))$$ para una transformación lineal $T$ también nos permite poner al determinante en términos de las entradas de la matriz de $T$ con respecto a la base $B$. Recordemos que dicha matriz $A_T=[a_{ij}]$ tiene en la columna $i$ las coordenadas de $b_i$ en la base $B$. En otras palabras, para cada $i$ se cumple que $$T(b_i)=\sum_{j=1}^n a_{ji}b_i.$$
Usando esta notación, obtenemos que $$\det T = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ de manera que podemos expresar a $\det T$ en términos únicamente de su matriz en la base $B$.
Esto nos motiva a definir el determinante de una matriz en general.
Definición. Para una matriz $A$ en $M_n(F)$ de entradas $A=[a_{ij}]$, el determinante de $A$ es $$\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$ A $\det A$ también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:
\begin{align*}
\det A = \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
\vdots & & \ddots & \vdots\\
a_{n1} & a_{n2} & \ldots & a_{nn}.
\end{vmatrix}
\end{align*}
Ejemplo. Si queremos calcular el determinante de una matriz en $M_2(F)$, digamos $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix},$$ debemos considerar dos permutaciones: la identidad y la transposición $(1,2)$.
La identidad tiene signo $1$ y le corresponde el sumando $ad$. La transposición tiene signo $-1$ y le corresponde el sumando $bc$. Así, $$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc.$$
$\triangle$
Retomando la discusión antes de la definición, tenemos entonces que $\det T = \det A_T$, en donde a la izquierda hablamos de un determinante de transformaciones lineales y a la derecha de uno de matrices. La matriz de $T$ depende de la base elegida, pero como vimos, el determinante de $T$ no. Esta es una conclusión muy importante, y la enunciamos como teorema en términos de matrices.
Teorema. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. El determinante de $A$ y el de $P^{-1}AP$ son iguales.
Determinantes de matrices triangulares
Terminamos esta entrada con un problema que nos ayudará a repasar la definición y que más adelante servirá para calcular determinantes.
Problema. Muestra que el determinante de una matriz triangular superior o triangular inferior es igual al producto de las entradas de su diagonal.
Solución. En una matriz triangular superior tenemos que $a_{ij}=0$ si $i>j$. Vamos a estudiar la expresión $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$
Si una permutación $\sigma$ no es la identidad, entonces hay un entero $i$ que no deja fijo, digamos $\sigma(i)\neq i$. Tomemos a $i$ como el mayor entero que $\sigma$ no deja fijo. Notemos que $\sigma(i)$ tampoco queda fijo por $\sigma$ pues $\sigma(\sigma(i))=\sigma(i)$ implica $\sigma(i)=i$, ya que $\sigma$ es biyectiva, y estamos suponiendo $\sigma(i)\neq i$. Por la maximalidad de $i$, concluimos que $\sigma(i)<i$.Entonces el sumando correspondiente a $\sigma$ es $0$ pues tiene como factor a la entrada $a_{i\sigma(i)}=0$.
En otras palabras, la única permutación a la que le puede corresponder un sumando no cero es la identidad, cuyo signo es $1$. De esta forma,
\begin{align*}
\det(A) &= \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}\\
&=a_{11}\cdot \ldots \cdot a_{nn}.
\end{align*}
$\square$
Más adelante…
En esta entrada planteamos cómo se define el concepto de matriz para transformaciones lineales y cómo esta definición se extiende naturalmente a la definición del determinante de una matriz, recordando que a cada transformación lineal se le puede asociar una matriz y viceversa.
En las siguientes entradas vamos a ver qué propiedades que cumplen los determinantes y aprenderemos diferentes técnicas para calcularlos. A lo largo de la unidad, desarrollaremos bastante práctica en el cálculo y la manipulación de los determinantes, ya sea el determinante de un conjunto de vectores, de una transformación lineal o de una matriz.
Tarea moral
A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.
- Muestra que la transformación $T_f$ definida en la entrada es $n$-lineal y alternante.
- Usando la definición de determinante para transformaciones lineales, encuentra el determinante de la transformación lineal $T:\mathbb{R}^n \to \mathbb{R}^n$ dada por $$T(x_1,x_2,\ldots,x_n)=(x_2,x_3,\ldots,x_1).$$
- Calcula por definición el determinante de las matrices $$\begin{pmatrix} 3 & 2 \\ 4 & 1\end{pmatrix}$$ y $$\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}.$$
- Calcula por definición el determinante de la matriz $$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16\end{pmatrix}$$ y compáralo con el de la matriz de $3\times 3$ del inciso anterior. ¿Qué notas?
- Completa el argumento para mostrar que el determinante de una matriz triangular inferior es el producto de las entradas en su diagonal.
Entradas relacionadas
- Ir a Álgebra Lineal I
- Entrada anterior del curso: Determinantes de vectores e independencia lineal
- Siguiente entrada del curso: Propiedades de determinantes
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»