Archivo de la etiqueta: Ecuaciones no lineales

Ecuaciones Diferenciales I: Método de reducción de orden

Por Omar González Franco

La única forma de aprender matemáticas es hacer matemáticas.
– Paul Halmos

Introducción

Hemos comenzado estudiando algunas de las propiedades de las soluciones a ecuaciones diferenciales lineales homogéneas y no homogéneas de orden superior. Como mencionamos en la entrada anterior, es momento de comenzar a desarrollar los distintos métodos de resolución de ecuaciones diferenciales de orden superior, sin embargo, debido a la complejidad que surge de aumentar el orden, en esta entrada sólo consideraremos ecuaciones diferenciales de segundo orden.

En esta entrada desarrollaremos el método de reducción de orden, como su nombre lo indica, lo que haremos básicamente es hacer un cambio de variable o una sustitución adecuada que permita que la ecuación de segundo orden pase a ser una ecuación de primer orden y de esta manera aplicar alguno de los métodos vistos en la unidad anterior para resolver la ecuación.

Hay dos distintas formas de reducir una ecuación de segundo orden, la primera de ellas consiste en hacer el cambio de variable

z=dydx

Esta forma se aplica en ecuaciones tanto lineales como no lineales, pero deben satisfacer algunas condiciones, mientras que, por otro lado, la segunda forma se aplica sólo a ecuaciones lineales homogéneas en las que tenemos conocimiento previo de una solución no trivial. En este segundo caso, considerando que conocemos una solución y1(x), haremos la sustitución

y2(x)=u(x)y1(x)

para reducir de orden a la ecuación y al resolverla obtendremos la función u(x) y, por tanto, la segunda solución y2(x), tal que {y1,y2} forme un conjunto fundamental de soluciones de la ecuación diferencial y de esta manera podamos establecer la solución general.

Comencemos por desarrollar la primer forma bajo un cambio de variable.

Ecuaciones reducibles a ecuaciones de primer orden

Hay cierto tipo de ecuaciones de segundo orden que pueden reducirse a una ecuación de primer orden y ser resueltas por los métodos que ya conocemos, vistos en la unidad anterior. Un primer tipo de ecuación son las ecuaciones lineales en las que la variable dependiente y no aparece explícitamente.

Sabemos que una ecuación diferencial lineal no homogénea de segundo orden tiene la siguiente forma.

(1)a2(x)d2ydx2+a1(x)dydx+a0(x)y=g(x)

Si la variable dependiente y no se encuentra explícitamente en la ecuación, obtenemos la siguiente forma.

(2)a2(x)d2ydx2+a1(x)dydx=g(x)

Es quizá natural pensar que una forma de resolver la ecuación (2) es integrarla dos veces, es esto lo que haremos considerando el siguiente cambio de variable.

(3)z=dydx;dzdx=d2ydx2

Sea a2(x)0, definimos las siguientes funciones.

P(x)=a1(x)a2(x)yQ(x)=g(x)a2(x)

Si sustituimos estas funciones y el cambio de variable (3) en la ecuación (2) lograremos reducirla a una ecuación lineal de primer orden con z la variable dependiente.

(4)dzdx+P(x)z=Q(x)

En la unidad anterior desarrollamos distintos métodos para resolver este tipo de ecuaciones. Una vez que resolvamos la ecuación (4) y regresemos a la variable original veremos que dicho resultado nuevamente corresponde a una ecuación de primer orden que podrá ser resuelta una vez más con los métodos vistos anteriormente. Realicemos un ejemplo.

Ejemplo: Reducir de orden a la ecuación diferencial lineal de segundo orden

xd2ydx2dydx=x

para x>0 y obtener su solución.

Solución: Dividamos toda la ecuación por x0.

d2ydx21xdydx=1

Hacemos el cambio de variable (3) para obtener la forma (4).

(5)dzdx1xz=1

Ya no deberíamos tener problema con resolver esta ecuación. Apliquemos el método para resolver ecuaciones lineales. De la ecuación reducida (5) notamos que

P(x)=1xyQ(x)=1

El factor integrante, es este caso, es

μ(x)=eP(x)dx=e1xdx=eln(x)=1x

Esto es,

μ(x)=1x

Multipliquemos la ecuación (5) por el factor integrante,

1xdzdxzx2=1x

e identificamos que

ddx(zx)=1xdzdxzx2

De ambas ecuaciones se tiene

ddx(zx)=1x

Ahora podemos integrar ambos lados de la ecuación con respecto a x>0.

ddx(zx)dx=1xdxzx=ln(x)+c1z(x)=xln(x)+xc1

Hemos resuelto la ecuación para la variable z, regresemos a la variable original para resolver la nueva ecuación de primer orden.

(6)dydx=xln(x)+xc1

Esta ecuación puede ser resuelta por separación de variables en su versión simple de integración directa (la ecuación ya esta separada), integremos ambos lados de la ecuación con respecto a x,

dydxdx=xln(x)dx+xc1dxy(x)=xln(x)dx+c1x22

Para resolver la integral que nos falta apliquemos integración por partes, hagamos

u(x)=ln(x)ydvdx=x

Así mismo,

dudx=1xyv(x)=x22

Entonces,

xln(x)dx=x22ln(x)x2dx=x22ln(x)x24+c2

Sustituimos en la función y(x).

y(x)=x22ln(x)x24+c1x22+c2

Por lo tanto, la solución general de la ecuación diferencial

xd2ydx2dydx=x

es

(7)y(x)=x22(ln(x)12)+c1x22+c2

De tarea moral verifica que es la solución general ya que el conjunto

S={y1(x)=x22,y2(x)=1}

es un conjunto fundamental de soluciones de la ecuación homogénea asociada y

yp(x)=x22(ln(x)12)

es una solución particular de la ecuación no homogénea.

◻

Reducción de orden en ecuaciones no lineales

Es posible aplicar un método similar en ecuaciones de segundo orden que pueden ser tanto lineales como no son lineales, en este caso, a diferencia del caso anterior, la variable dependiente y puede aparecer en la ecuación, sin embargo es necesario que la variable independiente x sea la que no aparezca explícitamente. Este tipo de ecuaciones también pueden reducirse a una ecuación de primer orden, pero tomando el siguiente cambio de variable.

(8)dydx=z;d2ydx2=zdzdy

Donde la segunda expresión se deduce de aplicar la regla de la cadena

d2ydx2=dzdx=dzdydydx=zdzdy

Realicemos un ejemplo con una ecuación no lineal.

Ejemplo: Reducir de orden a la ecuación diferencial no lineal de segundo orden

d2ydx22y(dydx)3=0

y obtener su solución.

Solución: Es importante notar que es no lineal debido a que la primer derivada es de tercer grado y además esta multiplicada por la función y, lo cual no debe ocurrir en el caso lineal.

La ecuación a resolver es

d2ydx22y(dydx)3=0

Hacemos el cambio de variable (8) y separamos variables.

zdzdy2yz3=0dzdy=2yz21z2dzdy=2y

Integramos ambos lados de la ecuación con respecto a y.

1z2dzdydy=2ydydzz2=2ydy1z=y2+c1z=1y2+c1

Regresamos a la variable original y separamos de nuevo las variables.

dydx=1y2+c1(y2+c1)dydx=1

Integramos ambos lados de la ecuación con respecto a x.

(y2+c1)dydxdx=dxy2dy+c1dy=dxy33+c1y=x+c2

Por lo tanto, la solución implícita de la ecuación diferencial

d2ydx22y(dydx)3=0

es

y33+c1y=c2x

◻

Realicemos un ejemplo más con una ecuación lineal.

Ejemplo: Encontrar la solución general de la ecuación diferencial

4d2ydx2+dydx=0

Solución: Como la ecuación no contiene explícitamente a la función y ni a la variable independiente x, entonces podemos aplicar cualquier cambio de variable, ya sea (3) u (8). Vamos a resolverla aplicando ambos casos.

Primero consideremos el cambio de variable (8).

4zdzdy+z=04dzdy=1dzdy=14

Integremos ambos lados de la ecuación con respecto a y.

dzdydy=14dydz=14dyz=14y+c1

Regresemos a la variable original.

dydx=14y+c1dydx+y4=c1

Resolvamos esta ecuación por factor integrante.

μ(x)=eP(x)dx=e14dx=ex/4

Esto es,

μ(x)=ex/4

Multipliquemos ambos lados de la ecuación por el factor integrante.

ex/4dydx+ex/4y4=ex/4c1ddx(yex/4)=c1ex/4

Integramos ambos lados con respecto a x.

ddx(yex/4)dx=c1ex/4dxyex/4=c1ex/4dxyex/4=c14ex/4+c2y(x)=c2ex/4+4c1

Renombrando a las constantes concluimos que la solución general de la ecuación diferencial

4d2ydx2+dydx=0

es

y(x)=k1ex/4+k2

Resolvamos de nuevo la ecuación, pero ahora aplicando el cambio de variable (3),

4dzdx+z=01zdzdx=14

Integremos ambos lados con respecto a x.

1zdzdxdx=14dxdzz=14dxln|z|=x4+c1z=c2ex/4

Con c2=ec1. Regresemos a la variable original.

dydx=c2ex/4

Integremos ambos lados con respecto a x.

dydxdx=c2ex/4dxdy=c2ex/4dxy=c24ex/4+c3

Si renombramos las constantes obtenemos nuevamente que

y(x)=k1ex/4+k2

◻

Es posible reducir una ecuación diferencial de segundo orden a una de primer orden si previamente conocemos una solución de la ecuación. Usualmente este método es mayor recurrido que el anterior y también recibe el nombre de método de reducción de orden.

Reducción de orden conocida una solución

Es posible reducir una ecuación diferencial lineal homogénea de segundo orden

(9)a2(x)d2ydx2+a1(x)dydx+a0(x)y=0

a una ecuación diferencial de primer orden siempre que se conozca previamente una solución no trivial y1(x). Recordemos de la entrada anterior que una ecuación de la forma (9) tiene como solución general la combinación lineal

(10)y(x)=c1y1(x)+c2y2(x)

con y1 y y2 funciones que forman un conjunto fundamental de soluciones en cierto intervalo δ. Si conocemos y1 podremos reducir la ecuación a una de primer orden y resolverla para obtener la solución y2 y, por tanto, obtener la solución general.

Este método también es conocido como método de reducción de orden, pues tiene el mismo propósito que los casos anteriores, reducir de orden a una ecuación diferencial. La idea general del método es la siguiente.

Comenzaremos con el conocimiento previo de una solución no trivial y1(x) de la ecuación homogénea (9) definida en un intervalo δ. Lo que buscamos es una segunda solución y2(x), tal que y1 y y2 formen un conjunto fundamental de soluciones en δ, es decir, que sean soluciones linealmente independientes entre sí. Recordemos que si ambas soluciones son linealmente independientes, entonces el cociente y2y1 no es constante en δ, es decir

y2(x)y1(x)=u(x)

o bien,

(11)y2(x)=u(x)y1(x)

Como queremos encontrar y2 y previamente conocemos y1, entonces debemos determinar la función u(x), dicha función se determina al sustituir (11) en la ecuación diferencial dada, esto reducirá a dicha ecuación a una de primer orden donde la variable dependiente será u.

Desarrollemos el método de manera general para encontrar la expresión de u(x) y, por tanto, de y2(x) y finalmente realicemos un ejemplo.

Método de reducción de orden

Este método se aplica a las ecuaciones diferenciales de la forma

a2(x)d2ydx2+a1(x)dydx+a0(x)y=0

Si dividimos esta ecuación por a2(x)0 obtenemos la forma estándar

(12)d2ydx2+P(x)dydx+Q(x)y=0

Con

P(x)=a1(x)a2(x)yQ(x)=a0(x)a2(x)

ambas continuas en algún intervalo δ. Supongamos además que y1(x) es una solución conocida de (12) en δ y que y1(x)0 para toda xδ. Si se define

y(x)=u(x)y1(x)

derivando se tiene

(13)dydx=udy1dx+y1dudx

Derivando una segunda ocasión se tiene

(14)d2ydx2=ud2y1dx2+2dy1dxdudx+y1d2udx2

Sustituyendo (13) y (14) en la forma estándar (12) obtenemos lo siguiente.

d2ydx2+Pdydx+Qy=[ud2y1dx2+2dy1dxdudx+y1d2udx2]+P[udy1dx+y1dudx]+Q[uy1]=u[d2y1dx2+Pdy1dx+Qy1]+y1d2udx2+(2dy1dx+Py1)dudx=0

Como y1(x) es solución sabemos que

d2y1dx2+Pdy1dx+Qy1=0

Entonces el resultado anterior se reduce a lo siguiente.

(15)y1d2udx2+(2dy1dx+Py1)dudx=0

Consideremos el cambio de variable

w=dudxydwdx=d2ydx2

Entonces la ecuación (15) se puede escribir como

(16)y1dwdx+(2dy1dx+Py1)w=0

Esta ecuación es tanto lineal como separable. Separando las variables e integrando, se obtiene

1wdwdx+21y1dy1dx=Pdww+2dy1y1=Pdxln|w|+2ln|y1|+k=Pdxln|wy12|+k=Pdxwy12=k1ePdx

Despejando a w de la última ecuación, usando w=dudx e integrando nuevamente, se tiene

dudx=k1ePdxy12du=k1ePdxy12dxu=k1ePdxy12dx+k2

Eligiendo k1=1 y k2=0 obtenemos la expresión para la función u(x),

(17)u(x)=ePdxy12dx

Si sustituimos en

y(x)=y2(x)=u(x)y1(x)

obtenemos que la segunda solución de la ecuación diferencial (12) es

(18)y2(x)=y1(x)eP(x)dxy12(x)dx

De tarea moral puedes probar que la función y2 satisface la ecuación diferencial y que y1 y y2 son linealmente independientes en algún intervalo en el que y1 no es cero.

Realicemos un ejemplo en el que apliquemos este método.

Ejemplo: Encontrar la solución general de la ecuación diferencial

d2ydx2+16y=0

dada la solución no trivial

y1(x)=cos(4x)

Solución: En esta ocasión apliquemos directamente la expresión (18) para obtener la solución y2(x).

La ecuación diferencial a resolver es

d2ydx2+16y=0

Si la comparamos con la forma estándar (12) notamos que

P(x)=0yQ(x)=16

Sustituyendo en (18), se tiene

y2(x)=cos(4x)e0cos2(4x)dx=cos(4x)1cos2(4x)dx

Para resolver la integral consideremos el cambio de variable s=4x, ds=4dx.

1cos2(4x)dx=14sec2(s)ds

Sabemos que

sec2(s)ds=tan(s)

Así

y2(x)=cos(4x)(14tan(4x)+k1)

Hacemos k1=0.

y2(x)=cos(4x)4(sin(4x)cos(4x))=sin(4x)4

Como la solución general corresponde a la combinación lineal (10), en las constantes c1 y c2 se pueden englobar todas las constantes que pudieran aparecer, por ello es que podemos tomar k1=0 y además podemos evitar la constante 14 de y2 y considerar que

y2(x)=sin(4x)

Veamos que efectivamente satisface la ecuación diferencial.

dy2dx=4cos(4x)d2y2dx2=16sin(4x)

Sustituyendo en la ecuación diferencial.

d2ydx2+16y=16sin(4x)+16sin(4x)=0

Cumple con la ecuación diferencial, lo mismo podemos verificar con la solución dada

y1(x)=cos(4x)

Tenemos,

dy1dx=4sin(4x)d2y1dx2=16cos(4x)

Sustituyendo en la ecuación diferencial.

d2ydx2+16y=16cos(4x)+16cos(4x)=0

Como ambas soluciones son linealmente independientes, entonces forman un conjunto fundamental de soluciones. Otra forma de verificarlo es mostrando que el Wronskiano es distinto de cero y lo es ya que

W(y1,y2)=40

Por lo tanto, la solución general de la ecuación diferencial

d2ydx2+16y=0

corresponde a la combinación lineal

y(x)=c1cos(4x)+c2sin(4x)

◻

Con esto concluimos esta entrada sobre un primer método para resolver algunas ecuaciones diferenciales de segundo orden. En la siguiente entrada desarrollaremos un nuevo método.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de las siguientes ecuaciones diferenciales lineales.
  • xd2ydx2+dydx=0
  • (x1)d2ydx2dydx=0
  1. Resolver las siguientes ecuaciones diferenciales no lineales.
  • (y1)d2ydx2=(dydx)2
  • (dydx)22d2ydx2=0
  1. Dada una solución no trivial de las siguientes ecuaciones diferenciales, hallar la segunda solución, tal que ambas formen un conjunto fundamental de soluciones y determina la solución general.
  • d2ydx24dydx+4y=0;y1(x)=e2x
  • d2ydx225y=0;y1(x)=e5x
  1. Demostrar que la función y2(x)=y1(x)eP(x)dxy12(x)dx Satisface la ecuación diferencial d2ydx2+P(x)dydx+Q(x)y=0 Siempre que y1(x) sea solución de la misma ecuación.
  1. Usando el inciso anterior, demostrar que S={y1(x),y1(x)eP(x)dxy12(x)dx} es un conjunto fundamental de soluciones de la ecuación diferencial d2ydx2+P(x)dydx+Q(x)y=0

Más adelante…

En esta entrada desarrollamos un método de reducción de orden basado en un cambio de variable para ecuaciones lineales y no lineales de segundo orden que satisfacen algunas condiciones y desarrollamos el método de reducción de orden para ecuaciones diferenciales lineales homogéneas en el caso en el que previamente conocemos una solución no trivial.

En la siguiente entrada estudiaremos otro método para resolver un tipo particular de ecuaciones diferenciales, éstas son las ecuaciones diferenciales lineales homogéneas con coeficientes constantes, de la forma

ad2ydx2+bdydx+cy=0

Con a,b y c constantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales l: Ecuación de Bernoulli y ecuación de Riccati

Por Omar González Franco

“Obvio” es la palabra más peligrosa del mundo en matemáticas.
– E. T. Bell

Introducción

Con esta entrada concluiremos el desarrollo de métodos de resolución de ecuaciones diferenciales de primer orden.

Presentaremos dos ecuaciones diferenciales no lineales más, conocidas como ecuación diferencial de Bernoulli y ecuación diferencial de Riccati en honor a sus formuladores Jacob Bernoulli y Jacopo Francesco Riccati, respectivamente.

Ecuación diferencial de Bernoulli

La ecuación diferencial de Bernoulli es una ecuación diferencial ordinaria de primer orden formulada por Jacob Bernoulli en el siglo XVll.

Si a la ecuación de Bernoulli la dividimos por la función a1(x)0, obtenemos

dydx+a0(x)a1(x)y=g(x)a1(x)yn

Definimos las siguientes funciones.

Label '2' multiply defined

Entonces una ecuación de Bernoulli se puede reescribir como

Label '3' multiply defined

La ecuación (3) es también una definición común de ecuación de Bernoulli.

Notemos que si n=0, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal no homogénea.

Label '4' multiply defined

Y si n=1, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal homogénea.

dydx+P(x)y=Q(x)ydydx+[P(x)Q(x)]y=0

Si definimos

R(x)=P(x)Q(x)

entonces

Label '5' multiply defined

Las ecuaciones (4) y (5) ya las sabemos resolver.

Nuestro objetivo será resolver la ecuación de Bernoulli para el caso en el que n0 y n1.

Una propiedad de las ecuaciones de Bernoulli es que la sustitución

Label '6' multiply defined

la convierte en una ecuación lineal, de tal manera que podremos resolverla usando algún método de resolución visto para ecuaciones diferenciales lineales.

Consideremos la ecuación de Bernoulli en la forma (3).

dydx+P(x)y=Q(x)yn

Dividimos toda la ecuación por yn0.

Label '7' multiply defined

La derivada de la función (6) es

dudx=(1n)yndydx=(1n)1yndydx

de donde,

Label '8' multiply defined

Sustituyamos (6) y (8) en la ecuación (7).

Label '9' multiply defined

Multipliquemos por 1n en ambos lados de la ecuación.

dudx+(1n)P(x)u=(1n)Q(x)

Definimos las funciones

R(x)=(1n)P(x)yS(x)=(1n)Q(x)

En términos de estas funciones la ecuación (9) se puede escribir de la siguiente forma.

Label '10' multiply defined

Este resultado corresponde a una ecuación diferencial lineal de primer orden no homogénea y, por tanto, puede ser resuelta aplicando el algoritmo descrito para resolver ecuaciones diferenciales lineales.

Los pasos que se recomiendan seguir para resolver una ecuación diferencial de Bernoulli se presentan a continuación.

Método para resolver ecuaciones de Bernoulli

  1. El primer paso es escribir a la ecuación de Bernoulli en la forma (3).
  1. Dividimos toda la ecuación por yn y consideramos el cambio de variable u=y1n, así como la respectiva derivada dudx=(1n)1yndydx
  1. Sustituimos y1n=uy1yndydx=11ndudx en la ecuación resultante del paso anterior y haciendo un poco de álgebra podremos reducir la ecuación de Bernoulli en una ecuación lineal de primer orden no homogénea.
  1. Resolvemos la ecuación resultante usando el método de resolución de ecuaciones diferenciales lineales lo que nos permitirá obtener la función u(x).
  1. Regresamos a la variable original para obtener finalmente la solución y(x).

Realicemos un ejemplo en el que apliquemos estos pasos.

Ejemplo: Resolver la ecuación de Bernoulli

3(1+x2)dydx=2xy(y31)

Solución: El primer paso es escribir la ecuación de Bernoulli en la forma (3).

3(1+x2)dydx=2xy(y31)dydx=2xy(y31)3(1+x2)dydx=2xy43(1+x2)2xy3(1+x2)dydx+(2x3(1+x2))y=(2x3(1+x2))y4

La última relación muestra a la ecuación en la forma (3) con n=4, ahora dividamos toda la ecuación por y4.

Label '11' multiply defined

Consideremos la sustitución

u=y1n=y14=y3=1y3

y

dudx=3y4dydx

De donde,

1y4dydx=13dudxyy3=u

Sustituimos estos resultados en la ecuación (11).

Label '12' multiply defined

La última ecuación es una expresión en la forma (10). Con esto hemos logrado reducir la ecuación de Bernoulli en una ecuación diferencial lineal de primer orden no homogénea.

Establecemos las siguientes funciones.

R(x)=2x1+x2yS(x)=2x1+x2

A partir de aquí aplicamos el método de resolución de ecuaciones diferenciales lineales.

La ecuación ya se encuentra en su forma canónica. Determinemos el factor integrante dado por

Label '13' multiply defined

Resolvamos la integral del exponente omitiendo la constante de integración.

R(x)dx=2x1+x2dx=ln|1+x2|

Por lo tanto,

μ(x)=eln|1+x2|=11+x2

Multipliquemos a la ecuación (12) por el factor integrante.

11+x2dudx11+x2(2x1+x2)u=11+x2(2x1+x2)

Identificamos que el lado izquierdo de la ecuación es la derivada del producto del factor integrante μ(x) por la función u(x), de esta manera

ddx(u1+x2)=2x(1+x2)2

Integramos ambos lados de la ecuación con respecto a x. Por tratarse del último paso sí consideramos a la constante de integración.

ddx(u1+x2)dx=2x(1+x2)2dx

En el lado izquierdo aplicamos el teorema fundamental del cálculo y en el lado derecho consideramos la sustitución a(x)=1+x2 para resolver la integral. El resultado que se obtiene es

u1+x2=11+x2+cu=1+(1+x2)c

Regresamos a la variable original u=y3.

1y3=1+(1+x2)c

Por lo tanto, la solución general (implícita) de la ecuación diferencial de Bernoulli

3(1+x2)dydx=2xy(y31)

es

y3(x)=11+(1+x2)c

◻

Ahora revisemos la ecuación de Riccati.

Ecuación diferencial de Riccati

La ecuación de Riccati es una ecuación diferencial ordinara no lineal de primer orden, inventada y desarrollada en el siglo XVlll por el matemático italiano Jacopo Francesco Riccati.

Resolver la ecuación de Riccati requiere del conocimiento previo de una solución particular de la ecuación, llamemos a dicha solución y^(x). Si hacemos la sustitución

Label '15' multiply defined

La ecuación de Riccati adquiere la forma de una ecuación de Bernoulli, de tarea moral comprueba este hecho. Ya vimos que para resolver una ecuación de Bernoulli debemos reducirla a una ecuación lineal no homogénea, así que veamos directamente cómo reducir una ecuación de Riccati a una ecuación lineal no homogénea.

Sea y^(x) una solución particular de la ecuación de Riccati y consideremos la sustitución

Label '16' multiply defined

Derivemos esta ecuación.

Label '17' multiply defined

Como y^(x) es una solución de la ecuación de Riccati, entonces satisface la ecuación diferencial.

Label '18' multiply defined

Sustituyendo (18) en (17) obtenemos la siguiente ecuación.

(19)dydx=q0(x)+q1(x)y^+q2(x)y^21u2dudx

Ahora podemos igualar la ecuación (19) con la ecuación de Riccati (14).

q0(x)+q1(x)y+q2(x)y2=q0(x)+q1(x)y^+q2(x)y^21u2dudxq1(x)y+q2(x)y2=q1(x)y^+q2(x)y^21u2dudx1u2dudx=q1(x)y^q1(x)y+q2(x)y^2q2(x)y21u2dudx=q1(x)(y^y)+q2(x)(y^2y2)

En la última relación sustituimos la función (16).

1u2dudx=q1(x)[y^(y^+1u)]+q2(x)[y^2(y^+1u)2]=q1(x)(y^y^1u)+q2(x)(y^2y^22y^1u1u2)=q1(x)(1u)+q2(x)(2y^u1u2)=q1(x)u2q2(x)y^uq2(x)u2

Esto es,

1u2dudx=q1(x)u2q2(x)y^uq2(x)u2

Multipliquemos ambos lados de la ecuación por u2.

dudx=q1(x)u2q2(x)y^uq2(x)dudx=(q1(x)+2q2(x)y^)uq2(x)

Vemos que

(20)dudx+(q1(x)+2q2(x)y^)u=q2(x)

Definamos las funciones

R(x)=q1(x)+2q2(x)y^(x)yS(x)=q2(x)

Por lo tanto, la ecuación (20) queda de la siguiente forma.

(21)dudx+R(x)u=S(x)

Queda demostrado que la sustitución (16) convierte a la ecuación de Riccati en una ecuación diferencial lineal y, por tanto, puede ser resuelta con el método de resolución de ecuaciones lineales.

Como es usual, enunciemos la serie de pasos que se recomienda seguir para resolver las ecuaciones diferenciales de Riccati.

Método para resolver ecuaciones de Riccati

  1. El primer paso es escribir a la ecuación de Riccati en la forma (14) y estar seguros de que conocemos previamente una solución particular y^(x) de la ecuación.
  1. Como queremos reducir la ecuación de Riccati en una ecuación lineal no homogénea consideramos la sustitución y(x)=y^(x)+1u(x) con y^(x) la solución particular dada.

    Si se deseara reducirla a una ecuación de Bernoulli se hace la sustitución y(x)=y^(x)+u(x)
  1. Debido a que y^(x) es solución de la ecuación de Riccati, el siguiente paso es derivar la sustitución y=y^+1u y en el resultado sustituir dy^dx por la ecuación de Riccati para la solución particular, esto es

dydx=dy^dx1u2dudx=[q1(x)+q2(x)y^+q3(x)y^2]1u2dudx

  1. Igualamos la ecuación anterior con la ecuación de Riccati original en la forma (14) y hacemos la sustitución y(x)=y^(x)+1u(x)
  1. Hecho lo anterior y haciendo un poco de álgebra podremos reducir la ecuación de Riccati en una ecuación lineal de primer orden y así aplicar el método de resolución para este tipo de ecuaciones.
  1. Una vez obtenida la función u(x) la sustituimos en y(x) para obtener la solución deseada.

Realicemos un ejemplo para poner en practica este método.

Ejemplo: Resolver la ecuación de Riccati

dydx=4x2yx+y2

dada la solución particular y^=2x.

Solución: La ecuación diferencial prácticamente se encuentra en la forma de la ecuación (14), sólo para que sea claro escribimos

dydx=(4x2)+(1x)y+y2

Comencemos por verificar que la solución particular dada efectivamente satisface la ecuación de Riccati. Por un lado,

dy^dx=2x2

Por otro lado,

4x2y^x+y^2=4x21x(2x)+(2x)2=4x22x2+4x2=2x2

En efecto,

dy^dx=4x2y^x+y^2=2x2

El siguiente paso es hacer la sustitución (16).

y(x)=y^(x)+1u(x)=2x+1u

De acuerdo a (19), tenemos

dydx=4x21x(2x)+(2x)21u2dudx

Igualemos este resultado con la ecuación de Riccati original.

4x2yx+y2=4x22x2+4x21u2dudxyx+y2=2x21u2dudx1u2dudx=2x2+yxy2

En la última ecuación sustituimos y=2x+1u.

1u2dudx=2x2+1x(2x+1u)(2x+1u)2=2x2+2x2+1xu(4x2+4xu+1u2)=4x2+1xu4x24xu1u2=3xu1u2

De donde,

dudx+3xu=1

Esta expresión tiene la forma de una ecuación diferencial lineal (21), de donde podemos determinar que

R(x)=3xyS(x)=1

La ecuación de Riccati ha sido reducida a una ecuación lineal no homogénea, ahora apliquemos el método de resolución de ecuaciones diferenciales lineales.

Calculemos el factor integrante μ(x)=eR(x)dx.

R(x)dx=3xdx=3ln|x|

El factor integrante es

μ(x)=e3ln|x|=x3

Multipliquemos la ecuación diferencial por el factor integrante.

x3dudx+x3(3x)u=x3x3dudx+3x2u=x3

Identificamos que el lado izquierdo de la ecuación corresponde a la derivada del producto entre el factor integrante μ(x) y la función u(x), entonces

ddx(x3u)=x3

Integramos ambos lados de la ecuación con respecto a x.

ddx(x3u)dx=x3dxx3u=x44+cu(x)=x4+cx3

Ya determinamos el valor de u(x), ahora sólo lo sustituimos en la función y=2x+1u.

Por lo tanto, la solución general de la ecuación de Bernoulli

dydx=4x2yx+y2

es

y(x)=2x+1cx3x4=2x+4x34cx4

◻

Hemos concluido con el estudio de las ecuaciones diferenciales de primer orden.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones de Bernoulli.
  • dydx+1xy=23x4y4
  • 3xdydx2y=x3y2
  • x2dydx2xy=3y4 con la condición inicial y(1)=12
  1. Resolver las siguientes ecuaciones de Riccati.
  • x3dydx=x4y22x2y1 con solución particular y^=1x2
  • dydx=xy2+y+1x2 con solución particular y^=1x
  1. Demostrar que la sustitución y(x)=y^(x)+u(x) convierte a una ecuación de Riccati en una ecuación de Bernoulli. y^(x) es una solución particular de la ecuación de Riccati.

Más adelante…

Con esta entrada concluimos el estudio de las ecuaciones diferenciales de primer orden, a lo largo de la unidad vimos una descripción cualitativa y posteriormente una descripción analítica en la que desarrollamos varios métodos para resolver ecuaciones diferenciales de primer orden tanto lineales como no lineales.

Antes de pasar a la siguiente unidad y comenzar con el estudio de las ecuaciones diferenciales de segundo orden, es importante hacer un estudio con mayor detalle sobre el teorema de existencia y unicidad ya que es este teorema el que justifica toda la teoría que hemos desarrollado a lo largo de la unidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales l: Ecuaciones diferenciales no lineales de primer orden – Ecuaciones separables y homogéneas

Por Omar González Franco

La esencia de las matemáticas reside en su libertad.
– Georg Cantor

Introducción

Hemos dado inicio con el desarrollo de métodos de resolución de ecuaciones diferenciales. Hasta este momento sólo sabemos resolver ecuaciones lineales homogéneas y no homogéneas de primer orden. En esta entrada estudiaremos el caso no lineal.

Estudiaremos dos tipos de ecuaciones diferenciales no lineales de primer orden conocidas como ecuaciones diferenciales separables y ecuaciones diferenciales homogéneas. Cabe mencionar que las ecuaciones no lineales homogéneas que estudiaremos en esta entrada no tienen que ver con las ecuaciones homogéneas que estudiamos con anterioridad. En este caso el término homogéneo hace referencia a una propiedad que satisfacen las ecuaciones no lineales.

Comencemos con las ecuaciones diferenciales separables.

Ecuaciones diferenciales separables

Inmediatamente nos damos cuenta que es una ecuación diferencial no lineal debido a que aparece una función dependiente de la variable dependiente y.

Veamos cómo encontrar la solución general de este tipo de ecuaciones.

Solución a ecuaciones separables

Es conveniente definir la función

Label '3' multiply defined

de tal manera que la ecuación (1) se pueda escribir de la siguiente forma.

Label '4' multiply defined

Esta ecuación la podemos reescribir como

Label '5' multiply defined

Notemos que en el lado derecho de la igualdad tenemos la función que depende de la variable independiente x, mientras que en el lado izquierdo tenemos la función que depende de la variable dependiente y, en esta situación decimos que hemos separado a la ecuación diferencial.

Es común encontrar en la literatura que la ecuación (5) se escribe como

Label '6' multiply defined

Esta es la forma diferencial de la ecuación (4), es una notación informal pero nos permite visualizar que hemos sido capaz de separar a las variables, el lado izquierdo sólo depende de x y el lado derecho sólo depende de y.

Podemos integrar ambos lados de la ecuación. Si consideramos la ecuación en la forma (5), entonces integramos ambos lados con respecto a la variable x y si consideramos la ecuación en la forma (6) integramos con respecto a la variable correspondiente.

f(y)dydxdx=g(x)dxf(y)dy=g(x)dx

Sólo es necesario que las antiderivadas

Label '7' multiply defined

y

Label '8' multiply defined

existan y puedan resolverse. Una vez resueltas las integrales obtendremos una familia uniparamétrica de soluciones que usualmente se expresa de forma implícita.

Método de separación de variables

De acuerdo a lo anterior, el algoritmo que se recomienda seguir para resolver ecuaciones diferenciales separables es el siguiente.

  1. Dada una ecuación diferencial no lineal de primer orden, el primer paso es identificar si es posible que podamos determinar una función g=g(x) que sólo dependa de la variable independiente x y una función f=f(y) que sólo dependa de la variable dependiente y, si esto es posible escribimos a la ecuación diferencial en la siguiente forma.

f(y)dydx=g(x)

  1. El segundo paso es integrar ambos lados de la ecuación con respecto a la variable x. En este caso debemos considerar en todo momento las constantes de integración.
  1. Al resolver la integral f(y)dy obtendremos la solución y(x) que estamos buscando, ya sea de forma implícita o explicita, ambas formas son válidas.

Realicemos un ejemplo en el que apliquemos este método.

Ejemplo: Resolver la ecuación diferencial

dydxe(yx)=x

con la condición inicial y(0)=ln(2).

Solución: El primer paso es determinar si la ecuación es separable, es decir, si podemos hallar las funciones g(x) y f(y). Vemos que

dydxe(yx)=xdydxeyex=xeydydx=xex

Ya logramos escribir a la ecuación en la forma (5), de donde podemos establecer que

g(x)=xexyf(y)=ey

Usando la notación diferencial podemos escribir a la ecuación como

eydy=xexdx

Integremos ambos lados de la ecuación ante la respectiva variable.

eydy=xexdx

Por un lado,

eydy=ey+k1

Por otro lado, para la integral de x usemos integración por partes considerando u(x)=x y dv(x)=ex.

xexdx=xexexdx=xex(ex+k2)=xexexk2

Igualando ambos resultados obtenemos lo siguiente.

ey+k1=xexexk2ey=xexexk2k1ey=xexex+c

En donde c=k2k1. Por lo tanto, la solución implícita es

ey=xexex+c

Para conocer la solución explícita sólo tomamos el logaritmo natural.

y(x)=ln|xexex+c|

Obtengamos la solución particular aplicando la condición inicial y(0)=ln(2).

y(0)=ln|0e0e0+c|=ln(2)y(0)=ln|01+c|=ln(2)

De donde,

ln|c1|=ln(2)

Aplicando la exponencial en ambos lados, se tiene

c1=2

De donde c=3. Por lo tanto, la solución particular es

ey=xexex+3

O bien,

y(x)=ln|xexex+3|

◻

Este tipo de ecuaciones son muy sencillas de resolver, prácticamente se resuelven aplicando una integración directa.

Veamos ahora las ecuaciones diferenciales no lineales homogéneas, lo interesante de este tipo de ecuaciones es que si hacemos un cambio de variable adecuado las podremos reducir a una ecuación separable las cuales ya sabemos resolver.

Ecuaciones homogéneas

Recordemos que un polinomio homogéneo es aquel en el que todos los términos son del mismo grado, por ejemplo, el polinomio

x2y25xy3+x4y4

es un polinomio homogéneo de grado 4 ya que la suma de los exponentes del primer término es 2+2=4, del segundo término es 1+3=4 y evidentemente el exponente de los dos últimos términos es 4. En este sentido es que la ecuación (9) se dice que es homogénea si se satisfacen las ecuaciones (10) y (11) conjuntamente.

Este tipo de ecuaciones se pueden reducir a la forma de una ecuación separable (5) y aplicando el procedimiento anterior es como podremos determinar la solución de las ecuaciones diferenciales no lineales homogéneas.

Reducción de una ecuación homogénea a una de variables separables

La ecuación diferencial que intentamos resolver es de la forma

M(x,y)dx+N(x,y)dy=0

Por definición se cumple que

M(tx,ty)N(tx,ty)=M(x,y)N(x,y)

Si se considera el valor t=1x, la ecuación anterior queda como

M(x,y)N(x,y)=M(tx,ty)N(tx,ty)=M(1,yx)N(1,yx)=f(yx)

Consideremos el cambio de variable y=xu, con u=u(x) una función de la variable independiente x y derivable. Si derivamos la función y(x) aplicando la regla de la cadena, obtenemos lo siguiente.

Label '12' multiply defined

De (9) notemos lo siguiente.

dydx=M(x,y)N(x,y)=f(yx)=f(u)

es decir,

Label '13' multiply defined

Sustituyamos (13) en el resultado (12).

f(u)=(u+xdudx)f(u)=uxdudxf(u)+u=xdudx1x(f(u)+u)=dudx

De manera que

Label '14' multiply defined

Definamos las funciones

g(x)=1xyh(u)=u+f(u)

Entonces podemos escribir a la ecuación (14) como

Label '15' multiply defined

Este resultado corresponde a la definición de una ecuación diferencial de variables separables. Si resolvemos esta ecuación usando el método de separación de variables habremos resuelto la ecuación homogénea.

Método de resolución de las ecuaciones diferenciales homogéneas

A continuación se establecen, como recomendación, los pasos a seguir para resolver una ecuación diferencial homogénea (9).

  1. El primer paso es verificar que en efecto la ecuación sea homogénea, para ello verificamos que M y N sean del mismo grado, es decir, que se cumplan las relaciones (10) y (11) conjuntamente.
  1. Una vez que comprobemos que la ecuación es homogénea, reescribimos a la ecuación (9) como
    Label '16' multiply defined
  1. Hacemos el cambio de variable
    Label '17' multiply defined
    Y sustituimos en la ecuación (16).
  1. Una vez hecha la correspondiente sustitución podremos separar las variables reduciendo el problema a una ecuación de variables separables.

Realicemos un ejemplo de una ecuación diferencial no lineal homogénea.

Ejemplo: Verificar que la siguiente ecuación diferencial es homogénea, determinar su grado y resolver la ecuación.

(x2+y2)dxxydy=0

Solución: De acuerdo a (9) identificamos a las funciones M y N como

M(x,y)=x2+y2yN(x,y)=xy

Para obtener el grado de la ecuación diferencial hagamos la sustitución x por tx y y por ty. Por una lado,

M(tx,ty)=(tx)2+(ty)2=t2(x2+y2)=t2M(x,y)

Por otro lado,

N(tx,ty)=(tx)(ty)=t2(xy)=t2N(x,y)

Se cumple entonces que

M(tx,ty)=t2M(x,y)yN(tx,ty)=t2N(x,y)

Por lo tanto la ecuación sí es homogénea y el grado es n=2. Reduzcamos la ecuación homogénea a una de variables separables y apliquemos el método correspondiente para resolverla.

De acuerdo al algoritmo, una vez que ya vimos que sí es homogénea, escribimos a la ecuación diferencial en la forma (16).

(x2+y2)(xy)dydx=0

Hacemos el cambio de variable (17) y sustituimos en la ecuación diferencial.

(x2+(xu)2)x(xu)(u+xdudx)=0

Realicemos un poco de álgebra hasta reducirla a una ecuación de variables separables.

(x2+(xu)2)x(xu)(u+xdudx)=0x2+x2u2x2u(u+xdudx)=0x2+x2u2x2u2x3ududx=0x2x3ududx=0x2(1xududx)=0

Para x0, se tiene

1xududx=0xududx=1ududx=1x

Ya logramos separar a las variables. Podemos escribir la última igualdad en la forma diferencial

udu=1xdx

Integremos ambos lados de la ecuación sobre la variable correspondiente.

udu=dxxu22+k1=ln|x|+k2u22=ln|x|+k2k1u2=2ln|x|+2(k2k1)u2=2ln|x|+c

Donde c=2(k2k1), como u=yx, sustituimos en el resultado anterior para regresar a las variables originales.

(yx)2=2ln|x|+cy2x2=2ln|x|+cy2=x2(2ln|x|+c)

Por lo tanto, la solución implícita de la ecuación diferencial dada es

y2(x)=x2(2ln|x|+c)

O bien, la solución explícita es

|y(x)|=x(2ln|x|+c)

◻

Hasta aquí concluimos con esta entrada, en la siguiente continuaremos con un método más para resolver ecuaciones diferenciales no lineales de primer orden.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones diferenciales separables.
  • dsdt=sin(3t)
  • dydx=y1+x2
  1. Resolver las siguientes ecuaciones diferenciales homogéneas.
  • (xy)dx+xdy=0
  • (y2+yx)dxx2dy=0
  1. Resolver los siguientes problemas con valores iniciales.
  • dydx=e3x+2y con y(0)=0
  • dsdr=cos2(r)s2 con s(π)=1
  • xydydx=y3x3 con y(1)=2

Más adelante …

En esta entrada estudiamos dos tipos de ecuaciones diferenciales no lineales de primer orden, las separables y las homogéneas. En próximas entradas revisaremos las ecuaciones exactas, la ecuación de Bernoulli y la ecuación de Riccati.

Dedicaremos la siguiente entrada al estudio de las ecuaciones diferenciales exactas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones de Bernoulli y Riccati

Por Eduardo Vera Rosales

Introducción

En las últimas entradas hemos estudiado algunas ecuaciones diferenciales no lineales de primer orden y hemos revisado algunos métodos para resolver este tipo de ecuaciones. En esta ocasión veremos dos tipos de ecuaciones no lineales, que mediante un cambio de variable apropiado pueden convertirse en una ecuación lineal, las cuales ya sabemos resolverlas. Nos referimos a las ecuaciones de Bernoulli y Riccati, que deben su nombre a Jakob Bernoulli (1655-1705) y Jacopo Francesco Riccati (1676-1754).

Ecuación de Bernoulli

En el video resolveremos la ecuación de Bernoulli en su forma general y posteriormente revisaremos un ejemplo de este tipo de ecuaciones.

Ecuación de Riccati

Resolvemos la ecuación de Riccati en su forma general haciendo un cambio de variable que lleva a una ecuación lineal de primer orden. Luego, resolvemos un ejemplo de una ecuación de Riccati.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la expresión general para la solución y(t) a la ecuación de Bernoulli dydt+p(t)y=q(t)yn.
  • Resuelve la ecuación de Bernoulli dydt13ty=ety4.
  • Verifica que la ecuación logística dPdt=k(1PN)P es una ecuación tipo Bernoulli y resuélvela.
  • Verifica que y1(t)=t es una solución particular a la siguiente ecuación de Riccati y encuentra su solución general: dydt=1+t22ty+y2.
  • Las ecuaciones de Bernoulli y Riccati se pueden relacionar mediante un cambio de variable. Sea y1(t) una solución particular a la ecuación de Riccati. Haz el cambio de variable y(t)=y1(t)+v(t) y transforma la ecuación de Riccati en una ecuación de Bernoulli.

Más adelante

Hemos terminado el análisis de diversos tipos de ecuaciones no lineales de primer orden. Es tiempo de justificar toda la teoría que desarrollamos mediante el teorema de existencia y unicidad, como lo hicimos con las ecuaciones lineales de primer orden.

Existen diversas versiones de este teorema; nosotros demostraremos el teorema de existencia y unicidad de Picard para ecuaciones de primer orden. Demostrarlo no es tan sencillo como para el caso lineal, por lo que tendremos que desarrollar algunas herramientas extra que iremos presentando a lo largo de la siguiente entrada, junto con la demostración del teorema de existencia y unicidad de Picard.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones diferenciales exactas

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos el estudio de las ecuaciones no lineales de primer orden. En particular, resolvimos ecuaciones diferenciales que llamamos separables. Ahora, en esta nueva entrada resolveremos otro tipo de ecuaciones no lineales que llamaremos ecuaciones diferenciales exactas, que podemos escribir en la forma M(t,y)+N(t,y)dydt=0 y donde las funciones M y N cumplen ciertas condiciones que hacen a la ecuación exacta.

Por otro lado, muchas veces las funciones M y N no cumplen las condiciones que hacen a la ecuación diferencial exacta. Revisaremos entonces un método para hacer a las ecuaciones diferenciales exactas. Este método es llamado método del factor integrante, que es bastante similar al método del factor integrante para las ecuaciones lineales no homogéneas, cuyo tema puedes revisar en la siguiente entrada, o ver específicamente el video relacionado aquí.

Ecuaciones exactas

En el primer video introducimos el concepto de ecuación diferencial exacta, y analizamos cuáles son las condiciones que deben satisfacer las funciones M(t,y) y N(t,y) para que una ecuación sea exacta, esto mediante un teorema de caracterización para este tipo de ecuaciones.

En el segundo video resolvemos un par de ejemplos de ecuaciones exactas.

Ecuaciones no exactas y método del factor integrante

En el primer video revisamos el caso cuando una ecuación no satisface las condiciones para ser exacta. Resolvemos este tipo de ecuaciones mediante el método del factor integrante, donde buscamos una función μ que al multiplicarla por la ecuación diferencial, hace a esta ecuación exacta.

En el segundo video resolvemos un par de ejemplos por el método del factor integrante.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que la ecuación diferencial 2t+y2+(2ty)dydt=0 es exacta y encuentra su solución.
  • Encuentra la solución al problema de condición inicial para la ecuación del ejercicio anterior para y(1)=0.
  • Determina el valor de a para que la ecuación diferencial 1t2+1y2+at+2y3dydt=0 sea exacta y encuentra su solución.
  • Verifica que μ(t)=t y μ(t,y)=1ty(2t+y) son factores integrantes para la ecuación 3ty+y2+(t2+ty)dydt=0. Es decir, una ecuación diferencial puede tener más de un factor integrante.
  • Encuentra la condición para que un factor integrante μ de M(t,y)+N(t,y)dydt=0 dependa únicamente de y y encuentra la expresión para μ(y). (Recuerda los pasos que seguimos en el tercer video de esta entrada para el caso μ(t)).
  • Verifica que la ecuación 3t2y+2ty+y3+(t2+y2)dydt=0 no es exacta; encuentra un factor integrante para esta ecuación y resuélvela.

Más adelante

En la siguiente entrada continuaremos con el estudio a las ecuaciones no lineales de primer orden y revisaremos dos ecuaciones no lineales particulares: la ecuación de Bernoulli y la ecuación de Riccati.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»