Archivo de la etiqueta: ecuaciones homogéneas

Ecuaciones Diferenciales l: Ecuaciones diferenciales no lineales de primer orden – Ecuaciones separables y homogéneas

Por Omar González Franco

La esencia de las matemáticas reside en su libertad.
– Georg Cantor

Introducción

Hemos dado inicio con el desarrollo de métodos de resolución de ecuaciones diferenciales. Hasta este momento sólo sabemos resolver ecuaciones lineales homogéneas y no homogéneas de primer orden. En esta entrada estudiaremos el caso no lineal.

Estudiaremos dos tipos de ecuaciones diferenciales no lineales de primer orden conocidas como ecuaciones diferenciales separables y ecuaciones diferenciales homogéneas. Cabe mencionar que las ecuaciones no lineales homogéneas que estudiaremos en esta entrada no tienen que ver con las ecuaciones homogéneas que estudiamos con anterioridad. En este caso el término homogéneo hace referencia a una propiedad que satisfacen las ecuaciones no lineales.

Comencemos con las ecuaciones diferenciales separables.

Ecuaciones diferenciales separables

Inmediatamente nos damos cuenta que es una ecuación diferencial no lineal debido a que aparece una función dependiente de la variable dependiente $y$.

Veamos cómo encontrar la solución general de este tipo de ecuaciones.

Solución a ecuaciones separables

Es conveniente definir la función

$$h(y) = \dfrac{1}{f(y)} \label{3} \tag{3}$$

de tal manera que la ecuación (\ref{1}) se pueda escribir de la siguiente forma.

$$\dfrac{dy}{dx} = \dfrac{g(x)}{f(y)} \label{4} \tag{4}$$

Esta ecuación la podemos reescribir como

$$f(y) \dfrac{dy}{dx} = g(x) \label{5} \tag{5}$$

Notemos que en el lado derecho de la igualdad tenemos la función que depende de la variable independiente $x$, mientras que en el lado izquierdo tenemos la función que depende de la variable dependiente $y$, en esta situación decimos que hemos separado a la ecuación diferencial.

Es común encontrar en la literatura que la ecuación (\ref{5}) se escribe como

$$g(x) dx = f(y) dy \label{6} \tag{6}$$

Esta es la forma diferencial de la ecuación (\ref{4}), es una notación informal pero nos permite visualizar que hemos sido capaz de separar a las variables, el lado izquierdo sólo depende de $x$ y el lado derecho sólo depende de $y$.

Podemos integrar ambos lados de la ecuación. Si consideramos la ecuación en la forma (\ref{5}), entonces integramos ambos lados con respecto a la variable $x$ y si consideramos la ecuación en la forma (\ref{6}) integramos con respecto a la variable correspondiente.

\begin{align*}
\int f(y) \dfrac{dy}{dx} dx &= \int g(x) dx \\
\int f(y) dy &= \int g(x) dx
\end{align*}

Sólo es necesario que las antiderivadas

$$F(y) = \int f(y) dy \label{7} \tag{7}$$

y

$$G(x) = \int g(x) dx \label{8} \tag{8}$$

existan y puedan resolverse. Una vez resueltas las integrales obtendremos una familia uniparamétrica de soluciones que usualmente se expresa de forma implícita.

Método de separación de variables

De acuerdo a lo anterior, el algoritmo que se recomienda seguir para resolver ecuaciones diferenciales separables es el siguiente.

  1. Dada una ecuación diferencial no lineal de primer orden, el primer paso es identificar si es posible que podamos determinar una función $g = g(x)$ que sólo dependa de la variable independiente $x$ y una función $f = f(y)$ que sólo dependa de la variable dependiente $y$, si esto es posible escribimos a la ecuación diferencial en la siguiente forma.

$$f(y) \dfrac{dy}{dx} = g(x)$$

  1. El segundo paso es integrar ambos lados de la ecuación con respecto a la variable $x$. En este caso debemos considerar en todo momento las constantes de integración.
  1. Al resolver la integral $\int f(y) dy$ obtendremos la solución $y(x)$ que estamos buscando, ya sea de forma implícita o explicita, ambas formas son válidas.

Realicemos un ejemplo en el que apliquemos este método.

Ejemplo: Resolver la ecuación diferencial

$$\dfrac{dy}{dx} e^{(y -x)} = x$$

con la condición inicial $y(0) = \ln(2)$.

Solución: El primer paso es determinar si la ecuación es separable, es decir, si podemos hallar las funciones $g(x)$ y $f(y)$. Vemos que

\begin{align*}
\dfrac{dy}{dx} e^{(y -x)} &= x \\
\dfrac{dy}{dx} e^{y} e^{-x} &= x \\
e^{y} \dfrac{dy}{dx} &= x e^{x}
\end{align*}

Ya logramos escribir a la ecuación en la forma (\ref{5}), de donde podemos establecer que

$$g(x) = x e^{x} \hspace{1cm} y \hspace{1cm} f(y) = e^{y}$$

Usando la notación diferencial podemos escribir a la ecuación como

$$e^{y} dy = x e^{x} dx$$

Integremos ambos lados de la ecuación ante la respectiva variable.

$$\int {e^{y} dy} = \int {x e^{x} dx}$$

Por un lado,

$$\int {e^{y} dy} = e^{y} + k_{1}$$

Por otro lado, para la integral de $x$ usemos integración por partes considerando $u(x) = x$ y $dv(x) = e^{x}$.

\begin{align*}
\int {x e^{x} dx} &= x e^{x} -\int{e^{x} dx} \\
&= x e^{x} -(e^{x} + k_{2})\\
&= x e^{x} -e^{x} -k_{2}
\end{align*}

Igualando ambos resultados obtenemos lo siguiente.

\begin{align*}
e^{y} + k_{1} &= x e^{x} -e^{x} -k_{2} \\
e^{y} &= x e^{x} -e^{x} -k_{2} -k_{1} \\
e^{y} &= x e^{x} -e^{x} + c
\end{align*}

En donde $c = -k_{2} -k_{1}$. Por lo tanto, la solución implícita es

$$e^{y} = x e^{x} -e^{x} + c$$

Para conocer la solución explícita sólo tomamos el logaritmo natural.

$$y(x) = \ln|x e^{x} -e^{x} + c|$$

Obtengamos la solución particular aplicando la condición inicial $y(0) = \ln(2)$.

\begin{align*}
y(0) &= \ln|0 e^{0} -e^{0} + c| = \ln(2) \\
y(0) &= \ln|0 -1 + c| = \ln(2)
\end{align*}

De donde,

$$\ln|c -1| = \ln(2)$$

Aplicando la exponencial en ambos lados, se tiene

$$c -1 = 2$$

De donde $c = 3$. Por lo tanto, la solución particular es

$$e^{y} = x e^{x} -e^{x} + 3$$

O bien,

$$y(x) = \ln| x e^{x} -e^{x} + 3|$$

$\square$

Este tipo de ecuaciones son muy sencillas de resolver, prácticamente se resuelven aplicando una integración directa.

Veamos ahora las ecuaciones diferenciales no lineales homogéneas, lo interesante de este tipo de ecuaciones es que si hacemos un cambio de variable adecuado las podremos reducir a una ecuación separable las cuales ya sabemos resolver.

Ecuaciones homogéneas

Recordemos que un polinomio homogéneo es aquel en el que todos los términos son del mismo grado, por ejemplo, el polinomio

$$x^{2}y^{2} -5xy^{3} + x^{4} -y^{4}$$

es un polinomio homogéneo de grado $4$ ya que la suma de los exponentes del primer término es $2 + 2 = 4$, del segundo término es $1 + 3 = 4$ y evidentemente el exponente de los dos últimos términos es $4$. En este sentido es que la ecuación (\ref{9}) se dice que es homogénea si se satisfacen las ecuaciones (\ref{10}) y (\ref{11}) conjuntamente.

Este tipo de ecuaciones se pueden reducir a la forma de una ecuación separable (\ref{5}) y aplicando el procedimiento anterior es como podremos determinar la solución de las ecuaciones diferenciales no lineales homogéneas.

Reducción de una ecuación homogénea a una de variables separables

La ecuación diferencial que intentamos resolver es de la forma

$M(x, y) dx + N(x, y) dy = 0$

Por definición se cumple que

$\dfrac{M(tx, ty)}{N(tx, ty)} = \dfrac{M(x, y)}{N(x, y)}$

Si se considera el valor $t = \dfrac{1}{x}$, la ecuación anterior queda como

$\dfrac{M(x, y)}{N(x, y)} = \dfrac{M(tx, ty)}{N(tx, ty)} = \dfrac{M \left( 1, \dfrac{y}{x} \right) }{N \left( 1, \dfrac{y}{x} \right) } = f \left( \dfrac{y}{x} \right)$

Consideremos el cambio de variable $y = xu$, con $u = u(x)$ una función de la variable independiente $x$ y derivable. Si derivamos la función $y(x)$ aplicando la regla de la cadena, obtenemos lo siguiente.

$$\dfrac{dy}{dx} = u \dfrac{dx}{dx} + x \dfrac{du}{dx} = u + x \dfrac{du}{dx} \label{12} \tag{12}$$

De (\ref{9}) notemos lo siguiente.

$$\dfrac{dy}{dx} = -\dfrac{M(x, y)}{N(x, y)} = -f \left( \dfrac{y}{x} \right) = -f(u)$$

es decir,

$$f(u) = -\dfrac{dy}{dx} \label{13} \tag{13}$$

Sustituyamos (\ref{13}) en el resultado (\ref{12}).

\begin{align*}
f(u) &= -\left( u + x \dfrac{du}{dx} \right) \\
f(u) &= -u -x \dfrac{du}{dx} \\
f(u) + u &= -x \dfrac{du}{dx} \\
-\dfrac{1}{x} (f(u) + u) &= \dfrac{du}{dx}
\end{align*}

De manera que

$$\dfrac{du}{dx} = \left( -\dfrac{1}{x} \right) \left( u + f(u) \right) \label{14} \tag{14}$$

Definamos las funciones

$$g(x) = -\dfrac{1}{x} \hspace{1cm} y \hspace{1cm} h(u) = u + f(u)$$

Entonces podemos escribir a la ecuación (\ref{14}) como

$$\dfrac{du}{dx} = g(x) h(u) \label{15} \tag{15}$$

Este resultado corresponde a la definición de una ecuación diferencial de variables separables. Si resolvemos esta ecuación usando el método de separación de variables habremos resuelto la ecuación homogénea.

Método de resolución de las ecuaciones diferenciales homogéneas

A continuación se establecen, como recomendación, los pasos a seguir para resolver una ecuación diferencial homogénea (\ref{9}).

  1. El primer paso es verificar que en efecto la ecuación sea homogénea, para ello verificamos que $M$ y $N$ sean del mismo grado, es decir, que se cumplan las relaciones (\ref{10}) y (\ref{11}) conjuntamente.
  1. Una vez que comprobemos que la ecuación es homogénea, reescribimos a la ecuación (\ref{9}) como
    $$M(x, y) + N(x, y) \dfrac{dy}{dx} = 0 \label{16} \tag{16}$$
  1. Hacemos el cambio de variable
    $$y = ux \hspace{1cm} y \hspace{1cm} \dfrac{dy}{dx} = u + x \dfrac{du}{dx} \label{17} \tag{17}$$
    Y sustituimos en la ecuación (\ref{16}).
  1. Una vez hecha la correspondiente sustitución podremos separar las variables reduciendo el problema a una ecuación de variables separables.

Realicemos un ejemplo de una ecuación diferencial no lineal homogénea.

Ejemplo: Verificar que la siguiente ecuación diferencial es homogénea, determinar su grado y resolver la ecuación.

$(x^{2} + y^{2}) dx -xy dy = 0$

Solución: De acuerdo a (\ref{9}) identificamos a las funciones $M$ y $N$ como

$$M(x, y) = x^{2} + y^{2} \hspace{1cm} y \hspace{1cm} N(x, y) = -xy$$

Para obtener el grado de la ecuación diferencial hagamos la sustitución $x$ por $tx$ y $y$ por $ty$. Por una lado,

$$M(tx, ty) = (tx)^{2} + (ty)^{2} = t^{2} (x^{2} + y^{2}) = t^{2} M(x, y)$$

Por otro lado,

$$N(tx, ty) = -(tx)(ty) = t^{2} (-xy) = t^{2} N(x, y)$$

Se cumple entonces que

$$M(tx, ty) = t^{2} M(x, y) \hspace{1cm} y \hspace{1cm} N(tx, ty) = t^{2} N(x, y)$$

Por lo tanto la ecuación sí es homogénea y el grado es $n = 2$. Reduzcamos la ecuación homogénea a una de variables separables y apliquemos el método correspondiente para resolverla.

De acuerdo al algoritmo, una vez que ya vimos que sí es homogénea, escribimos a la ecuación diferencial en la forma (\ref{16}).

$$(x^{2} + y^{2}) -(xy) \dfrac{dy}{dx} = 0$$

Hacemos el cambio de variable (\ref{17}) y sustituimos en la ecuación diferencial.

$$\left( x^{2} + (xu)^{2} \right) -x(xu) \left( u + x \dfrac{du}{dx} \right) = 0$$

Realicemos un poco de álgebra hasta reducirla a una ecuación de variables separables.

\begin{align*}
\left( x^{2} + (xu)^{2} \right) -x(xu) \left( u + x \dfrac{du}{dx} \right) &= 0 \\
x^{2} + x^{2} u^{2} -x^{2}u \left( u + x \dfrac{du}{dx} \right) &= 0 \\
x^{2} + x^{2} u^{2} -x^{2}u^{2} -x^{3}u \dfrac{du}{dx} &= 0 \\
x^{2} -x^{3}u \dfrac{du}{dx} &= 0 \\
x^{2} \left( 1 -xu \dfrac{du}{dx} \right) &= 0 \\
\end{align*}

Para $x \neq 0$, se tiene

\begin{align*}
1 -xu \dfrac{du}{dx} &= 0 \\
xu \dfrac{du}{dx} &= 1 \\
u \dfrac{du}{dx} &= \dfrac{1}{x} \\
\end{align*}

Ya logramos separar a las variables. Podemos escribir la última igualdad en la forma diferencial

$$u du = \dfrac{1}{x}dx$$

Integremos ambos lados de la ecuación sobre la variable correspondiente.

\begin{align*}
\int{u du} &= \int{\dfrac{dx}{x}} \\
\dfrac{u^{2}}{2} + k_{1} &= \ln|x| + k_{2} \\
\dfrac{u^{2}}{2} &= \ln|x| + k_{2} -k_{1} \\
u^{2} &= 2 \ln|x| + 2(k_{2} -k_{1}) \\
u^{2} &= 2 \ln|x| + c
\end{align*}

Donde $c = 2(k_{2} -k_{1})$, como $u = \dfrac{y}{x}$, sustituimos en el resultado anterior para regresar a las variables originales.

\begin{align*}
\left( \dfrac{y}{x} \right) ^{2} &= 2\ln|x| + c \\
\dfrac{y^{2}}{x^{2}} &= 2\ln|x| + c \\
y^{2} &= x^{2} (2\ln|x| + c)
\end{align*}

Por lo tanto, la solución implícita de la ecuación diferencial dada es

$$y^{2}(x) = x^{2} (2\ln|x| + c)$$

O bien, la solución explícita es

$$|y(x)| = x \left( \sqrt{2 \ln|x| + c} \right)$$

$\square$

Hasta aquí concluimos con esta entrada, en la siguiente continuaremos con un método más para resolver ecuaciones diferenciales no lineales de primer orden.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones diferenciales separables.
  • $\dfrac{ds}{dt} = -\sin(3t)$
  • $\dfrac{dy}{dx} = \dfrac{y}{1 + x^{2}}$
  1. Resolver las siguientes ecuaciones diferenciales homogéneas.
  • $(x -y)dx + xdy = 0$
  • $(y^{2} +yx)dx -x^{2}dy = 0$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\dfrac{dy}{dx} = e^{3x + 2y}$ $\hspace{1.7cm}$ con $\hspace{0.3cm}$ $y(0) = 0$
  • $\dfrac{ds}{dr} = \dfrac{\cos^{2}(r)}{s^{2}} $ $\hspace{1.3cm}$ con $\hspace{0.3cm}$ $s(\pi) = -1$
  • $xy \dfrac{dy}{dx} = y^{3} -x^{3}$ $\hspace{1cm}$ con $\hspace{0.3cm}$ $y(1) = 2$

Más adelante …

En esta entrada estudiamos dos tipos de ecuaciones diferenciales no lineales de primer orden, las separables y las homogéneas. En próximas entradas revisaremos las ecuaciones exactas, la ecuación de Bernoulli y la ecuación de Riccati.

Dedicaremos la siguiente entrada al estudio de las ecuaciones diferenciales exactas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales homogéneas de segundo orden. Propiedades del conjunto de soluciones

Por Eduardo Vera Rosales

Introducción

Hola a todos. Después de haber estudiado ecuaciones diferenciales de primer orden, llegamos a la segunda unidad del curso donde analizaremos ecuaciones diferenciales de segundo orden. Dada la dificultad para resolver este tipo de ecuaciones, nos enfocaremos únicamente en las ecuaciones lineales de segundo orden, es decir, de la forma $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t).$$

En esta entrada comenzaremos con el caso de las ecuaciones homogéneas de segundo orden, es decir, cuando $g(t)$ es la función constante cero en un intervalo $(\alpha,\beta)$. Estudiaremos la teoría de las soluciones a este tipo de ecuaciones antes de analizar las distintas técnicas para resolverlas. Debido a que el conjunto de soluciones a este tipo de ecuaciones se comportan de buena manera, podremos encontrar la solución general a la ecuación si previamente conocemos dos soluciones particulares que cumplan una hipótesis que daremos a conocer en el intervalo $(\alpha,\beta)$. Definiremos el Wronskiano y la independencia lineal de dos soluciones a una ecuación diferencial, y probaremos distintos teoremas y propiedades de las soluciones con base en estos conceptos.

¡Comencemos!

Ecuaciones lineales homogéneas de segundo orden, Teorema de existencia y unicidad y solución general

En este video damos una introducción a las ecuaciones diferenciales de segundo orden, y en particular, a las ecuaciones lineales de segundo orden. Enunciamos el teorema de existencia y unicidad para ecuaciones lineales de segundo orden, y comenzamos a desarrollar la teoría para encontrar la solución general a ecuaciones homogéneas.

Conjunto fundamental de soluciones y el Wronskiano

Continuando con la teoría de las soluciones a ecuaciones homogéneas de segundo orden, demostramos un par de teoremas que nos ayudan a encontrar la solución general a este tipo de ecuaciones. Además, definimos al conjunto fundamental de soluciones de la ecuación homogénea y el Wronskiano de dos funciones.

Independencia lineal de soluciones

En este último video definimos el concepto de independencia lineal de soluciones a la ecuación homogénea de segundo orden, y demostramos un teorema que nos da otra forma de encontrar un conjunto fundamental de soluciones a la ecuación diferencial homogénea.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que $y_{1}(t)=\sin{t}$ y $y_{2}(t)=\cos{t}$ son soluciones a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+y=0.$$ Posteriormente prueba que $y(t)=k_{1}\sin{t}+k_{2}\cos{t}$ también es solución a la ecuación, donde $k_{1}$, $k_{2}$ son constantes.
  • Prueba que $\{\sin{t},\cos{t}\}$ es un conjunto fundamental de soluciones a la ecuación del ejercicio anterior. ¿En qué intervalo es el conjunto anterior un conjunto fundamental de soluciones?
  • Prueba que si $p(t)$, $q(t)$ son continuas en $(\alpha,\beta)$, $y_{1}(t)$, $y_{2}(t)$ son soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en $(\alpha,\beta)$ y existe $t_{0}$ en dicho intervalo, donde $W[y_{1},y_{2}](t_{0})\neq 0$, entonces $\{y_{1}(t),y_{2}(t)\}$ forman un conjunto fundamental de soluciones en $(\alpha,\beta)$.
  • Prueba que si $p(t)$, $q(t)$ son continuas en $(\alpha,\beta)$, entonces existe un conjunto fundamental de soluciones $\{y_{1}(t),y_{2}(t)\}$ a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en el mismo intervalo. (Hint: Toma un punto en el intervalo $(\alpha,\beta)$ y dos problemas de condición inicial adecuados de tal forma que puedas utilizar el teorema de existencia y unicidad y el Wronskiano para deducir el resultado).
  • Prueba que $y_{1}(t)=t|t|$, $y_{2}(t)=t^{2}$ son linealmente independientes en $[-1,1]$ pero linealmente dependientes en $[0,1]$. Verifica que el Wronskiano se anula en $\mathbb{R}$. ¿Pueden ser $y_{1}(t)$, $y_{2}(t)$ soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en $(-1,1)$ si $p$ y $q$ son continuas en este intervalo?

Más adelante

En la próxima entrada conoceremos el método de reducción de orden, donde supondremos que ya conocemos una solución particular $y_{1}(t)$ a la ecuación lineal homogénea de segundo orden, y con ayuda de esta hallaremos una segunda solución $y_{2}(t)$ tal que forma un conjunto fundamental de soluciones junto con $y_{1}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones diferenciales lineales de primer orden – Método por factor integrante

Por Omar González Franco

Las matemáticas son el arte de la explicación.
– Paul Lockhart

Introducción

Hasta ahora sólo hemos hecho un análisis cualitativo de las soluciones a distintas ecuaciones diferenciales, esto nos ha permitido tener un panorama general sobre el comportamiento de dichas soluciones y su implicación al tratarse de la descripción de un fenómeno real ya que recordemos que para alguna ecuación diferencial ordinaria de la forma

$$\dfrac{dy}{dx} = f(x, y) \label{1} \tag{1}$$

podemos obtener su campo de pendientes y a través de él trazar una infinidad de funciones que satisfacen la ecuación.

Ahora comenzaremos a desarrollar métodos analíticos para obtener explícitamente las funciones solución de una ecuación diferencial ordinaria. Cabe mencionar que no siempre será posible resolver de manera analítica una ecuación diferencial por lo que el análisis cualitativo siempre será una herramienta alterna que puede ayudar en esos casos.

Sabemos que hay diferentes tipos de ecuaciones diferenciales, en esta entrada vamos a comenzar con unas de las ecuaciones más sencillas que podemos encontrar, las ecuaciones diferenciales lineales.

Ecuaciones diferenciales lineales de primer orden

En la primer entrada hicimos una clasificación por linealidad de las ecuaciones diferenciales. Vimos que una ecuación diferencial de $n$-ésimo orden es lineal si:

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = g(x) \label{2} \tag{2}$$

Con las propiedades de que la variable dependiente $y$, así como todas sus derivadas $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$ son de primer grado y los coeficientes $a_{0}, a_{1}, \cdots, a_{n}$, así como la función $g(x)$ dependen a lo sumo de la variable independiente $x$. Una ecuación que no satisface estas propiedades es una ecuación no lineal.

Las primeras ecuaciones que estudiaremos son las ecuaciones diferenciales lineales de primer orden, reduciendo la ecuación (\ref{2}) a primer orden tenemos la siguiente definición.

Como $a_{1}(x) \neq 0$ (ya que si lo es ya no tendríamos una ecuación diferencial), podemos dividir toda la ecuación por este coeficiente.

$$\dfrac{dy}{dx} + \dfrac{a_{0}(x)}{a_{1}(x)} y = \dfrac{g(x)}{a_{1}(x)}$$

Si definimos

$$P(x) = \dfrac{a_{0}(x)}{a_{1}(x)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{g(x)}{a_{1}(x)} \label{4} \tag{4}$$

podemos reescribir la ecuación (\ref{3}) como

$$\dfrac{dy}{dx} + P(x) y = Q(x) \label{5} \tag{5}$$

A esta ecuación se le conoce como la forma canónica y es la definición de ecuación lineal que también encontraremos en la literatura.

Lo que buscamos es una solución de la ecuación diferencial (\ref{5}) en un intervalo $\delta$ donde $P$ y $Q$ sean continuas.

En la forma canónica (\ref{5}), decimos que la ecuación

$$\dfrac{dy}{dx} + P(x) y = 0 \tag{6} \label{6}$$

es la ecuación homogénea, ya que si $g(x) = 0$, entonces $Q(x) = 0$.

Nuestro objetivo es encontrar la forma explícita de la solución $y(x)$ de la ecuación diferencial lineal (\ref{5}). Esta ecuación tiene la propiedad de que la solución general $y(x)$ es la suma de la solución de la ecuación homogénea (\ref{6}) que denotaremos como $y_{h}(x)$ y llamaremos solución homogénea, más la solución de la ecuación no homogénea (\ref{5}) que denotaremos como $y_{p}(x)$ y que llamaremos solución particular, esto es

$$y(x) = y_{h}(x) + y_{p}(x) \label{7} \tag{7}$$

Para mostrar este hecho observemos lo siguiente.

\begin{align*}
\dfrac{dy}{dx} + P(x)y &= \dfrac{d}{dx} (y_{h} + y_{p}) + P(x) (y_{h} + y_{p}) \\
&= \left( \dfrac{d y_{h}}{dx} + P(x) y_{h} \right) + \left( \dfrac{d y_{p}}{dx} + P(x) y_{p} \right) \\
&= 0 + Q(x) \\
&= Q(x)
\end{align*}

Ya que

$$\dfrac{d y_{h}}{dx} + P(x) y_{h} = 0 \hspace{1cm} y \hspace{1cm} \dfrac{d y_{p}}{dx} + P(x) y_{p} = Q(x)$$

Así, para hallar la forma explícita de $y(x)$ debemos hallar la forma explícita de la solución homogénea $y_{h}(x)$ y la forma explícita de la solución particular $y_{p}(x)$ para finalmente sumar ambos resultados.

Solución a ecuaciones diferenciales lineales homogéneas de primer orden

Comencemos por resolver la ecuación diferencial homogénea (\ref{6}) para obtener la solución homogénea $y_{h}(x)$. La ecuación que queremos resolver es

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = 0$$

O bien,

$$\dfrac{dy}{dx} + P(x) y = 0$$

Realicemos un poco de algebra y cálculo.

\begin{align*}
\dfrac{dy}{dx} + P(x) y &= 0 \\
\dfrac{dy}{dx} &= -P(x) y \\
\dfrac{1}{y} \dfrac{dy}{dx} &= -P(x)
\end{align*}

De la última expresión identificamos que

$$\dfrac{d}{dx} (\ln{|y|}) = \dfrac{1}{y} \dfrac{dy}{dx}$$

Sustituimos.

$$\dfrac{d}{dx} (\ln{|y|}) = -P(x)$$

Integremos ambos lados de la ecuación con respecto a la variable $x$.

\begin{align*}
\int \left( \dfrac{d}{dx} (\ln{|y|}) \right) dx &= \int -P(x) dx \\
\ln{|y|} + c &= -\int P(x) dx
\end{align*}

Donde hemos hecho uso del teorema fundamental del cálculo y $c$ es la constante de integración. Apliquemos la exponencial en ambos lados de la ecuación.

\begin{align*}
e^{(\ln{|y|} + c)} &= e^{-\int P(x) dx} \\
e^{\ln{|y|}}e^{c} &= e^{-\int P(x) dx} \\
|y| e^{c} &= e^{-\int P(x) dx} \\
|y| &= e^{-c} e^{-\int P(x) dx} \\
y &= e^{-c} e^{-\int P(x) dx}
\end{align*}

Definimos la constante $k = e^{-c}$, obtenemos finalmente

$$y(x) = k e^{-\int P(x) dx} \label{8} \tag{8}$$

La función (\ref{8}) es solución de la ecuación diferencial homogénea (\ref{6}).

Recordemos que si lo que estamos resolviendo es una ecuación de la forma (\ref{5}), entonces $y(x) = y_{h}(x)$ es la solución de la ecuación diferencial homogénea asociada.

Realicemos un ejemplo.

Es buen momento para aconsejar no memorizar los resultados de los métodos de resolución que estudiemos en el curso y en su lugar aplicar el procedimiento para obtener la solución de una ecuación diferencial. Esto, además de ser una buena práctica, nos ayudará a desarrollar la habilidad de identificar y aplicar los distintos métodos que existen para resolver las distintas ecuaciones diferenciales que se nos puedan presentar. Por supuesto, en ocasiones el método se vuelve demasiado extenso y lo conveniente es hacer uso de resultados intermedios para avanzar más rápido.

¡Resolvamos nuestra primer ecuación diferencial!.

Ejemplo: Obtener la solución de la ecuación diferencial homogénea

$$x \dfrac{dy}{dx} + 2y = 0$$

dada la condición inicial $y(3) = 1$.

Solución: A simple vista verificamos que efectivamente se trata de una ecuación diferencial lineal homogénea, así que podemos aplicar la teoría desarrollada y no sólo eso, además se trata de un problema de valores iniciales.

Comencemos por dividir la ecuación por $x \neq 0$ para obtener la forma (\ref{6}). El resultado es

$$\dfrac{dy}{dx} + \dfrac{2}{x} y = 0$$

Identificamos que $P(x) = \dfrac{2}{x}$.

Como dijimos antes, podemos aplicar directamente el resultado (\ref{8}) y listo, sin embargo haremos todo el desarrollo para comprender bien el método.

La ecuación diferencial la podemos reescribir como

$$\dfrac{1}{y} \dfrac{dy}{dx} = -\dfrac{2}{x}$$

Recordando que

$$\dfrac{d}{dx} (\ln{|y|}) = \dfrac{1}{y} \dfrac{dy}{dx}$$

podemos escribir

$$\dfrac{d}{dx} (\ln{|y|}) = -\dfrac{2}{x}$$

Integremos ambos lados de la ecuación.

$$\int {\dfrac{d}{dx} (\ln{|y|}) dx} = -\int {\dfrac{2}{x} dx}$$

Por un lado tenemos

$$\int {\dfrac{d}{dx} (\ln{|y|}) dx} = \ln{|y|} + c_{1}$$

Por otro lado,

\begin{align*}
\int{P(x) dx} &= \int{\dfrac{2}{x} dx} \\
&= 2 \int{\dfrac{1}{x} dx} \\
&= 2 \ln{|x|} + c_{2}
\end{align*}

Igualando ambos resultados se tiene

$$\ln{|y|} + c_{1} = -(2 \ln{|x|} + c_{2})$$

Si juntamos las dos contantes de integración en una sola podemos escribir

$$\ln{|y|} = -2 \ln{|x|} + k$$

Apliquemos la exponencial en ambos lados.

\begin{align*}
e^{\ln{|y|}} &= e^{ -2 \ln{|x|} + k} \\
|y| &= e^{k} e^{\ln{|x|^{-2}}} \\
y &= Kx^{-2}
\end{align*}

En donde definimos la constante $K = e^{k}$. Por lo tanto, la solución general de la ecuación diferencial dada es

$$y(x) = \dfrac{K}{x^{2}}$$

con $x$ en cualquier intervalo que no contenga al $0$.

Ahora apliquemos la condición inicial para obtener una solución particular. Se debe satisfacer que $y(3) = 1$, evaluemos la función en $3$ e igualemos a $1$.

$$y(3) = \dfrac{K}{3^{2}} = \dfrac{K}{9} = 1$$

De la última igualdad obtenemos que $K = 9$, por lo tanto la solución particular es

$$y(x) = \dfrac{9}{x^{2}}$$

Nota: Para evitar confusiones cabe mencionar que en el ejemplo cuando hablamos de solución general y solución particular nos referimos al contexto general de las ecuaciones diferenciales donde solución general es la función que satisface la ecuación diferencial y tienen contantes arbitrarias, mientras que la solución particular es la función que satisface la ecuación diferencial y cuyas constantes toman un valor específico, por el contrario no nos referimos a la solución general $y = y_{h} + y_{p}$ y solución particular $y_{p}$ vistos al inicio de esta entrada, pues recordemos que en esta sección estamos estudiando ecuaciones diferenciales homogéneas.

$\square$

En conclusión, ahora sabemos resolver ecuaciones diferenciales lineales homogéneas de la forma

$$\dfrac{dy}{dx} + P(x) y = 0$$

cuya solución general es

$$y(x) = k e^{- \int P(x) dx}$$

Ahora veamos el caso no homogéneo en el que $Q(x) \neq 0$.

Solución a ecuaciones diferenciales lineales no homogéneas de primer orden

La ecuación diferencial que intentamos resolver es

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x)$$

O bien,

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Vamos a estudiar dos métodos distintos para resolver este tipo de ecuaciones, uno de ellos es conocido como método por factor integrante y el otro como método por variación de parámetros. Esta entrada la concluiremos con el desarrollo del primer método y en la siguiente entrada estudiaremos el método por variación de parámetros.

Método por factor integrante

Consideremos la ecuación diferencial lineal no homogénea (\ref{5}). El método por factor integrante consiste en encontrar una función $\mu (x)$ que satisfaga la siguiente relación.

$$\dfrac{d}{dx} (\mu y) = \mu \dfrac{dy}{dx} + \mu P(x) y = \mu Q(x) \label{9} \tag{9}$$

Es decir, que la derivada del producto de $\mu (x)$ con la solución $y(x)$ sea igual a multiplicar la ecuación original por $\mu$. La función $\mu$ debe ser una función dependiente de $x$ y derivable, de manera que, usando la regla del producto

$$\dfrac{d}{dx} (\mu y) = \mu \frac{dy}{dx} + y \dfrac{d\mu}{dx} \label{10} \tag{10}$$

Igualando las ecuaciones (\ref{9}) y (\ref{10}), se tiene

\begin{align*}
\mu \dfrac{dy}{dx} + \mu P(x) y &= \mu \frac{dy}{dx} + y \dfrac{d\mu}{dx} \\
\mu P(x) y &= y \dfrac{d\mu}{dx} \\
\mu P(x) &= \dfrac{d\mu}{dx} \\
P(x) &= \frac{1}{ \mu} \dfrac{d\mu}{dx} \\
P(x) &= \dfrac{d}{dx} (\ln{|\mu}|)
\end{align*}

Integremos la última relación con respecto a $x$.

\begin{align*}
\int{\left( \dfrac{d}{dx} (\ln{|\mu}|) \right) dx} &= \int{P(x) dx} \\
\ln{|\mu|} + c_{1} &= \int{P(x) dx}
\end{align*}

En esta ocasión supongamos que $c_{1} = 0$, veremos más adelante que esto no afecta el resultado. Por otro lado, como $e^{x} > 0$ para toda $x$, en particular

$$e^{\int{P(x) dx}} > 0$$

Entonces aplicando la exponencial en ambos lados de la última expresión se obtiene

$$\mu (x) = e^{\int{P(x) dx}} \tag{11} \label{11}$$

A esta función se le conoce como factor integrante y es siempre positiva.

De la ecuación (\ref{9}) sabemos que

$$\dfrac{d}{dx} (\mu y) = \mu Q(x)$$

Integremos ambos lados de la ecuación con respecto a $x$.

\begin{align*}
\int{\left( \dfrac{d}{dx} (\mu y) \right) dx} &= \int{\mu Q(x) dx} \\
\mu y + c_{2} &= \int{\mu Q(x)} dx \\
y &= \dfrac{1}{\mu} \left( \int{\mu Q(x) dx} \right)
\end{align*}

Donde supusimos nuevamente que $c_{2} = 0$. La última expresión ya nos da la solución que buscamos, con $\mu$ el factor integrante.

Por lo tanto, la solución de la ecuación diferencial lineal no homogénea

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

es

$$y(x) = \dfrac{1}{e^{\int{P(x) dx}}} \left( \int{e^{\int{P(x) dx}} Q(x) dx} \right) \label{12} \tag{12}$$

O en una forma más compacta

$$y(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} \right) \label{13} \tag{13}$$

Con $\mu(x)$ el factor integrante (\ref{11}).

El resultado que obtuvimos corresponde a la solución particular $y(x) = y_{p}(x)$, como mencionamos antes, la solución completa o solución general de la ecuación (\ref{5}) es la suma de la solución homogénea más la solución particular

$$y(x) = y_{h}(x) + y_{p}(x)$$

Así, sumando el resultado (\ref{8}) con el resultado (\ref{12}) obtenemos que la solución completa de la ecuación diferencial (\ref{5}) es

$$y(x) = y_{h}(x) + y_{p}(x) = k e^{-\int P(x) dx} + e^{-\int P(x) dx} \left( \int{e^{\int{P(x) dx}} Q(x) dx} \right)$$

Factorizando

$$y(x) = e^{-\int P(x) dx} \left( \int{e^{\int{P(x) dx}} Q(x) dx} + k \right) \label{14} \tag{14}$$

O bien, en términos del factor integrante

$$y(x) = \dfrac{1}{\mu(x)}\left(\int{\mu (x) Q(x) dx} + k \right) \label{15} \tag{15}$$

La ecuación (\ref{15}) es la solución general de las ecuaciones diferenciales lineales de primer orden. En la siguiente entrada mencionaremos el por qué es posible haber tomado como cero a las constantes de integración que aparecieron en el método, sin embargo intenta justificar este hecho con lo visto hasta este momento.

Para concluir realicemos un ejemplo en el que obtengamos la solución homogénea y la solución particular por separado para después sumarlas y obtener la solución general.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\dfrac{dy}{dx} = -y + x^{2}$$

Solución: Comenzamos por reescribir la ecuación en la forma canónica (\ref{5}).

$$\dfrac{dy}{dx} + y = x^{2}$$

Identificamos que $P(x) = 1$ y $Q(x) = x^{2}$. Con el valor de $P(x)$ calculemos el factor integrante omitiendo las constantes.

$$\mu (x) = e^{\int{P(x) dx}} = e^{\int dx} = e^{x}$$

Esto es,

$$\mu (x) = e^{x}$$

La solución homogénea en términos del factor integrante es

$$y_{h}(x) = k e^{-\int P(x) dx} = \dfrac{k}{\mu(x)}$$

Sustituimos el valor del factor integrante.

$$y_{h}(x) = \dfrac{k}{e^{x}} \label{16} \tag{16}$$

Esta función corresponde a la solución de la ecuación homogénea asociada

$$\dfrac{dy}{dx} + y = 0$$

Para obtener la solución particular usemos el resultado (\ref{13}), donde

$$\int{\mu (x)Q(x) dx} = \int{e^{x} x^{2} dx}$$

Resolvamos la integral usando integración por partes con $u(x) = x^{2}$ y $dv(x) = e^{x}$.

$$\int{e^{x} x^{2} dx} = x^{2} e^{x} -\int{2x e^{x} dx}$$

Para la nueva integral volvemos a hacer integración por partes usando $r(x) = x$ y $ds(x) = e^{x}$.

\begin{align*}
\int{e^{x} x^{2} dx} &= x^{2} e^{x} -2 \left(x e^{x} -\int{e^{x} dx}\right) \\
&= x^{2} e^{x} -2x e^{x} + 2e^{x} \\
&= e^{x}\left(x^{2} -2x + 2\right)
\end{align*}

Podemos omitir las contantes de integración. Sustituyamos este resultado en la solución particular.

\begin{align*}
y_{p}(x) &= \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} \right) \\
&= \dfrac{1}{e^{x}} \left[ e^{x} \left( x^{2} -2x + 2 \right) \right] \\
&= x^{2} -2x + 2 \\
&= x^{2} -2 \left(x-1\right)
\end{align*}

Por lo tanto, la solución particular de la ecuación diferencial no homogénea es

$$y_{p}(x) = x^{2} -2(x -1) \label{17} \tag{17}$$

La solución general la obtenemos de sumar los resultados (\ref{16}) y (\ref{17}).

$$y(x) = \dfrac{k}{e^{x}} + \left( x^{2} -2 \left( x -1\right) \right)$$

Por lo tanto, la solución general de la ecuación diferencial dada es

$$y(x) = x^{2} -2 \left(x-1\right) + \dfrac{k}{e^{x}}$$

$\square$

Con esto concluimos esta entrada, en la siguiente estudiaremos el método de variación de parámetros.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Dadas las siguientes ecuaciones diferenciales lineales de primer orden, obtener las soluciones generales $y(x)$ calculando primero la solución homogénea $y_{h}(x)$, después la solución particular $y_{p}(x)$ y finalmente sumando los resultados. (Se pueden omitir las constantes de integración en el proceso).
  • $\dfrac{dy}{dx} -y = e^{2x}$
  • $\dfrac{dy}{dx} + y = e^{2x}$
  • $x \dfrac{dy}{dx} + 4y = x^{-3}e^{x}$
  • $x^{2} \dfrac{dy}{dx} = -2xy + 3e^{3x}$
  1. Resolver la siguiente ecuación diferencial sujeta a la condición inicial dada (problema con valores iniciales).
  • $\dfrac{dy}{dx} + y = e^{-x}, \hspace{1cm} y(0) = -\dfrac{1}{4}$.
  1. Resolver el siguiente problema.
  • Un marcapasos de corazón consiste en un interruptor, una batería de voltaje constante $E_{0}$, un capacitor con capacitancia constante $C$ y un corazón como un resistor con resistencia constante $R$. Cuando se cierra el interruptor, el capacitor se carga; cuando el interruptor se abre, el capacitor de descarga enviando estímulos eléctricos al corazón. Todo el tiempo el corazón se está estimulando, el voltaje $E$ a través del corazón satisface la ecuación diferencial lineal
    $$\dfrac{dE}{dt} = -\dfrac{1}{RC}E$$
    Resolver la ecuación diferencial sujeta a la condición inicial $E(4) = E_{0}$.
  1. Intenta justificar el hecho de que podamos omitir las constantes de integración en los métodos de resolución vistos.

Más adelante…

¡Ya resolvimos analíticamente nuestras primeras ecuaciones diferenciales!. Gran logro.

En la siguiente entrada estudiaremos el método de variación de parámetros para obtener la solución particular de la ecuación diferencial no homogénea y estableceremos una serie de pasos a seguir para resolver este tipo de ecuaciones sin tener que memorizar las formulas de las soluciones.

Finalmente retomaremos el teorema de existencia y unicidad y lo estudiaremos en el contexto de las ecuaciones diferenciales lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales homogéneas de primer orden

Por Eduardo Vera Rosales

Introducción

Durante las dos últimas entradas conocimos un poco de la geometría de las soluciones a ecuaciones diferenciales de primer orden, aún sin conocerlas explícitamente. En esta entrada resolveremos por primera vez de manera analítica algunas de ellas. En particular, resolveremos ecuaciones del tipo $a_{0}(t)\frac{dy}{dt}+a_{1}(t)y=0$, que llamaremos ecuaciones homogéneas. Primero encontraremos la solución a la ecuación de forma general, y posteriormente resolveremos algunos ejemplos particulares.

Ecuaciones lineales homogéneas

En el primer video resolvemos la ecuación lineal homogénea de primer orden en su forma general.

En el segundo video ponemos en práctica lo aprendido en el video anterior para resolver un par de ecuaciones diferenciales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la solución general a la ecuación $\frac{dy}{dt}+e^{t}y=0$.
  • Resuelve el problema de condición inicial $t^2\frac{dy}{dt}+\sqrt{t}y=0$ ; $y(0)=5$. Encuentra el intervalo donde la solución está definida.
  • Antes de resolver analíticamente, esboza las soluciones a la ecuación $\frac{dP}{dt}=kP$, con $k>0$, $P(t) \geq 0, \forall t \in \mathbb{R}$, que modela el crecimiento de una población. (Para mayor referencia a esta ecuación revisa la primer entrada de este curso). Si no recuerdas cómo hacerlo, te recomiendo revisar la entrada anterior.
  • Encuentra la solución general a la ecuación anterior.
  • Compara las soluciones que dibujaste en el tercer ejercicio con las soluciones que encontraste en el cuarto ejercicio. ¿Qué observas?

Más adelante

Ya sabemos cómo resolver ecuaciones homogéneas. Ahora vamos a ver el otro lado de la moneda, es decir, vamos a resolver ecuaciones no homogéneas.

En la siguiente entrada estudiaremos dos métodos para resolver éste tipo de ecuaciones: primero por medio de una función que llamaremos factor integrante, y más adelante por el método de variación de parámetros en el cual las ecuaciones homogéneas nos serán de mucha ayuda.

Nos vemos en la próxima entrada!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»