Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Superior I: El espacio vectorial $\mathbb{R}^n$

Por Eduardo García Caballero

Introducción

En la entrada anterior introdujimos conceptos relacionados a los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$. Hablamos de vectores, combinaciones lineales, espacio generado, independencia lineal y bases. Ahora haremos lo análogo en dimensiones más altas, para lo cual hablaremos de $\mathbb{R}^n$.

La idea es sencilla, queremos extender lo que ya hicimos para vectores con $5$ o $100$ entradas. Sin embargo, visualizar estos espacios y entender su geometría ya no será tan sencillo. Es por esta razón que principalmente nos enfocaremos a generalizar las propiedades algebraicas que hemos discutido. Esta resultará una manera muy poderosa de estudiar los espacios vectoriales, pues nos permitirá generalizar sin mucha dificultad los conceptos aprendidos en la entrada anterior al espacio $\mathbb{R}^n$ para cualquier número natural $n$.

Definición del espacio vectorial $\mathbb{R}^n$

En la entrada anterior vimos cuáles son propiedades que debe cumplir una colección de objetos, en conjunto con una operación de suma y otra de producto escalar, para poder considerarse un espacio vectorial. Como ya vimos, tanto $\mathbb{R}^2$ y $\mathbb{R}^3$ son espacios vectoriales. Podemos definir a $\mathbb{R}^n$ y a sus operaciones como sigue.

Definición. El conjunto $\mathbb{R}^n$ consiste de todas las $n$-adas ordenadas $u=(u_1,u_2,\ldots,u_n)$ en donde cada $u_i$ es un número real, para $i=1,\ldots,n$. A $u_i$ le llamamos la $i$-ésima entrada de $u$. Para dos elementos de $\mathbb{R}^n$, digamos

\begin{align*}
u&=(u_1,u_2,\ldots,u_n)\\
v&=(v_1,v_2,\ldots,v_n),
\end{align*}

definimos la suma $u+v$ como la $n$-áda cuya $i$-ésima entrada es $u_i+v_i$ (decimos que sumamos entrada a entrada). En símbolos, $$u+v=(u_1+v_1,u_2+v_2,\ldots,u_n+v_n).$$

Además, si tomamos un real $r$, definimos el producto escalar de $r$ con $u$ como la $n$-ada cuya $i$-ésima entrada es $r u_i$, es decir, $ru=(ru_1,ru_2,\ldots,ru_n).$

El conjunto $\mathbb{R}^n$ con esta suma y producto escalar cumple ser un espacio vectorial. A continuación probaremos sólo algunas de las propiedades, ¿puedes completar el resto?

1. La suma es asociativa:
\begin{align*}
(u+v)+w
&= ((u_1,u_2,\ldots,u_n) + (v_1,v_2,\ldots,v_n)) + (w_1,w_2,\ldots,w_n) \\
&= (u_1+v_1,u_2+v_2,\ldots,u_n+v_n) + (w_1,w_2,\ldots,w_n) \\
&= ((u_1+v_1)+w_1,(u_2+v_2)+w_2,\ldots,(u_n+v_n)+w_n) \\
&= (u_1+(v_1+w_1),u_2+(v_2+w_2),\ldots,u_n+(v_n+w_n)) \\
&= (u_1,u_2,\ldots,u_n) + (v_1+w_1,v_2+w_2,\ldots,v_n+w_n) \\
&= (u_1,u_2,\ldots,u_n) + ((v_1,v_2,\ldots,v_n) + (w_1,w_2,\ldots,w_n)) \\
&= u + (v+w).
\end{align*}

La cuarta igualdad usa el paso clave de que en $\mathbb{R}$ sí sabemos que la suma es asociativa.

2. La suma es conmutativa:
\[
u+v = v+w.
\]

¡Intenta demostrarlo!

3. Existe un elemento neutro para la suma, que es el elemento de $\mathbb{R}^n$ en donde todas las entradas son iguales al neutro aditivo $0$ de $\mathbb{R}$:
\begin{align*}
u+0
&= (u_1,u_2,\ldots,u_n) + (0,0,\ldots,0) \\
&= (u_1+0,u_2+0,\ldots,u_n+0) \\
&= (u_1,u_2,\ldots,u_n) \\
&= u.
\end{align*}

Para demostrar esta propiedad, necesitaras usar que en $\mathbb{R}$ cada $u_i$ tiene inverso aditivo.

4. Para cada $n$-tupla existe un elemento inverso:
\[
u + (-u) = 0.
\]

5. La suma escalar se distribuye bajo el producto escalar:
\begin{align*}
(r+s)u
&= (r+s)(u_1,u_2,\ldots,u_n) \\
&= ((r+s)u_1,(r+s)u_2,\ldots,(r+s)u_n) \\
&= (ru_1 + su_1, ru_2 + su_2, \ldots, r_n + su_n) \\
&= (ru_1,ru_2,\ldots,ru_n) + (su_1,su_2,\ldots,su_n) \\
&= r(u_1,u_2,\ldots,u_n) + s(u_1,u_2,\ldots,u_n) \\
&= ru + su.
\end{align*}

Una vez más, se está usando una propiedad de $\mathbb{R}$ para concluir una propiedad análoga en $\mathbb{R}^n$. En este caso, se está usando fuertemente que hay una propiedad de distributividad en $\mathbb{R}$.

6. La suma de $n$-tuplas de distribuye bajo el producto de escalares:
\[
r(u+v) = ru + rv.
\]

7. El producto escalar es compatible con el producto de $\mathbb{R}$:
\begin{align*}
(rs)u
&= (rs)(u_1,u_2,\ldots,u_n) \\
&= ((rs)u_1,(rs)u_2,\ldots,(rs)u_n) \\
&= (r(su_1),r(su_2),\ldots,r(su_n)) \\
&= r(su_1, su_2, \ldots, su_n) \\
&= r(s(u_1,u_2,\ldots,u_n)) \\
&= r(su).
\end{align*}

8. El neutro multiplicativo $1$ de $\mathbb{R}$ funciona como neutro para el producto escalar:
\[
1u = u.
\]

De este modo, podemos trabajar con el espacio vectorial $\mathbb{R}^n$ para explorar sus propiedades. La gran ventaja es que lo que demostremos para $\mathbb{R}^n$ en general lo podremos usar para cualquier valor particular de $n$. y poder emplearlas cuando trabajemos con algún número $n$ en particular.

Combinaciones lineales y espacio generado

Al igual que hicimos con $\mathbb{R}^2$ y $\mathbb{R}^3$ podemos definir los conceptos de combinación lineal y espacio generado para el espacio vectorial $\mathbb{R}^n$.

Definición. En $\mathbb{R}^n$, diremos que un vector $u$ es combinación lineal de los vectores $v_1,\ldots,v_k$ si y sólo si existen números reales $r_1,\ldots,r_n$ en $\mathbb{R}$ tales que
\[
u = r_1v_1 + r_2v_2 + \cdots + r_kv_k.
\]

Ejemplo. En $\mathbb{R}^5$, el vector $(3,4,-2,5,5)$ es combinación lineal de los vectores $(2,1,2,0,3)$, $(0,1,-1,3,0)$ y $(1,-1,5,-2,1)$, pues
\[
(3,4,-2,5,5) = 2(2,1,2,0,3) + 1(0,1,-1,3,0) + -1(1,-1,5,-2,1).
\]

$\triangle$

La noción de combinación lineal nos permite hablar de todas las posibles combinaciones lineales, así como en $\mathbb{R}^2$ y $\mathbb{R}^3$.

Definición. Dado un conjunto de vectores $v_1,\ldots,v_n$ en $\mathbb{R}^n$, podemos definir el espacio generado por estos vectores como el conjunto de todas las posibles combinaciones lineales de $v_1,\ldots,v_n$ en $\mathbb{R}^n$.

Es este caso, ya no podremos visualizar geométricamente el espacio generado (aunque con un poco de imaginación, quizás puedas generalizar lo que ya hicimos en dimensiones anteriores: ¿cómo se vería un plano en $\mathbb{R}^4$?, ¿cómo se vería un sub-$\mathbb{R}^3$ de $\mathbb{R}^4$?). De cualquier manera, sí podemos seguir respondiendo preguntas del espacio generado a través de sistemas de ecuaciones.

Ejemplo. ¿El espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$ y $(1,0,2,1)$ es $\mathbb{R}^4$?

Para ver si $\mathbb{R}^4$ es el espacio generado por los vectores propuestos, debemos asegurarnos de que cada vector en $\mathbb{R}^4$ se pueda expresar como combinación lineal de estos. Entonces, seleccionamos un vector $(a,b,c,d)$ arbitrario en $\mathbb{R}^4$, y debemos ver si existen escalares $q$, $r$, $s$ y $t$ tales que
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d);
\]
esto es,
\[
(q,q,q,0) + (0,3r,r,2r) + (2s,3s,s,0) + (t,0,2t,t) = (a,b,c,d),
\]
que equivale a
\[
(q+2s+t, q+3r+3s, q+r+s+2t, 2r+t)=(a,b,c,d),
\]
lo cual a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
q & +{} & & +{} & 2s & +{} & t & = a \\
q & +{} & 3r & +{} & 3s & & & = b \\
q & +{} & r & +{} & s & +{} & 2t & = c \\
& & 2r & & & +{} & t & = d,
\end{alignedat}
\right.
\]
el cual podemos representar como
\[
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}.
\]
Además, podemos observar que la matriz en el lado izquierdo tiene determinante distinto de $0$ (para verificar esto, tendrás que calcularlo), lo que nos indica que es invertible, y la igualdad anterior equivale a
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}^{-1}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
o bien,
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
-3 & 1 & 3 & -3 \\
-1/2 & 1/4 & 1/4 & 0 \\
3/2 & -1/4 & -5/4 & 1 \\
1 & -1/2 & -1/2 & 1
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
de donde tenemos la solución para $q,r,s,t$ siguiente:
\[
\left\{
\begin{alignedat}{4}
q & = & -3a & +{} & b & +{} & 3c & -{} & 3d \\
r & = & -\tfrac{1}{2}a & +{} & \tfrac{1}{4}b & +{} & \tfrac{1}{4}c & & \\
s & = & \tfrac{3}{2}a & -{} & \tfrac{1}{4}b & -{} & \tfrac{5}{4}c & +{} & d \\
t & = & a & -{} & \tfrac{1}{2}b & -{} & \tfrac{1}{2}c & +{} & d.
\end{alignedat}
\right.
\]
Este sistema nos da una fórmula para los escalares $q$, $r$, $s$ y $t$ en función del valor de las entradas del vector $(a,b,c,d)$, y estos escalares satisfacen
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d).
\]
Como esto se cumple para un vector arbitrario $(a,b,c,d)$ en $\mathbb{R}^4$, entonces se cumple para todos los vectores de $\mathbb{R}^4$; es decir, ¡$\mathbb{R}^4$ es el espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$, $(1,0,2,1)$!

$\triangle$

Nuestra técnica de resolver sistemas de ecuaciones mediante la inversa de la matriz asociada ha resultado muy útil. Hemos tenido un poco de suerte en que la matriz sea invertible. Si no lo fuera, no podríamos haber hecho el procedimiento descrito en el ejemplo. ¿Será que si la matriz no es invertible, entonces el sistema no se podrá resolver? La respuesta es compleja: a veces sí, a veces no. En ese caso hay que entender el sistema de ecuaciones con otro método, como reducción gaussiana.

Independencia lineal

Cuando exploramos las propiedades de $\mathbb{R}^2$ y $\mathbb{R}^3$, observamos que hay ocasiones en las que el espacio generado por un conjunto de vectores es «más chico» de lo que se esperaría de la cantidad de vectores: por ejemplo, dos vectores en $\mathbb{R}^2$ generan una línea (y no todo $\mathbb{R}^2$) cuando estos dos se encuentran alineados con el origen. Cuando tres vectores en $\mathbb{R}^3$ no están alineados, pero se encuentran sobre el mismo plano por el origen, su espacio generado es dicho plano (y no todo $\mathbb{R}^3$).

Aunque el el espacio vectorial $\mathbb{R}^n$ no podamos visualizarlo de manera inmediata, podemos mantener la intuición de que un conjunto de vectores «genera todo lo que puede generar» o «genera algo más chico». Para identificar en qué situación nos encontramos, recurrimos a la siguiente definición.

Definición. Dado un conjunto de $k$ vectores $v_1, v_2, \ldots, v_k$ en $\mathbb{R}^n$ distintos de 0, diremos son linealmente independientes si la única forma de escribir al vector 0 como combinación lineal de ellos es cuando todos los coeficientes de la combinación lineal son igual al escalar 0; es decir, si tenemos que
\[
r_1v_1 + r_2v_2 + \cdots + r_kv_k = 0,
\]
entonces forzosamente $r_1 = r_2 = \cdots = r_n = 0$.

Teniendo esta definición en consideración, se puede mostrar que si un conjunto de vectores es linealmente independiente, entonces ninguno de los vectores se puede escribir como combinación lineal de los otros. De hecho, es únicamente en este caso cuando cuando el espacio generado por los vectores es «todo lo que se puede generar».

La justificación de por qué sucede esto es similar a la que vimos en la entrada anterior: como el primer vector es no genera una línea. Como el segundo vector no se puede escribir como combinación lineal del primero, entonces queda fuera de esta línea y ambos generan un plano. Como el tercer vector no se puede escribir como combinación lineal de los primeros dos, entonces queda fuera del plano, y entre los tres generan un espacio «más grande» («de dimensión $3$»). A partir de este punto, quizá no podamos visualizar inmediatamente la forma geométrica del espacio generado, pero como sabemos que los vectores son linealmente independientes, entonces el cuarto vector no se puede escribir como combinación lineal de los primeros tres. Por ello, queda fuera del espacio generado por los primeros tres, y el espacio generado por los cuatro es aún «más grande» («de dimensión $4$»); y así sucesivamente, para tantos vectores linealmente independientes como tengamos.

Una herramienta que podemos emplear para determinar cuándo un conjunto de vectores es linealmente independiente son nuevamente los sistemas de ecuaciones. Para esto veamos el siguiente ejemplo.

Ejemplo. ¿Son los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ linealmente independientes en $\mathbb{R}^4$?

Supongamos que para ciertos escalares $a$, $b$, $c$ y $d$, se cumple que
\[
a(1,5,1,-2) + b(3,-3,0,-1) + c(-2,0,4,1) + d(0,1,-1,0) = (0,0,0,0).
\]
Esto es equivalente a decir que
\[
(a,5a,a,-2a) + (3b,-3b,0,-b) + (-2c,0,4c,c) + (0,d,-d,0) = (0,0,0,0)
\]
que equivale a
\[
(a+3b-2c, 5a-3b+d,a+4c-d,-2a-b+c) = (0,0,0,0),
\]
y a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
a & +{} & 3b & -{} & 2c & & & = 0 \\
5a & -{} & 3b & & & +{} & d & = 0 \\
a & & & +{} & 4c & -{} & d & = 0 \\
-2a & -{} & b & +{} & c & & & = 0
\end{alignedat}
\right.
\]
el cual podemos representar de la forma
\[
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
y, como notamos que la matriz del lado izquierdo de la ecuación tiene determinante distinto de 0 (¿puedes verificarlo?), entonces es invertible, de modo que
\[
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}^{-1}
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
es decir,
\[
a = b = c = d = 0,
\]
lo que nos indica, basándonos en la definición, que los vectores anteriores son linealmente independientes.

$\triangle$

El ejemplo anterior nos da una idea de lo que debe cumplir un conjunto linealmente independiente de $n$ vectores en $\mathbb{R}^n$. En general, podemos mostrar que un conjunto de $n$ vectores $v_1 = (v_{11}, v_{12}, \ldots, v_{1n})$, $v_2 = (v_{21}, v_{22}, \ldots, v_{2n})$, $\ldots$, $v_n = (v_{n1}, v_{n2}, \ldots, v_{nn})$ es linealmente independiente si y sólo si la matriz
\[
\begin{pmatrix}
v_{11} & v_{21} & \cdots & v_{n1} \\
v_{12} & v_{22} & \cdots & v_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
v_{1n} & v_{2n} & \cdots & v_{nn}
\end{pmatrix},
\]
formada por los vectores escritos como columna, es invertible. Esto ya platicamos que está relacionado con que su determinante sea distinto de 0. Pero no en todas las situaciones tendremos tantos vectores como entradas y entonces tendremos que estudiar el sistema de ecuaciones lineales con otras técnicas, como reducción gaussiana.

Ejemplo. ¿Serán los vectores $(1,2,3,4,5)$, $(6,7,8,9,10)$ y $(11,12,13,14,15)$ de $\mathbb{R}^5$ linealmente independientes? Tal y como lo hemos hecho arriba, podemos preguntarnos si hay reales $a,b,c$ tales que $$a(1,2,3,4,5)+b(6,7,8,9,10)+c(11,12,13,14,15)=(0,0,0,0,0),$$ y que no sean todos ellos cero. Tras plantear el sistema como sistema de ecuaciones y luego en forma matricial, lo que se busca es ver si el sistema $\begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $ tiene alguna solución no trivial. Esto puede entenderse aplicando reducción gaussiana a $A$, que muestra que toda solución al sistema anterior es solución al sistema $\begin{pmatrix} 1 & 0 & -1\\0 & 1 & 2\\0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$ lo cual nos lleva a que el sistema original es equivalente al sistema $$\left\{ \begin{array} \,a – c &= 0\\ b + 2c &= 0\end{array}.\right.$$

De aquí, podemos tomar a $c$ como cualquier valor, digamos $1$, de donde $a=1$ y $b=-2$ es solución. En resumen, hemos detectado que $$(1,2,3,4,5)-2(6,7,8,9,10)+(11,12,13,14,15)=(0,0,0,0,0),$$ que es una combinación lineal de los vectores donde no todos los coeficientes son cero. Por ello, no son linealmente intependientes.

Puedes intentar «imaginar» esto como que son vectores en $\mathbb{R}^5$ (un espacio de «dimensión $5$»), pero no generan dentro de él algo de dimensión $3$, sino algo de dimensión menor. Como $(1,2,3,4,5)$ y $(6,7,8,9,10)$ sí son linealmente independientes (¡demuéstralo!), entonces los tres vectores en realidad generan sólo un plano mediante sus combinaciones lineales.

$\square$

Bases

De manera similar a lo que observamos en la entrada anterior, hay ocasiones en las que un conjunto de vectores no tiene como espacio generado a todo $\mathbb{R}^n$. Por otra parte, hay ocasiones en las que el conjunto de vectores sí genera a todo $\mathbb{R}^n$, pero lo hace de manera «redundante», en el sentido de que, aunque su espacio generado sí es todo $\mathbb{R}^n$, podríamos quitar a algún vector del conjunto y el espacio generado sería el mismo. La siguiente definición se enfoca en los conjuntos en los que no pasa mal ninguna de estas cosas. Es decir, los vectores generan exactamente al espacio: cada vector se genera por una y sólo una combinación lineal de ellos.

Definición. Diremos que un conjunto de vectores $v_1, v_2, \ldots, v_k$ es base del esapacio vectorial $\mathbb{R}^n$ si el conjunto de vectores es linealmente independiente y el espacio generado por estos es exactamente $\mathbb{R}^n$.

Ejemplo. Al igual que en $\mathbb{R}^2$ y $\mathbb{R}^3$, la «base canónica» es el primer ejemplo que seguramente se nos viene a la mente. La base canónica en $\mathbb{R}^n$ consiste en los $n$ vectores $\mathrm{e}_1 = (1,0,0,\cdots,0)$, $\mathrm{e}_2 = (0,1,0,\cdots,0)$, $\mathrm{e}_3 = (0,0,1,\ldots,0)$, $\ldots$, $\mathrm{e}_n = (0,0,0,\cdots,1)$. Es claro que cualquier vector $u = (u_1,u_2,\cdots,u_n)$ es combinación lineal de $\mathrm{e}_1,\ldots,\mathrm{e}_n$ pues podemos expresarlo como
\begin{align*}
u
&= (u_1,u_2,\cdots,u_n) \\
&= (u_1,0,\cdots,0) + (0,u_2,\cdots,0) + \cdots (0,0,\cdots,u_n) \\
&= u_1(1,0,\cdots,0) + u_2(0,1,\cdots,0) + \cdots + u_n(0,0,\cdots,1) \\
&= u_1\mathrm{e}_1 + u_2\mathrm{e}_2 + \cdots + u_n\mathrm{e}_n.
\end{align*}
Además, los vectores $\mathrm{e}_1,\ldots,\mathrm{e}_n$ son linealmente independientes (¿puedes ver por qué?). De este modo, verificamos que la «base canónica» es, en efecto, una base.

$\triangle$

Ejemplo. Más arriba verificamos que los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ son linealmente independientes. Además, vimos que la matriz formada por estos es invertible. De este modo, verificamos que estos vectores forman una base para $\mathbb{R}^4$.

$\triangle$

Más adelante…

A lo largo de esta unidad nos hemos enfocado en estudiar a vectores, matrices, ecuaciones lineales y espacios vectroriales. En las últimas entradas, vimos que hay ocho condiciones que se deben cumplir para que un conjunto de objetos matemáticos (junto con una operación de suma y una de producto escalar) sean considerados espacio vectorial. Todos los ejemplos de espacio vectorial que vimos son de la forma $\mathbb{R}^n$, sin embargo, puede surgir la pregunta, ¿existen espacios vectoriales que no sean de esta forma?

De hecho, si has estado prestando atención en la formalidad de los resultados, hay muchos resultados que han quedado pendientes:

  • ¿Por qué el determinante no depende de la fila o columna en la que se expanda?
  • Si tenemos matrices de $n\times n$, ¿por qué son invertibles si y sólo si el determinate es cero?
  • En matrices de $n\times n$, ¿por qué el determinante es multiplicativo?
  • ¿Cómo se formaliza el proceso de reducción gaussiana y para qué más sirve?
  • ¿Será que podemos tener muchos vectores linealmente independientes en $\mathbb{R}^n$? ¿Será posible tener un conjunto generador de menos de $n$ vectores para $\mathbb{R}^n$? ¿Por qué?

Estas dudas no se resuelven en el curso de Álgebra Superior 2, que sigue a este. Sin embargo, en el curso de Álgebra Lineal I sí se resuelven varias de estas dudas.

Además, podrás ver que hay otros tipos de objetos matemáticos distintos a las listas ordenadas y que también forman un espacio vectorial; algunos con los cuales ya hemos trabajado, como lo son las matrices, y otros que se comportan de manera muy poco usual, como son los espacios con dimensión infinita. Asimismo, con las herramientas que hemos desarrollado hasta ahora, podremos aprender nuevos conceptos como transformaciones lineales, eigenvectores y eigenvalores; estos nos permitirán comprender de manera más íntima los espacios vectoriales, y podremos relacionarlos unos con otros.

Tarea moral

  1. Verifica lo siguiente:
    • $(1,1,1,1)$, $(2,2,2,2)$, $(1,1,2,2)$, $(2,2,1,1)$ no es un conjunto linealmente independiente de $\mathbb{R}^4$.
    • $(1,2,3,4)$, $(2,3,4,1)$, $(3,4,1,2)$, $(4,1,2,3)$ es un conjunto generador de $\mathbb{R}^4$.
    • $(1,1,1,1,1),(1,1,1,1,0),(1,1,1,0,0),(1,1,0,0,0),(1,0,0,0,0)$ es una base de $\mathbb{R}^5$.
  2. Demuestra las siguientes dos cosas:
    • Sea $S$ un conjunto generador de $\mathbb{R}^n$ y $T\supseteq S$. Entonces $T$ es conjunto generador de $\mathbb{R}^n$.
    • Sea $T$ un conjunto linealmente independiente de $\mathbb{R}^n$ y $S\subseteq T$. Entonces $S$ es un conjunto linealmente independiente de $\mathbb{R}^n$.
  3. Sean $v_1,v_2,v_3,\ldots,v_k$ vectores linealmente independientes de $\mathbb{R}^n$. Demuestra que $v_1, v_1+v_2, v_1+v_2+v_3,\ldots,v_1+v_2+v_3+\ldots+v_k$ son también vectores linealmente independientes de $\mathbb{R}^n$. ¿Es esto un si y sólo si?
  4. En vista de lo que hemos platicado para matrices de $2\times 2$, $3\times 3$, $\mathbb{R}^2$ y $\mathbb{R}^3$, ¿cómo definirías el producto matriz-vector $AX$ donde $A$ es una matriz de $m\times n$ y $X$ un vector en $\mathbb{R}^n$?
  5. Demuestra que la definición de base tal y como está en la entrada en efecto permite no sólo escribir a cada vector $v$ del espacio como combinación lineal de los elementos de una base $v_1,\ldots,v_n$, sino que también implica que dicha expresión será única.

Entradas relacionadas

Álgebra Moderna I: Producto directo externo

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Esta entrada es el inicio de la última unidad del curso de Álgebra Moderna I, uno de los temas centrales que estudiaremos en esta unidad es el Teorema Fundamental de los Grupos Abelianos Finitos. Como es costumbre, para poder sumergirnos en el teorema, primero tenemos que construir algunos cimientos.

Seguramente a lo largo de tu estudio de las matemáticas te has encontrado con la notación $\r^2 = \r \times \r$ y otras similares. $\r^2$ se usa para denotar al plano cartesiano y rápidamente entendemos que sus elementos tienen la forma de pares ordenados $(x, y)$ donde $x,y\in \r$. Esto mismo sucede con potencias mayores, como por ejemplo $(x,y,z)\in \r^3 = \r \times \r \times \r$ y $(x_1,\dots,x_n)\in \r^n = \r\times\cdots\times\r$ ($n$ veces).

De la misma manera, podríamos hacer $\z \times \r$ y obtener objetos de la forma $(z, r)$ donde $z$ es un entero y $r$ un real. Es decir, podemos usar a la operación $\times$ entre dos grupos completamente distintos. Pero más allá de poder, ¿esto es algo que podamos estudiar? En pocas palabras, sí, resulta que la operación $\times$ es una manera práctica de construir grupos más grandes a partir de otros grupos.

Hablemos del producto de grupos

Comencemos definiendo formalmente al producto de grupos.

Definición. Sean $(G_1, *_1), \cdots, (G_n, *_n)$ grupos. El producto directo externo de $G_1, \dots, G_n$ es
\begin{align*}
G_1\times\cdots\times G_n = \{(g_1,\dots,g_n)\;|\; g_i\in G \; \forall i \in \{1,\dots,n\}\}
\end{align*}
con la operación
\begin{align*}
(g_1,\dots,g_n) * (h_1,\dots,h_n) = (g_1*_1h_1, \dots, g_n*_nh_n).
\end{align*}

Observación. $G_1\times\cdots\times G_n$ es un grupo con neutro $(e_{G_1},\dots, e_{G_n})$ y $(g_1^{-1},\dots, g^{-1}_n)$ es el inverso de cada $(g_1,\dots,g_n)\in G_1\times\cdots\times G_n$.

Ejemplo 1. Consideremos $G = S_3\times\z_2 \times D_{2(4)}.$
Un elemento es $((1\;2\;3), \,\bar{1}, \,a^2b)$.
Dados $(\alpha, \bar{a}, f), (\beta,\bar{b}, g)\in G$ se tiene que
\begin{align*}
(\alpha, \,\bar{a}, \,f)*(\beta,\,\bar{b}, \,g) = (\alpha\circ\beta, \,\bar{a}+\bar{b}, \,f\circ g).
\end{align*}

Ejemplo 2. Tomemos el producto $\z_2\times\z_2 = \{(\bar{0}, \bar{0}), (\bar{0},\bar{1}), (\bar{1}, \bar{0}), (\bar{1}, \bar{1})\}$.
Observemos que $o(\bar{0}, \bar{0}) = 1$, $o(\bar{0}, \bar{1}) = o(\bar{1}, \bar{0}) = o(\bar{1}, \bar{1}) = 2.$
La suma de dos elementos en $\{(\bar{0}, \bar{1}), (\bar{1}, \bar{0}), (\bar{1}, \bar{1})\}$ nos da el tercero. Entonces, $\z_2\times\z_2$ es isomorfo al grupo de Klein.

Ejemplo 3. Por último, tomemos $\z_2\times\z_3 = \{(\bar{0}, \bar{0}), (\bar{0}, \bar{1}), (\bar{0}, \bar{2}), (\bar{1}, \bar{0}), (\bar{1}, \bar{1}), (\bar{1}, \bar{2})\}$.
Observemos que $o(\bar{1}, \bar{1}) = 6.$
Tenemos que $\z_2\times\z_3 = \left< (\bar{1}, \bar{1}) \right>$ y así $\z_2\times\z_3 \cong \z_6$.

Dos funciones naturales

Definición. Sean $G_1,\dots, G_n $ grupos, $G = G_1\times\cdots\times G_n$. Para cada $i\in\{1,\dots,n\}$ definimos la inclusión natural
\begin{align*}
\text{inc}_i : G_i\to G \text{ como } \text{inc}_i(g_i) = (e_{G_1},\dots,g_i, \dots, e_{G_n}),
\end{align*}
donde $g_i$ está en la $i$-ésima posición.

Definición. Sean $G_1,\dots, G_n $ grupos, $G = G_1\times\cdots\times G_n$. Para cada $i\in\{1,\dots,n\}$ definimos la proyección natural
\begin{align*}
\pi_i : G\to G_i \text{ con } \pi_i(g_1,\dots,g_n) = g_i.
\end{align*}

Observación 1 . $\text{inc}_i$ es un monomorfismo.

Observación 2 . $\pi_i$ es un epimorfismo.

Notación. $G_i^* = \text{inc}_i\lceil G_i\rceil = \{e_{G_1}\}\times \cdots \times G_i \times\cdots\{e_{G_n}\}.$

Observación 3. Para $G = G_1\times\cdots\times G_n$, los siguientes incisos son ciertos:

  1. $G_i\cong G_i^*$,
  2. $G_i^* \unlhd G$ y
  3. $G/G_i^* \cong G_1\times \cdots \times G_{i-1}\times G_{i+1} \times\cdots G_n.$

Demostración.
$\text{inc}_i$ es un monomorfismo y si restringimos a su imagen $G_i^*$ obtenemos un epimorfismo, dando un isomorfismo de $G_i$ a $G_i^*$.

Ahora $\varphi: G \to G_1\times \cdots \times G_{i-1}\times G_{i+1} \times \cdots \times G_n$ con $\varphi(g_1,\dots, g_n) = (g_1, \dots, g_{i-1}, g_{i+1},\dots, g_n)$ es un epimorfismo y $\text{Núc }\varphi = G_i^*$, probando con ello que $G_i^* \unlhd G$. Además, por el 1er teorema de isomorfía
\begin{align*}
G/G_i^* \cong G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times\cdots G_n.
\end{align*}

$\blacksquare$

Observación 4. Sean $i\neq j$, $x\in G_i^*$, $y\in G_j^*$. Entonces $x*_ny = y*_nx$.

¿Y si ahora recuperamos $G$ a partir de los $G_i^*$?

En la entrada Producto de subgrupos y clases laterales, definimos el producto de dos subgrupos. Generalicemos esta idea para una cantidad finita de subgrupos:

Definición. Sea $G$ un grupo. Dados $H_1,\dots,H_n$ subgrupos de $G$, el producto de $H_1,\dots, H_n$ es
\begin{align*}
\prod_{i = i}^n H_i = H_1\cdots H_n = \{h_1h_2\cdots h_n\;|\; h_i \in H_i ;\forall i\in \{1,\dots,n\} \}.
\end{align*}

Observemos que para realizar el producto de $h_1h_2\cdots h_n$ sólo usamos la operación del grupo $G$ porque todas las $H_i$ son subgrupos de $G$. Sin embargo, como estudiamos en la entrada Producto de subgrupos y clases laterales, el conjunto $ H_1\cdots H_n$ no necesariamente es un subgrupo ya que la operación no siempre es cerrada. En la siguiente entrada agregaremos condiciones a los subgrupos $H_i$ para que $ H_1\cdots H_n$ sí sea un subgrupo de $G$.

Relacionemos ahora el producto directo externo con el producto de los subgrupos $G_i^*$ antes definidos:

Proposición. Sean $G_1,\dots, G_n$ grupos, $G = G_1\times\cdots\times G_n.$

  1. $G_i^* \unlhd G \quad \forall i\in\{1,\dots,n\}$.
  2. $\displaystyle G_i^* \cap \left( \prod_{j\neq i} G_j^*\right) = \{e_G\} \text{ para toda }i\in\{1,\dots,n\}$.
  3. $\displaystyle G = \prod_{i = 1}^n G_i^*$.

Demostración.
Sean $G_1,\dots, G_n$ grupos, $G = G_1\times\cdots\times G_n$.

  1. Por la observación 3: $G_i^* \unlhd G$, para toda $i\in\{1,\dots, n\}$.
  2. La contención $\displaystyle \{e_G\} \subseteq G_i^* \cap \left( \prod_{j\neq i} G_j^*\right) $, donde $e_G = (e_{G_1},\dots, e_{G_n})$, es clara. Así que probaremos la otra.
    Sea $\displaystyle g = (g_{1}, \dots, g_n) \in G_i^* \cap \left(\prod_{j\neq i}G_j^*\right)$.
    Como $g\in G_i^* = \{e_{G_1}\}\times\cdots\times G_i\times \cdots \times \{e_{G_n}\}$, entonces la $j$-ésima entrada de $g $ es $g_j = e_{G_j}$ para toda $j\neq i$.
    Como $\displaystyle g \in \prod_{j\neq i} G_j^*$, $g = h_1 \cdots h_{i-1}\,h_{i+1} \cdots h_n$ con $h_j \in G_j^*$ para toda $j\neq i$.
    Dado que cada $h_j \in G_j^*$ y $j\neq i$, la entrada $i$ de cada $h_j$ es $e_{G_i}$, por lo tanto la entrada $i$ de $g$ es $e_{G_i}$.
    Por lo tanto $g = (e_{G_1},\dots, e_{G_n}) = e_G$.
  3. Como $G_i^*\subseteq G$ para toda $i \in \{1,\dots,n\}$, entonces $\displaystyle \prod_{i = 1}^n G_i \subseteq G.$
    Ahora, si $g\in G$,
    \begin{align*}
    g = (g_1,\dots, g_n) = (g_1,e_{G_2},\dots, e_{G_n})(e_{G_1}, g_2,e_{G_3},\dots,e_{G_n}) \cdots (e_{G1},\dots, e_{G_{n-1}}, g_n).
    \end{align*}
    Entonces $\displaystyle g\in \prod_{i = 1}^n G_i^*.$
    Por lo tanto $\displaystyle G = \prod_{i= 1}^n G_i^*$.

$\blacksquare$

Lo anterior muestra que un producto directo externo es un producto de subgrupos normales que cumple el inciso 2 de la proposición.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra las observaciones 1, 2 y 4:
    • $\text{inc}_i$ es un monomorfismo.
    • $\pi_i$ es un epimorfismo.
    • Sean $i\neq j$, $x\in G_i^*$, $y\in G_j^*$. Entonces $x*_ny = y*_nx$.
  2. Sean $G_1, \dots, G_n$ grupos finitos, demuestra que el orden de su producto directo externo es $|G_1||G_2|\dots |G_n|.$
  3. Prueba que el centro de un producto externo es el producto externo de los centros, esto es: $$Z(G_1\times G_2 \times \dots \times G_n) = Z(G_1) \times Z(G_2) \times \dots \times Z(G_n).$$ Deduce que el producto directo externo de grupos abelianos es abeliano.
  4. Sea $G = A_1 \times A_2 \dots \times A_n$ y para cada $i\in\{1,\dots,n\}$ sea $B_i \unlhd A_i$. Prueba que $B_1 \times B_2 \times \dots \times B_n \unlhd G$ y que $$(A_1 \times A_2 \dots \times A_n) / (B_1 \times B_2 \times \dots \times B_n) \cong (A_1/B_1) \times (A_2/B_2) \times \dots \times (A_n/B_n).$$
  5. Sean $A$ y $B$ dos grupos finitos y sea $p$ un primo.
    • Prueba que cualquier $p$-subgrupo de Sylow de $A\times B$ es de la forma $P\times Q$, donde $P$ es un $p$-subgrupo de Sylow de $A$ y $Q$ es un $p$-subgrupo de Sylow de $B$.
    • Prueba que además, la cantidad de $p$-subgrupos de Sylow de $A\times B$ es igual a la cantidad de $p$-subgrupos de Sylow de $A$ por la cantidad de $p$-subgrupos de Sylow de $B$, es decir: $$r_p(A\times B) = r_p(A)r_p(B).$$
    • Generaliza este resultado para el producto directo externo de una cantidad finita de grupos, es decir, para $A_1 \times A_2 \times \dots \times A_n$ determina que sus $p$-subgrupos de Sylow son el producto directo externo de $p$-subgrupos de Sylow de sus factores.

Más adelante…

La última proposición es prácticamente la conclusión de esta entrada, porque iniciamos definiendo a $G$ como el producto de grupos externos a él y terminamos describiendo a $G$ como producto de subgrupos específicos de él mismo. ¿Habrá alguna manera de generalizar esto, es decir, cuándo un grupo $G$ se podrá expresar como un producto de subgrupos específicos de él mismo? Esta pregunta nos lleva a la definición del producto directo interno que se dará en la siguiente entrada.

Entradas relacionadas

Álgebra Moderna I: Ejemplo de Sylow

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Siendo la última entrada de la Unidad 4, está dedicada a un ejemplo que se justifica usando el Tercer Teorema de Sylow que vimos en la entrada anterior. Por lo mismo, es mucho más corta de lo que estamos acostumbrados, pero es importante para reforzar el conocimiento antes aprendido.

Ilustrando el TTS

Veamos un ejemplo del Tercer Teorema de Sylow.

Ejemplo.

Tomemos $G = S_4$ y veamos la factorización en primos del orden de $G$, $|G| = 24 = 2^3\cdot 3$.

Primero, consideremos al $3$. Notamos que $\left< (1\;2\; 3)\right>$ es un $3$-subgrupo de Sylow ya que tiene $3$ elementos y no podemos encontrar subgrupos de Sylow de $9, 27$ u otra potencia de $3$, porque esta no dividiría al orden de $G$.

Ahora nos preguntamos ¿cuál es la cantidad de $3$-subgrupos de Sylow, denotada por $r_3$? Bueno, por el Tercer Teorema de Sylow sabemos que se cumple:

\begin{align*}
r_3 \,| \, 2^3 \cdot 3 \, \text{ y } \, r_3\equiv 1 \text{(mód }3).
\end{align*}

Como $3 \equiv 0\text{(mód }3)$, entonces $r_3$ no es un múltiplo de $3$, así que $r_3$ tiene que ser un divisor de $2^3 = 8$ congruente con uno módulo $3$, por lo que $r_3 \in \{1, 4\}$.

Pero podemos encontrar $\left< (2\; 3\; 4)\right>$, otro $3$-subgrupo de Sylow diferente al anterior, así que $ r_3 = 4$. Los otros $3$-subgrupos de Sylow son $\left<(1\;3\;4)\right>$ y $\left<(1\;2\;4)\right>$.

Ahora nos fijamos en el primo $2$. Por el TTS, la cantidad de $2$-subgrupos de Sylow ($r_2$) tiene que cumplir,
\begin{align*}
r_2\,| \,2^3 \cdot 3 \, \text{ y } \, r_2\equiv 1 \text{(mód }2).
\end{align*}

La condición del módulo nos indica que $r_2$ es impar, por lo que tiene que ser divisor de $3$ para además se cumpla la primera condición, esto nos deja con $r_2 \in \{1,3\}.$

Busquemos estos $2$-subgrupos de Sylow. Sabemos que cada $2$-subgrupo de Sylow tiene orden igual a la máxima potencia de $2$ que divide a $|G|$, esto es 8. Sabemos que si tenemos un cuadrado y numeramos los vértices, podemos codificar cada simetría del cuadrado con una permutación de $S_4$. Recordemos que no toda permutación de $S_4$ es una simetría, pero sí al revés.

Las simetrías de un cuadrado son $8$ en total y estas simetrías pueden ser generadas por la combinación de una rotación y la reflexión con respecto al eje $x$. Como hay $8$ simetrías del cuadrado y éstas pueden ser codificadas en permutaciones de $S_4$, tendremos un subgrupo de $S_4$ de orden $8$, es decir, un $2$-subgrupo de Sylow.

Supongamos que numeramos los vértices de un cuadrado $1,\,2,\,3,\,4$ como en la imagen, entonces la rotación estará dada por $(1\;2\;3\;4)$ y la reflexión con respecto al eje $x$ sería $(2\;4)$. Así, el $2$-subgrupo de Sylow que obtenemos es $\left<(1\;2\;3\;4), (2\;4)\right>$.

Simetrías del cuadrado $1,\,2,\,3,\,4$ usando $\left<(1\;2\;3\;4), (2\;4)\right>.$

Estamos buscando todos los $2$-subgrupos de Sylow posibles, como $r_2 \in \{1,3\}$ bien podíamos pensar que $\left<(1\;2\;3\;4), (2\;4)\right>$ es el único. Pero podemos nombrar los vértices del cuadrado de manera distinta para que las simetrías de $S_4$ que le correspondan cambien y encontremos otro $2$-subgrupo de Sylow.

Numerando los vértices del cuadrado $2,\,1,\,3,\,4$ como en la imagen, encontramos que la simetrías están generadas por la rotación $(2\;1\;3\;4)$ y la reflexión $(1\;4)$. Así $\left<(2\;1\;3\;4), (1\;4)\right>$ es otro $2$-subgrupo de Sylow.

Si nos damos cuenta, lo único que hicimos en este cuadrado fue intercambiar los vértices $1$ y $2$ del cuadrado. Esto nos da un subgrupo diferente al anterior porque ese cambio no es una simetría del cuadrado.

Simetrías del cuadrado $2,\,1,\,3,\,4$ usando $\left<(2\;1\;3\;4), (1\;4)\right>.$

Pero $r_2 = 1$ o $r_2 = 3$, así que no puede haber sólo dos $2$-subgrupos de Sylow, deben ser $3$. Nos queda entonces otro $2$-subgrupo de Sylow por encontrar. Análogamente, tomamos el cuadrado numerando los vértices $1, \, 3, \, 2, \, 4$, donde sólo intercambiamos los vértices $3$ y $4$ del cuadrado original. En este caso nos encontramos que sus simetrías son generadas por $\left< (1\;3\;2\;4), (3\; 4)\right>$ y este es el último $2$-subgrupo de Sylow que nos faltaba.

Simetrías del cuadrado $1, \, 3, \, 2, \, 4$ usando $\left< (1\;3\;2\;4), (3\; 4)\right>.$

Así, encontramos todos los subgrupos de Sylow de $S_4$.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera el grupo de los cuaternios $Q_8$, ¿cuántos y cuáles son sus $2$-subgrupos de Sylow?
  2. Busca los $2$ y $3$-subgrupos de Sylow de $\z_6.$
  3. Sean $a, b \in G : = S_3 \times \z_4$, donde $a = ((1\; 2\; 3), [2])$ y $b = ((1\; 3), [1]).$ Considere el subgrupo $T : = \left< a, b \right> \leq G.$ Prueba que $$T = \left< a,b : a^6 = 1_G, b^2 = a^3 = (ab)^2\right>$$ y que $T$ es un grupo no abeliano con $12$ elementos.
    La notación anterior se lee como $T$ es el generado por los elementos $a$ y $b$ tales que $a^6 = 1_G, \,b^2 = a^3 = (ab)^2$.

Más adelante…

Con esta entrada no sólo concluimos en tema de los Teoremas de Sylow, si no también la unidad 4 del curso. ¡Felicidades! Sigue avanzando, ya casi acabamos.

En la siguiente unidad planeamos estudiar el Teorema Fundamental de los Grupos abelianos finitos. Pero para ello comenzaremos viendo una forma sencilla de construir nuevos grupos a partir de una cantidad finita de grupos previos.

Entradas relacionadas

Álgebra Moderna I: Teoremas de Sylow

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la entrada anterior definimos a los $p$-subgrupos de Sylow de un grupo $G$ como un $p$-subgrupo de $G$ tal que no estuviera contenido en otro $p$-subgrupo de $G$. En esta entrada estudiaremos los Teoremas de Sylow que hablan, como su nombre nos indica, de los $p$-subgrupos de Sylow que definimos antes.

El primero trata sobre del orden de los $p$-subgrupos de Sylow, que es la máxima potencia de $p$ que divide al orden del grupo $G$. El segundo habla de la relación entre los $p$-subgrupos de Sylow y establece que todo par de $p$-subgrupos son conjugados. El tercero describe de modo aproximado la cantidad de $p$-subgrupos de Sylow que hay en un grupo $G$. No nos da un número exacto, pero nos da alguna información al respecto.

Ahora, prepárate para leer el nombre de Sylow aún más veces.

Primer Teorema de Sylow

Teorema (1er Teorema de Sylow). Sea $p\in\z^+$ un primo, $G$ un grupo finito con $|G|=p^t m$, $t\in\n^+, m\in \n^+, p\not{|}m.$ Entonces

  1. para cada $i\in\{1,\cdots,t\}$, $G$ contiene un subgrupo de orden $p^i$.
  2. Todo subgrupo de $G$ de orden $p^i$ con $i\in\{1,\cdots,t-1\}$ es un subgrupo normal de algún subgrupo de $G$ de orden $p^{i+1}$.

Demostración.
Sea $p\in\z^+$ un primo, $G$ un grupo finito con $|G|=p^tm$, $t,m\in \n^+$, $p\not{|}m$.

P.D. Para toda $i\in\{1,\cdots,t\}$ existe $P_i \leq G$ con $|P_i| = p^{i}$ y de forma que $P_i \unlhd P_{i+1}$ para toda $i\in\{1,\cdots,t-1\}$.
De hecho, con esto quedarían probados los dos incisos del PTS (Primer Teorema de Syow).

Primero necesitamos un subgrupo de orden $p$. Éste se tiene gracias al Teorema de Cauchy. Así, podemos afirmar que $G$ tiene un subgrupo de orden $p$.
Ahora, si $i\in\{1,\cdots, t-1\}$ y $H$ es un subgrupo de orden $p^{i}$ veamos que podemos construir un subgrupo de $G$ de orden $p^{i+1}$ tal que $H$ sea normal a él:

Sabemos que $p$ divide a $ [ G : H ]$ y como $[ G : H ] \equiv [ N_G(H) : H ] (\text{mód } p)$ entonces
\begin{align*}
p\text{ divide a } [ N_G(H) : H ] = \left| N_G(H) \Big{/}H \right|.
\end{align*}

Entonces por Cauchy, el grupo cociente $N_G(H)\Big{/}H$ tiene un subgrupo de orden $p$, y por el teorema de la correspondencia es de la forma $\tilde{H}/H$ con $H\leq \tilde{H} \leq N_G(H)$. Así,

\begin{align*}
&p = \left| \tilde{H} \Big/ H \right| = \frac{|\tilde{H}|}{|H|} = \frac{\tilde{H}}{p^{i}}
\\& \Rightarrow \frac{|\tilde{H}|}{p^{i}} = p
\\&\Rightarrow |\tilde{H}| = p^{i+1}
\end{align*}
pero $H\unlhd N_G(H)$ por construcción del normalizador y $ \tilde{H} \leq N_G(H)$, entonces $H \unlhd \tilde{H}.$

Ilustración de por qué $H\unlhd \tilde{H}$.

De esta manera, dado un subgrupo de orden $p^i$ podemos encontrar un subgrupo de orden $p^{i+1}$ tal que el primero sea normal en el segundo. Entonces, considerando $P_1$ un subgrupo de $G$ de orden $p$, existe $P_2$ un subgrupo de $G$ de orden $p^2$ tal que $P_1\unlhd P_2$ y a partir de $P_2$ podemos hallar $P_3$ un subgrupo de $G$ de orden $p^3$ tal que $P_2\unlhd P_3$ y así sucesivamente.

Concluimos entonces que existen $P_1,\cdots, P_t$ subgrupos de $G$ con $|P_i| = p^{i}$ para toda $i\in \{1,\cdots, t\}$ tales que $P_1 \unlhd P_2 \unlhd \cdots \unlhd P_t$.

$\blacksquare$

En consecuencia, el PTS nos dice qué tamaño tienen los $p$-subgrupos de Sylow, una incógnita que no habíamos resuelto. Esto se ilustra en el siguiente corolario.

Corolario. Sea $p\in\z^+$ un primo, $G$ un grupo finito con $|G| = p^tm$, $t,m,\in \n^+$ y $p\not{|}m$. Los $p$-subgrupos de Sylow de $G$ tienen orden $p^t$.

Segundo Teorema de Sylow

Antes de enunciar y probar el STS (Segundo Teorema de Sylow) vamos a dar una observación.

Observación. Los conjugados de un $p$-subgrupo de Sylow son también $p$-subgrupos de Sylow.

Demostración.
Sea $p\in\z^+$ un primo, $G$ un grupo finito, $|G| = p^tm$ con $t,m\in\n^+$, $p\not{|}m.$

Al tomar $P$ un $p$-subgrupo de Sylow de $G$, por el corolario del PTS sabemos que $|P| = p^t$.

Ahora, al conjugarlo mediante $g\in G$ se tiene que $gPg^{-1} \leq G$ con $|gPg^{-1}| = |P| = p^t$. Así, $gPg^{-1}$ es un $p$-grupo y debido a que su orden es la máxima potencia de $p$ que divide a $|G|$ se tiene que es un $p$-subgrupo de Sylow.

$\blacksquare$

Esta observación nos dice que todos los conjugados de un $p$-subgrupo de Sylow son igual un $p$-subgrupo de Sylow, pero el STS va más allá y nos dice que conjugando $p$-subgrupos de Sylow podemos encontrar todos los $p$-subgrupos de Sylow de un grupo $G$.

Teorema (2do Teorema de Sylow). Sean $p\in \z^+$ un primo, $G$ un grupo finito. Todos los $p$-subgrupos de Sylow de $G$ son conjugados en $G$.

Demostración.

Sea $p\in \z^+$ un primo, $G$ un grupo finito, $P$ y $Q \; p$-subgrupos de Sylow de $G$.

Sea $X = \{gP \;|\; g\in G\}$. Para comenzar definimos $q\cdot(gP) = qgP$ para todas $q\in Q,g\in G.$ Ésta es una acción de $Q$ en $X$. Como $Q$ es un $p$-grupo, por el último teorema de la entrada Clase de Conjugación, Centro de $G$, Ecuación de Clase y  $p$-Grupo sabemos que
\begin{align*}
\#X\equiv\#X_Q (\text{mód } p).
\end{align*}

Como $p$ no divide a $[ G: P ]$ y $[ G: P ] = \# X$, entonces $p$ tampoco divide a $\# X_Q$. En particular $\#X_Q \neq 0$ y así $X_Q \neq \emptyset$.

Pero
\begin{align*}
X_Q &= \{gP \;|\; q\cdot (gP) = gP \quad \forall q\in Q\}\\
&= \{gP \;|\; qgP = gP \quad \forall q\in Q\} \\
&= \{gP \;|\; g^{-1}qg \in P\quad \forall q\in Q\} \\
&= \{gP \;|\; g^{-1}Qg \subseteq P\} & \text{porque es para toda }q\in Q\\
&= \{gP \;|\; g^{-1}Qg = P\}.
\end{align*}

donde la última igualdad se da porque $g^{-1}Qg$ y $P$ son $p$-subgrupos de Sylow y entonces tienen el mismo orden, la máxima potencia de $p$ que divide al orden de $G$.

Así, $\{gP \;|\;g^{-1}Qg = P\}\neq \emptyset$ y en consecuencia existe $g\in G$ tal que $g^{-1}Qg = P$.

Por lo tanto $P$ y $Q$ son conjugados en $G$.

$\blacksquare$

Tercer Teorema de Sylow

Teorema (3er Teorema de Sylow). Sea $p\in \z^+$ un primo, $G$ un grupo finito y $r_p$ el número de $p$-subgrupos de Sylow de $G$. Entonces

  1. $r_p \equiv 1 (\text{mód } p)$.
  2. $r_p$ divide a $ |G|$.

Demostración.
Sea $p\in \z^+$ un primo, $G$ un grupo finito y $r_p$ el número de $p$-subgrupos de Sylow de $G$.

  1. Sea $X = \{P_1,\cdots, P_{r_p}\}$ la colección de todos los $p$-subgrupos de Sylow de $G$. Definimos $g\cdot P_i = gP_ig^{-1}$ para todas $g\in P_1$ e $i\in\{1,\cdots, r_p\}$, que es una acción de $P_1$ en $X$ ya que $ gP_ig^{-1}$ es nuevamente un $p$-subgrupo de Sylow por la observación previa. Como $P_1$ es un $p$-grupo, por el último teorema de la entrada Clase de Conjugación, Centro de $G$, Ecuación de Clase y  $p$-Grupo sabemos que
    \begin{align*}
    \#X \equiv \# X_{P_1} (\text{mód } p).
    \end{align*}
    Pero por la construcción de $X$, tenemos que $$r_p = \#X\equiv \# X_{P_1} (\text{mód } p).$$
    Ahora, veamos que $\#X_{P_1} = 1$ y para ello analicemos quién es $X_{P_1}$
    \begin{align*}
    X_{P_1} &= \{P_i \in X \;|\; g\cdot P_i = P_i \quad \forall g\in P_1\} \\
    &= \{P_i \in X \;|\; gP_ig^{-1}=P_i \quad \forall g\in P_1\}.
    \end{align*}
    Así, para toda $P_i \in X_{P_1}$ se tiene que $P_1 \leq N_G(P_i)$ y también $P_i \leq N_G(P_i)$.
    Entonces $P_1$ y $P_i$ son $p$-subgrupos de Sylow de $N_G(P_i).$
    Por el 2do Teorema de Sylow, $P_1$ y $P_i$ son conjugados en $N_G(P_i)$, es decir existe $g\in N_G(P_i)$ tal que
    \begin{align*}
    P_1 &= gP_ig^{-1} \\
    &= P_i &\text{pues } g\in N_G(P_i).
    \end{align*}
    Concluimos entonces que $P_1$ es el único elemento en $X_{P_1}$ y así $\#X_{P_1} = 1$. Por lo tanto $r_p \equiv 1 (\text{mód } p)$.
  2. Sea $X = \{P_1, \cdots, P_{r_p}\}$ la colección de todos los $p$-subgrupos de Sylow de $G$.
    Definimos $g\cdot P_i = gP_ig^{-1}$ para todas $g\in G$ e $i\in\{1,\cdots, r_p\}$, que es una acción de $G$ en $X$.
    Por el segundo teorema de Sylow sabemos que $P_1,\dots , P_{r_p}$ son conjugados de $P_1$, entonces $$ \mathcal{O}(P_1)=\{g\cdot P_1|g\in g\}=\{gP_1g^{-1}|g\in g\}=\{P_1,\dots , P_{r_p}\}=X$$ es decir, la acción es transitiva.
    Entonces obtenemos que $r_p = \# \mathcal{O}(P_1)$. Pero, sabemos que $$\# \mathcal{O}(P_1) = [ G : G_{P_i} ] = \frac{|G|}{|G_{P_i}|}$$
    que es un divisor de $|G|$. Por lo tanto $r_p$ es un divisor de $ |G|$.

$\blacksquare$

Tarea moral

  1. Demuestra el corolario del PTS: Sea $p\in\z^+$ un primo, $G$ un grupo finito con $|G| = p^tm$ con $t,m,\in \n^+$ y $p\not{|}m$. Los $p$-subgrupos de Sylow de $G$ tienen orden $p^t$.
  2. Sean $p\in \z^+$ un número primo, $G$ un grupo y $P$ un $p$-subgrupo de Sylow de $G$. Demuestra que $P$ es el único $p$-subgrupo de Sylow de $G$ si y sólo si $P \unlhd G.$
  3. Sea $p\in \z^+$ un número primo. Da un ejemplo de un grupo finito $G$ que tenga tres $p$-subgrupos de Sylow $P$, $Q$ y $R$ tales que $P\cap Q = \{1\}$ y $P\cap R \neq \{1\}.$
    (Sugerencia: Considera $S_3\times S_3.$)
  4. Sean $p\in \z^+$ un número primo y $G$ un grupo finito. Considera $Q$ un $p$-subgrupo de $G$ tal que $Q \unlhd G$. Prueba que $Q \leq P$ para cada $p$-sugrupo de Sylow $P$ de $G$.
    (Sugerencia: Usa el hecho de que cualquier otro $p$-subgrupo de Sylow de $G$ es conjugado de $P$.)
  5. Sean $p\in \z^+$ un número primo y $G$ un grupo finito. Para cada primo $p$ divisor del orden de un grupo finito $G$, escoge un $p$-subgrupo de Sylow $Q_p$. Prueba que $$G = \left< \bigcup_p Q_p\right>.$$(Sugerencia: Usa el orden de los subgrupos generados por los subgrupos de Sylow.)

Más adelante…

En esta entrada abarcamos los tres Teoremas de Sylow, se colocaron los tres en esta entrada para que fuera más fácil consultarlos. Sin embargo, esto hace a la entrada un poco larga, así que la siguiente estará dedicada a algunos ejemplos de la aplicación de estos teoremas.

Entradas relacionadas

Álgebra Moderna I: $p$-Subgrupo de Sylow y el Normalizador de $H$ en $G$ 

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Cuando nació la Teoría de grupos uno de los problemas principales fue clasificar a los grupos finitos. Una manera de estudiar este problema es empezar por entender un tipo especial de grupos finitos: grupos con orden primo $p$, llamemos $G$ a este grupo. El estudio de $G$ se hace más sencillo pues sabemos que es un grupo cíclico y es isomorfo a $\z_p.$

Podemos aumentar la dificultad y considerar el caso cuando $|G| = p^t$, con $p$ primo y $t\in \n.$ Pero, ¿qué sucede si $G$ no es un $p$-grupo? Supongamos que $|G|= n = p^t m$ donde $t\in \n$ y $p$ no divide a $m.$

Dibujo de la representación de un $p$-grupo de Sylow

En esta entrada lo que haremos será intentar estudiar a un grupo cualquiera $G$ a partir de los $p$-grupos que lo conforman, que serán llamados $p$-subgrupos de $G$. Estos subgrupos pueden estar contenidos a su vez en otros $p$-subgrupos o bien ser máximos con respecto a la contención y no estar contenidos en ningún otro $p$-subgrupo. A estos $p$-subgrupos máximos se les llama $p$-subgrupos de Sylow de $G$.

Estudiar todos los $p$-subgrupos de Sylow de $G$ para los primos que dividen al orden de $G$ nos ayuda a entender cómo es el mismo $G.$

Comencemos con subgrupos de Sylow

Definición. Sea $p\in \z^+$ un primo, $G$ un grupo finito. Decimos que $P$ es un $p$-subgrupo de $G$ si el orden de $P$ es una potencia de $p$. Además, decimos que $P$ es un $p$-subgrupo de Sylow de $G$ si

  1. $P$ es un $p$-grupo;
  2. si $Q$ es un $p$-grupo con $P\subseteq Q \subseteq G$, entonces $P=Q$.

Es decir $P$ es un $p$-subgrupo de $G$ máximo con respecto a la contención.

Observación. Siempre existe los subgrupos de Sylow.

Demostración.
Sea $p\in \z^+$ un primo, $G$ un grupo finito con $|G|= n$.

Si $p \not{|} n$, entonces $\{e\}$ es un $p$-subgrupo de Sylow.

Si $p|n$, por el teorema de Cauchy existe $g\in G$ de orden $p$. Si $\left< g\right>$ no es $p$-subgrupo de Sylow, entonces existe $Q_1 \leq G$ $p$-subgrupo con $\left< g\right> \not\subseteq Q_1.$ Si $Q_1$ no es un $p$-subgrupo de Sylow debe existir $Q_2\leq G$ $p$-subgrupo con $Q_1\not\subseteq Q_2.$ Continuando de este modo, dado que $G$ es de orden finito y $1<|\left< g\right> |<|Q_1|<|Q_2|<\dots <|G|$ obtenemos un $p$-subgrupo de Sylow después de un número finito de pasos.

$\blacksquare$

Ejemplos

Ejemplo 1. Sea $G = S_4$, $|S_4| = 4! = 24 = 2^3\cdot 3$.
Entonces hay dos primos involucrados en $|S_4|$, estos son 2 y 3.

$\left< (1\, 2\, 3)\right>$ es un $3$-subgrupo de $S_4$. Como no hay otra potencia de 3 que divida a $|S_4|$, no hay grupos de orden 9,27, etc. por lo que $\left< (1\, 2\, 3)\right>$ es un $3$-subgrupo de Sylow de $S_4$

Por otro lado, para los $2$-subgrupos de Sylow podríamos tener subgrupos de orden $2$, $4$ y hasta $8$. De una manera intuitiva sabemos que podemos ver a $S_4$ como todas las simetrías de un cuadrado.

Notemos que no todas las permutaciones de los vértices de un cuadrado son simetrías, pero todas las simetrías de un cuadrado se pueden ver como permutaciones de sus vértices. Las permutaciones que también son simetrías son: las rotaciones por 90 grados, las reflexiones por los ejes y las reflexiones por las diagonales.

La rotación de $90$ grados, que corresponde a la permutación $(1\, 2\, 3\, 4),$ y la reflexión por el eje $x,$ que corresponde a la transposición $(2\,4)$, generan al grupo diédrico. Por lo que $\left< (1\, 2\, 3\, 4), (2\,4)\right>$ es isomorfo al grupo diédrico $D_{2(4)}$ que es de orden $8$. Así, $\left< (1\, 2\, 3\, 4), (2\,4)\right>$ es un $2$-subgrupo de Sylow de $S_4$ de orden 8.

Simetrías de un cuadraro

Ejemplo 2. Sea $G = A_4$, $|A_5| = 60 = 2^2\cdot 3 \cdot 5$.

Consideremos el grupo de Klein $\{(1), (1\,2)(3\, 4), (1\,3)(2\,4), (1\,4)(2\,3) \} $ que es un subgrupo de $A_5$ de orden $4$ y por lo tanto un $2$-subgrupo de Sylow de $A_5$.

El subgrupo anterior se hizo considerando todas las permutaciones que son productos de dos transposiciones disjuntas de los números $1$, $2$, $3$ y $4$, si ahora hacemos lo mismo pero considerando todas las permutaciones que son productos de dos transposiciones disjuntas de los números $2$, $3$, $4$ y $5$ obtenemos $\{(1), (2\,3)(4\,5), (2\,4)(3\,5), (2\,5)(3\,4)\}$ que es otro $2$-subgrupo de Sylow de $A_5$. Siguiendo de esta manera podríamos construir distintos $2$-subgrupos de Sylow.

Si nos tomamos un $3$-ciclo y su generado obtenemos un $3$-subgrupo de Sylow de $A_5$, por ejemplo $\left< (1\, 2\, 3)\right>$ es un $3$-subgrupo de Sylow de $A_5$. Notamos que podemos elegir $3$-ciclos distintos de $ (1\, 2\, 3)$ y de su inverso y con ello crear diferentes $3$-subgrupos de Sylow de $A_5$.

Si tomamos un $5$-ciclo y su generado obtenemos un $5$-subgrupo de Sylow de $A_5$, por ejemplo $\left< (1\, 2\, 3\,4\,5)\right>$ es un $5$-subgrupo de Sylow de $A_5$. Pero también podemos tomar un $5$-ciclo que no esté en el generado $\left< (1\, 2\, 3\, 4\, 5)\right>$ y obtener otro $5$- subgrupo de Sylow de $A_5$.

Últimos preparativos

Definición. Sea $G$ un grupo, $H$ subgrupo de $G$. El normalizador de $H$ en $G$ es
\begin{align*}
N_G(H) = \{g\in G \;|\; gHg^{-1} = H \}.
\end{align*}

Representación del normalizador de $H$ en $G$.
Observemos que un elemento $g $ del normalizado de $H$ no necesariamente está en $H$.

Observación. Por construcción $H \unlhd N_G(H)$.

Lema. Sea $p\in \z^+$ un primo, $G$ un grupo finito, $H$ un $p$-subgrupo de $G$. Entonces
\begin{align*}
[ N_G(H) : H ] \equiv [ G: H ] (\text{mód }p).
\end{align*}

Demostración.
Sean $p\in \z^+$ un primo, $G$ un grupo finito y $H$ un $p$-subgrupo de $G$. Consideremos $X = \{gH\;|\;g\in G\}$ y la acción de $H$ en $X$ dada por
\begin{align*}
h\cdot (gH) = hgH \quad \forall h\in H, \forall g\in G.
\end{align*}

Como $H$ es un $p$-grupo, de acuerdo al último teorema de la entrada Clase de Conjugación, Centro de $G$, Ecuación de Clase y  $p$-Grupo sabemos que
\begin{align*}
[ G:H ] = \# X \equiv \# X_H (\text{mód }p).
\end{align*}

Pero
\begin{align*}
X_H &= \{gH \in X \;|\; h\cdot(gH) = gH \quad \forall h \in H\} \\
&= \{gH \in X \;|\; hgH = gH \quad \forall h \in H\}\\
&= \{gH \in X \;|\; g^{-1}hg\in H \quad \forall h \in H\}\\
&= \{gH \in X \;|\; g^{-1}Hg\subseteq H\}\\
&= \{gH \in X \;|\; g^{-1}Hg = H\} & \text{pues $G$ es finito y en consecuencia $H$ también.}\\
&= \{gH \;|\; g\in N_{G}(H)\}\\
&= N_G(H) / H.
\end{align*}

Así, $\#X_H = [ N_G(H) : H ]$ y entonces $[ G:H ] \equiv [ N_G(H) : H] (\text{mód }p).$

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra los $2$-subgrupos de los cuaternios $Q_8.$
  2. Encuentra todos los $3$-subgrupos del grupo simétrico $S_4.$ Etiquetando los vértices del cuadrado de maneras distintas a la que viene en el ejemplo 2 de esta entrada, encuentra la mayor cantidad que puedas de $2$-subgrupos de Sylow de $S_4$.
  3. Sea $P$ un $p$-subgrupo de Sylow de un grupo finito $G$. Prueba que:
    • Cada conjugado de $P$ también es un $p$-subgrupo de Sylow.
    • $p$ no divide a $|N_g(P)/P|$.
    • Si $g\in G$ es tal que $o(g) = p^m$ para alguna $m\in\z^+$ y si $gPg^{-1} = P$, entonces $g \in P.$

Más adelante…

¡Ahora sí! Todo está listo para que en la siguiente entrada estudiemos los tres Teoremas de Sylow. Te adelanto que todos los Teoremas de Sylow se sirven de los $p$-subgrupos que vimos en esta entrada. De hecho, los relaciona con los temas que hemos visto como subgrupo normal y conjugados.

Entradas relacionadas